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RESUMO

Estuda-se o estagio inicial da evolugao de duas esfe -
ras de Fermi n3o superpostas fazehdo uso da equacao cinetica de
Uehling-Uhlenbeck. Mostra-se que é-tempo de relaxagéb para a
energia relativa (ate 50 MeV por nuéleon)-é dado em termos de uma
fﬁngio dependente somente de dois pariﬁetrps adimensionais. Fa -
zendo uso da aproximacao de demsidade local aplica—ge egte resul

tado as reacoes altamente inelasticas de ions pesados.

ABSTRACT

The initial stage of the evolution of two non-overlapping
AFermi spheres is studied using the_Uehling-Uhlenbeck kinetic
equation. The relaxation timé for the relative energy, up to 50 MeW
per nucleon, is shown to be given by a function dependent only on
two dimensionless parameteré. Making use of the local density

;proximation this result has been applied to deep inelastic

collisions. .



1. INTRODUCTION

The analysis of heavy ion collisions have exhibited a
spectacular.transfer of energy from the relative motion of‘ the
ions to internal degrees of freedom of the emergent fragments(l),
referred as deep inelastic collisions. In the transfer process
there seems to be involved two major mechanisms: (i) The immediate
dissipation of energy and (ii) the coherent vibrations of the
two fragments. The latter mechanism is best seen in the TDHF
simulations of such collisioné‘g); Though the.éingle particle
motions are fully . taken under consideration in this approximation, .
the lack ofjtwo—particle,collisions precludes any sort of energy
dissipation. In this paper we will discuss the dissipation
mechanism on the basis of the Uehling-Uhlenbeck kinetic equation
and the local density approximation for collisions up_to 50 MeV
per nucleon. The approximations invol&ed are of such a nature as
to guarantee that our calculation, apart from the local density
approximation, is an upper limit to the contribution of dissipatidﬁ
in heavy ion collisions. Similar calcuiations have been reported
by Albrecht and Stockef‘z).ané Toepffer and Wong(é). In ref. (3)
the exclusion principle is not fully taken under consideration
and the calCulation is adapted to.low energy per nucleon. In our
case we have fully taken under consideration the exclusion
prihciple and we interpret the initial state of localAsystem as
two non-overlapping Fermi spheres. In ref. (4) the calculation is
very similar to ours except fof the initial locél state is taken
as two Fermi spheres with their cenﬁers only slightly displaced

one with respect to the other.

In section 2 we state our basic model and show in section



3 how we calculate relaxation times. In section 4 we make a
comparison with the phenomenological viscous force in deep in-

elastic scattering and in section 5 we state our major conclusions.

2. THE BASIC MODEL-

We consider two nuclear matters moving one against the .

- k3 - +
other with relat1ve—ve1001ty.v0,

(2.1)

c§+
H

S
Y

where m in the above equation is the nucleon mass. The nuclear
matters may have different densities characterized by their Fermi
momenta but we will assume equal number of protons and neutrons
in both of them. We therefore observe that the initial étate of
the system is described in momentum space by two filled spheres

of radii kF and kF' , corresponding respectively to the larger
> < -

and smaller spheres, with the position of the center of the

smaller sphere with respect to the center of the larger one given

by KO' The exclusion principle requires that

‘Our purpose in this section will be to describe the
initial evolution of this state by using the Uehling-Uhlenbeck
equation. Due to our assumption of equal number of protons and
neutrons and the charge independence of the nuclear force each one

of the four kind of nucleons (neutrons or protons with spins up or



down) has at all times the same distribution in momentum space.
We will therefore ignore in what follows the internal degrees
of freedom of the nucleons. The Uehling-Uhlenbeck equation can

be written as

an(il)

where the gain and loss terms are respectively:

ﬁ dﬁ% > > do
G = Ei(l”nl) J —3 lkz—kll(l—nz) J an niné o) ’ (2.4)
. (2m)
~and
3
d
L==n _£2_ k%, | n, | &2 (1-n!) (1n)) do (2.5)
m°1 (2m3 2 1Y 72 1 2" dQ - )

