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ABSTRACT

A discussion is given on the restrictions imposed on generalized gravitational La-
grangians by requiring that the Green function, for their corresponding weak field limit be
of the form =70 which implies the very physical fact that waves propagate with only
one velocity,

It is shown that in four dimensions only a Lagrangian proportional to R is allowed
and for six dimensions it should be proportional to R** R,, . No powers of combinations
the curvature tensors give a satisfactory theory for dimensions n > 6.
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I. INTRODUCTION

Modifications of the Einstein-Hilbert action, considering increasing powers of the Ricci
scalar, the Ricci tensor and the Riemann tensor, have a long history [1]. They are of
interest, among others, because some of these theories can be renormalized when quantized
[2], pure gravity inflationary models emerge on adding an R? term to the usual gravitational
Lagrangian [3]. On the other hand, the effective gravitational actions predicted by closed
bosonic, heterotic and supersymmetric strings, in their corresponding higher dimensional
space, contain higher power terms in the curvatures [4]. More recently, some non-linear
Lagrangians have been chosen with the i)roperty that the field equations for the metric are
second order, these are the so-called Lovelock actions {5] which can be regarded as formed
by the dimensional continuation of the Euler characteristics of lower dimensions [6, 7, 8].
These Gauss-Bonnet terms [9,10] seem to be of importance for the quantization of these

theories.

On one hand, dimensions, other than four correspond to the non-linear actions pre-

dicted by strings and to the Lovelock Lagrangians. And, on the gther, each one of these
theories can be considered as an alternative to classical general relativity. Therefore, the
physical consequences of these kind of theories have been extensively studied [see refer-
ences 15 to 22]. In this work we will pa-y attention to the weak field limit (w.f.1.) of these
theories and, in particular, will impose, on each of them, the very physical fact that waves
propagate with only one velocity (Huygen’s Principle (HP) [11,12]. This condition is sat-
isfied by requiring that, in the corresponding number of dimensions, the Green function of

the field equations, of the gravity theory under consideration, in the w.f.l. is given by [12]

i“—:-fl. (1.1)

Among the Lagrangians already mentioned, we will study some toy models and will show

that the imposed Green function (1.1) severely restricts the functional form of those La-

grangians.
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In section 2 we will see that for the imposed Green function, the power of the
D’Alembertian A is related to the number of space-time dimensions n by n = 2A42. In sec-
tion 3 we choose as toy models £ ~ R?, L ~ R, R*, L ~ aR?+ AR, and £ ~ R™(m: > 2).
We will show that the first two Lagrangians give as w.f.l. a squared D’Alembertian and
consequently satisfy in six dimensions the required condition. However, £ ~ R? has an
inconsistent w.f.1. in six dimensions {this is also true in four dimensions), the w.f.l. of the
third one results in a linear combination of two operators not giving the desired Green
function and £ ~ R™(m > 2) does not have a w.fl. Then only the second one gives
an acceptable theory in six-dimensions. In section four, dedicated to final remarks, we
venture to outline some very preliminar ideas to construct gravity theories in any number
of dimensions whose w.f.I. should be compatible with the Green function (1.1) imposed in

this paper.

II. RELATION BETWEEN THE DIMENSIONS AND
THE POWER OF THE D’ALEMBERTIAN.

We use the results concerning the.Green function of A power of the D’Alembertian
following Marcel Riesz [13]

A-1
o» _ 20 *6(-t)
BT T+ A - 2)r(y)’

where Q. = t? — R? for 1 > R? and 0 otherwise, 8 is the usual step function. In addition

(2.1)

we make use of the following result by Guelfand [14];

6(t+r)+8(t—r)

ResQ] |y=—1 ~ ”

(2.2)

We see then, that the power of Qi*g has to be equal to —1 in order to have as residue the
usual retarded (or advanced) potential. The presence of I'(1 4+ A — %) in the denominator

of formula (2.1) sweep away the singularity of the pole, leaving us with the residue. In

order to have this situation, the following relation must be valid

n=2A+2, (2.3)
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between the number of dimensions r and the power of the D’Alembertian A (observe that

if n = odd, X is a seminteger). From (2.3} we find

(2.4)

]

where O denotes D’Alembertian. This means that for each space- time dimension there is

only one power of the D’Alembertian for which we get the demanded Green function (1.1).