The function n(k) is the occupation number for momentum state k

and we have used in the above equations the short notation:

>
n, = n(kl) , etc...
-=> > bl | o>
The four momenta kl, k2, kl and k2 are related by

the conservation laws:

> - > >1
kl + k2 = kl + k2
> > >|> o>

k; = Ky = glk K, |

where ¢ is a unit vector in the direction of the solid angle dQ
do . . . . .

and 3o 1is the differential cross-section of a pair of nucleons.
’ . 0 - > .

It 1is interesting to observe that if n(k) << 1 everywhere in

momentum space then the Uehling-Uhlenbeck eguation goes over to
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the well-known Boltzmann equation. In a loose sense the Uehling-
-Uhlenbeck equation is the Boltzmann equation corrected for the
exclusion principle.

At the initial stage of evolution, L is different from
zero only inside both spheres due to the presence of the factor
n(il) in eq.‘(2.5). On the other hand G is different from Zero
only outside both spheres because the presence of the factor
[l—n(il)] in eq. (2.4). Besides, collision of nucleons in the same
sphere is forbidden because the exclusion principle. Therefore,
the collision mechanism depletes both spheres simultaneously
throwing the colliding pair of nucleons into the outside region.

For do we have made the following approximations: We

do

have assumed that

Q
i
I
] =

o
np

and we have also neglected the angular dependence of gg . There-

fore, taking onp for the total cross-section for neutron-proton

(*)

scattering we have set

(0]
_ 5 . np
=37 (g7

I

. (2.6)

o1m
0la

For onp we have assumed the following dependence with the energy:

%

(o] = 3 ’ (2.7)
P Ikl‘kzl

where 99 is a dimensionless constant. In Fig. 1 it is plotted

log onp as a function of the logarithm of the energy of the pair

(> )The factor 5/2 cames fram the average cross-section (5/8 o ) and the fact
that we are dealing with four kind of particles. np



in the laboratory frame of reference. The points are experimental.

data(é) and the straight line corresponds to the assumption given
by eg. (2.7) with Og = 39.4. One may observe that the law given
by eq. (2.7) describes reasonably well the data except towards

the low energy limit where eq. (2.7) overestimates the experiment-

al value of c
n
The integration over the solid angles in egs. (2.4) and
(2.5) can be done exactly and it is shown in the appendix. Let us

introduce dimensionless variables

> ->
X = kl/kF> ’
v = k./k
-‘1’*2:‘:> ’
v _ (2.8)
n = kF/kF>
and
A = k. /k_ .
OF> —
We have
Gy = L[ ae (1en’) (1-n)) (2.9)
wp (x,y,n, =17 | 1-ng -, .
and
(X,v,n,A\) =+ | d2 n'n’ 2.10
we (X, y,m, = 4= n,n, ( . )

where wy and w, are weighting factors for the loss and gain terms

respectively that tell us the fraction of the solid angle permissi-
ble for collision of a pair of nucleons.

The loss and gain terms take the form

Ep

> ->

3 .z
Lk,n, ) = 5o, —2 n(h) | S¥ D) @50 (2.11)
. 0 4 J (2ﬂ)3 IX—YI L

eaﬁd



E
F 3 >
G(&,n,A) = 50y — [1-n(%)] j dy Dol &3,0,0 (2.2
f (2m) |x-y
where
. 'Ezk 2
Er = om

is the Fermi energy associated to the larger sphere.

The three dimensional integrations in egs. (2.11) and
(2.12) where done by Monte Carlo method. In Fig. 2 we exhibit a
typical result for L(§,n,k). We have taken A = 2 and n = 0.5.
The function L has cilindrical symﬁetry in x-space and we plotted
in Fig. 2 curves of constant values of L.'The values of L indicated
along the cbnstant lines are normalized such that its integral
inside one of the spheres is equal to unit. We have also drawn the
contour of the two spheres. One observes that two mechanisms
compete to produce the pattern exhibited in Fig. 2: The exclusion
principle favours the depletion of the_large momentum particles
and the energy dependence of the cross-section favours the small
momentum collisions. This results in the appearence, in the large
sphere, of a region of least probability of collision somewhere
near its equatorial plane. In Fig. 3 we exhibit plots of constant
values for G, again for A = 2. and n = 0.5. The values of G
indiéated along the constant lines have the same normalization
used for L in Fig. 2. Here if is interesting to observe that
the collisions favor the insertion of particles in a toroidal

region near the plane passing in between the two spheres.



3, THE RELAXATION TIME

Let us refer all momenta to the center of mass system of
the two nuclear matters. In momentum space the two filled spheres

considered in the previous section have their centers given by

> p> -
k< = +p 0
PHPs
and
p
> < >
k. = - k
> p+p, 0

where p_ and p, are the smaller and larger densities of particles
of the two nuclear matters respectively. The relative energy per
particle of the two nuclear matters E(t) may be defined as

d3k

(2m >

g2 (EEp?
= —0 | [3———-————
| mip_+p,) | k;

E(t) - x%] n(¥,t)

At the initial state of the system we have

2. 2
4 X,
m

PP
E(0) = <>

0o =

[

]
(p<+p>)2

which is the usual expression for the relative energy per particle

7

of the two nuclear matters. As the systems evolves, the distrib-
ution of particles aproaches a spherically symmetrical distribut-

.ion and E(t) aproaches zero. We therefore take the quantity ¢

¥

‘defined as

_ dE/dt

-z (t) E

as a measure of the rate at which the relative energy of the motion

is dissipated. Its reciprocal value we take as the relaxation time
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for the relative motion of the two nuclear matters. At the initial

stage of evolution we have

> > 2 N
h2 [ (k%) > an(k,0) &k

= m o B - 3
p<+p>)E(O) J k.2 ot (27)

¢ (0)

We will set

ZEF

>
z = ¢ (n,X) (3.1)
h

' where, making use of egs. (2.11), (2.12) and (2.3) we obtain

> > 2
3 3 (x.k.)
$n, ) = 5oy AL Lo &x gy 10 2
A (2m) k0
[ 3 -
x {11 - nG] | Xy Hen oy, 35,00 (3.2)
(2m°  |x-y|
3
- n(x) | dy nly) wL(§,§,n,k) } .

J (2Tr)3 | x-v|

Due to the cylindrical symmetry of the problem this
integration reduces to a five dimensional one which we have done
by Monte Carlo method within a 10% statistical error. They were
further smoothed out by spline adjﬁstments. It is the smoothed
data that are plotﬁed in Figs. 4, 5 and 6. Fig. 4 exhibits ¢ (n,})
as a function of n for values of A between 1.2 to 2.0. We observeﬂ

that the domains of n in this range are restricted to

Fig. 5 exhibits ¢(n,A) again as a function of n for values of A

from 2.0 to 8.0. Finally, Fig. 6 shows ¢(n,A) as a function of X
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for n = 1.0. We would like to stress that the calculation of the
basic quantity r , which characterizes the time scale for the
evolution of the two nuclear matters, is reduced to the determi-

nation of ¢(n,A). As an example two nuclear matters of equal

densities (n = 1.0) with relative velocity such as A = 2.0 and
kF = 1.35 Fm_lIEue a relaxation time T given by
ol B 1oy 16 x 10722 s L
z 2EF

Ly, APLICATION TO DEEP INELASTIC COLLISIONS

In order to apply the results of our calculation to deep

4
inelastic collisions we will consider the particular case ofArlg
with Thggz at 379 MeV incident energy in the laboratory frame of

(*)

has studied this reaction by using a model

similar to the one used by Gross and Kalinowski(é). For the nuclear

(7)

reference. Barbosa

interaction he used the proximity potential of Randrup et al.
and the viscosity had a gaussian form factor that reproduced the
Gross-Kalinowski results in the deep inelastic region. In both
models the viscosity is the only mechanism responsible for the
loss of the relative energy of the ions during the collision. One

can easily prove that

dE 1 _
qE = 77 Lij ViYj
(**)
along any orbit where gij is the viscosity tensor and v, are

*
( )we would like to thank Valmar Barbosa for having kindly help us with this
calculation.