III. LAGRANGIANS WITH INCREASING POWERS ON THE
CURVATURES AND THEIR WEAK FIELD APPROXIMATION.

As mentioned in the introduction string-theory provides us with an effective La-
grangian containing hikher powers in the curvature Riemann tensors [4]. On the other
hand, similar theories arise following th;a proposal due to Lovelock [5] which seem to be of
relevance in connection with higher dimensions than four and Gauss-Bonnet terms {9,10}.
The field equations following from this effective action should replace the classical equa-
tions of general relativity and their properties and physical consequences have been studied
in connection with exact solutions [15]; plane waves {16], cosmology [17], blackholes [18],

inflation [3], wormholes {19] and also quantum cosmolgy {20] among other aspects.

Let us begin by considering the following Lagrangians [21]

L=+-g Rgs (3.1)
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-C =.v _g R“prp, (3.2)
L= v—9 RuvaﬂRuvaﬂ- (33)

These three actions are, in four dimensions, not independent due to the well known Gauss-

Bonnet theorem (9,10}

s / v—g [Ruvaﬁﬂﬂpaﬁ — 4R, , R*" + Rzl diz = 0. (3.4)

In more dimensions similar relations hold. We will consider ouly the first two theories.
Following the same linearization procedure as in General Relativity the corresponding

equations to (3.1) and (3.2) are then given, in any number of dimensions n, respectively,

by

D (a“ay - q”y D )h = "'"kT“y, (3-5)
b D [(8u0s — E’hw 0)h— Ohy)= _kI}wa (3.6)

where k = —87.
Contracting these equations, we get
(n—1)0 Oh=kT (3.7

% O Ok=kT (3.8)

In both theories, as operator, we have O?. Then according with the previous section the

demanded Green function (1.1) is obtained for six space-time dimensions.

Now we consider the static case for the space dimension under consideration, for a

point particle at the origin T#* is in this case given by

TH = 8865 M6(F). (3.9)
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From (3.7) and (3.9) we get

ho M (3.10)

r

To obtain this result we have used that the Green function for V¥V?is ~ L. From (3.10) we
get V2h, 3 # 0 while from (3.5) one has‘V2h,;, = 0. Consequently the linearized equations
(3.5) of the theory (3.1) for a mass point at rest at the origin do not have any solution at

all (this is also true in four dimensions for which the Green function ~ r [21]).

For the theory (3.2) the corresponding linearized equations (3.6) result to be com-
patible with a “Newtonian limit” in the non-relativistic regime and, as stated, have the
desired Green function (1.1) which guarantees the fact that waves propagate with only one

velocity [12].

Another theory which has been frequently considered in the literature [22] is

L= \/—_g (aR? + BR), (3.11)

Leading to the following equation for the corresponding Green function

a0 OG+00G =4, (3.12)

We have for de Fourier transform G

1

=

(3.13)
When we add both operators [ and O the desired Green function is not obtained. For
a = 0 one gets in four dimensions the adequate Green function, for b = 0 the theory does

not give a “Newtonian limit” as already shown.

For models £ ~ R™ for m > 2 there does not exist a weak field approximation, their

action

[= / V=3 R™d"z (3.14)
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m-—1 af R af m—1y;ou8 af pm—~1y;h
RV R — =g ) — (R™)*# 4 g*A(R™1)iy = 0. (3.15)
Contracting this equation, we get
m - l - m—1 \;h —_ .
R (1 Zm) +(n—-1)(R"7)5=0. (3.16)

As R~ Oh, for m > 2 none of the two terms in this equation results to be linear. For .
any other combination of three or more curvature tensors (R, Ry, and R,,qg) there is

also no w. f. L.

IV. FINAL REMARKS

It is clear from the previous discussion that for dimensions higher than six it is not
possible to have combinations of the curvature tensors leading, in the w. f. 1., to equations

whose Green functions would satisfy the required form.

As a consequence of these results it follows that only the Lagrangians £ ~ R in four

dimensions and £ ~ R,, R*” in six dimensions are allowed.

The question arises what kind of geometrical theories may satisfy our requirement i.

e. to provide O*h with A > 2 and n > 6. What one should get as a w. . 1. in n dimensions
18 .
52>

Biv1 pRAVA -
U Oz Jzv1 ,..Ozh> Bz =0,

(4.1)

wheren=2A+2.

This is an indication that one could as a possibility generalize the metric in the following

way

ds = (G ... AT ... dzH32 )35, (4.2)
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The generalization of the Riemann tensor should contain higher derivatives of G, .. .,,.
Extensions of general relativity using multiple indices metrics have already been considered
[23]. However, in a patticular dimension of interest there is not a unique way to construct

these generalized gravity theories, all these possibilities would deserve further study.
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