Both authors use different viscosity for the tangencial and radial relative
motion of the ions.

(**)
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the components of the relative velocity of the ions. Let us define

(Fg m
dE -
F - dt z .
E. -0
l B
Therefore,
Eg ® B
Log(z=) = -~ | dt T
i J_w

where Ef and Ei are the final and the initial relative energy of
the ions respectively. For the particular reaction under consider-
ation the critical value for therangular momentum»was found to

be 124h. Taking an orbit initiated with angular momentum equal to

128k, we found Ef = 228 MeV and as Ei = 323 MeV we obtained

J T dat = 0.34 . (4.1)

To apply our basic model to the estimation of the two
body Viscosity in deep inelastic collisions we have taken the same
orbit as above, i.e., the same values of relative position and
relative velocity as function of time. We have assumed that the
ions react with their density frozen which we have taken to be
the Woods-Saxon form factor with the usual parameters(g).

At every instant of time we have

_dE(t)/dt

Mat . I o3 RE RN = ) (4.2)
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where the auxiliary coordinate T gives the position of a point in
_ the particle distribution of the ions at a given relative position
> . > > . .

R of their centers of mass. r(r,R,v) is taken as given by eq.

(3.1) where kF (;,ﬁ) and kF (;

< >
approximation and

) are given by the local density

mv
k, = — .
0 4
In eqg. (4.2) p(g,ﬁ) is the sum of the densities of the two ions.
From eq. (4.2) we have obtained
'J r(tydt = 0.020 . (4.3)

Comparing the results of eqs. (4.1) and (4.3) we conclude that the
'two—body viscosity is on average 17 times smaller than the phenomen-

ological viscosity used in models similar to Gross and Kalinowski.

5. CONCLUSIONS

We have introduced a basic model for the understanding
of dissipation in heavy ion collisions. As we have in mind the
local density approximation our basic model consists of two
nuclear matters of different densities moving one against the other
with a given relative velocity(*). We have studied the evolution
of such a state by using the Uehling-Uhlenbeck equation. Assuming

isotropic two-body cross section inversely proportional to the

x
*Mge nave not considered different densities for protons and neutrons.
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energy, we were able to calculate the logarithm rate of change of
the relative kinetic energy of the two nuclear matters at the
initial stage of evolution. This rate of change was shown to be

A given by a f§pction,dqudmﬁ;omhzon two dimensionless parameters:
n Jbeing the ratio of the smaller to the larger Fermi momenta and
A being the ratio of the relative momentum per nucleon to the
larger Fermi momentum. Once this function is tabulated the dissi-
pation of relative energy in heavy-ion collision can easily be
calculated in the local density approximation at different
kinematical conditions.

To have an idea of how large the dissipation is we

1

estimated it for two nuclear matters of equal density (kF=1'35 Fm )

with relative energy corresponding to 38 MeV per nucleon. The

relaxation time for this system comes to be aproximately equal to

the time that one heavy ion passes through the other (2 x 10722 s).
We would like to mention that the approximationsinvolved

in our calculation are all biased to underestimate the relaxation

times. We will point out four of them:

1 — The use of an inverse energy law for the two-nucleon cross
section overestimates the experimental cross section in the
low energy 1limit and therefore contributes to underestimate
the relaxation times;

2 — Similar effect is also due to the assumption of isotropic cross
section as the experimental cross—secﬁions, towards the high

" energy region of interest is actually lower at the 90° angle
in the center of mass reference frame of the pair and it is
this angular region that contributes most to the dissipation

mechanisms;

3 — The Uehling-Uhlenbeck equation neglects the exclusion principle



-13-

in the intermediate states of the colliding pair what contri-
butes to lowering the actual two-nucleon cross section in
nuclear matter and thus having also the effect of underesti-
mating the relaxation time;

‘4 — By calculating the relaxation time at the initial state of
evolution we have also underestimated it as we are, in this
situation, enphasizing the fast modes of decay of the distrib-

ution in detriment to the slow ones.

These reasonings suggesttherefore that, in application
to heavy-ion collisions, our basic model overestimates the viscous
force. It is important to observe that our calculation has no
adjustable parameters and takes into full account the exélﬁsion
principle in the final states.

Applying our results to the deep inelastic collision of

40 232

Ar18 + Th90 (Elab

along a typical trajectory, the energy dissipation predicted by

= 379 MeV) we were able to show that on average,

our model was 17 times smaller than the one predicted by the
Gross—-Kalinowski model. As their model uses practically only radial
friction (the tangential coefficient of viscosity is 400 times
smaller than the radial one) we conclude that the viscous force
predicted by our model is 12 times larger than its tangential vis-
cous force but 34 times smaller than its radial one. This points
to the fact that the two-body viscosity is the major mechanism for
dissipation of angular momentum in deep inelastic collisions. On
the ofher hand the very large value of the radial viscosity of
Gross and Kalinowski model suggests, as has been already pointed
(9)

out — , the intermediation of the coherent excitations of nuclear

vibrations in deep inelastic collisions.



APPENDIX A

CALCULUS OF dL AND éG

Let us consider two particles, one in each sphere with

-5
momenta k

_—_— : .
1 and k2. We define

Y
Y

o+
1
N+

s
n
N

=2 1 : (A.1)
and '
b=k, -p .
After the collision E and b stay constagt while g changes only in
direction.

Fig. A.l1 exhibits schematically the geometry of the
collision. The allowed scattering angle corresponds to the non-
-shaded‘region of the sphere with cénter’at 5 and radius equal
to q.

The admissible angles for the initial pairs to be able
to scatter corresponds-tO'the cross—hafched region in Fig; A.l.

We call Q@ the solid angle corresponding to this region. We have

-

-0)

47w

L 4 - (Qa-kQ

b

and

ol

drw,, =

where
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D
"

a 4T (l—cosea) ’

9] 41 (l-cosb

b ) -

- The angles ea and»eb can easily be related to the momenta defined

'in egs. (A.l) and we have obtained

2

p2+q2—kF

<

cosb_ =
a 2pq

and b2+q2—k 2

F>
Coseb = —‘-—2Fq—‘* .

For the calculation of @ let us introduce the angle 6 between the
two constant vectors b and E. We have to consider the following

< -
cases (Ga + eb + 0 £ 1)

i) if o < ea—eb 2 0 we have

ii) if e < eb—e > 0 we have

Q = Qa ;
iii) if 6 2 6a+6b then
Q=0 :

iv) if Iea—ebl < 0 ea4eb we have found after some

A

tedious calculation

Q = 49" (8,0,:6,)

where
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cos@b—cosecose
a

Q'(G,Sa,eb) = - cosea arc cos [ ]

sen@senea

cosf_—-cosbcosbt
a b]

—_coseb arc cos | seneseneb

cos6, - cosfcos®b
. b a
+ arc cos [ ~ ]

5 1
eb—2cosecoseacoseb

2
sent cos~8_+cos
a a

cosea — cosbcosb

+ arc cos | b

2 20 _
seneb cos 6a+cos eb 2cosecoseacoseb

In the case where ea + eb + 6 > m we must have

= 4 [Q'(e,ea,eb) + Q'(n—e,ea,eb)] -
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FIGURE CAPTIONS

FIG. 1 - Experimental data and adjusted curve for the total neutron-
-proton cross section. The horizontal scale indicates in
. a logarithm scale the energy of the pair in laboratory
frame of reference. The vertical scale indicates in a
logarithm scale the total neutron-proton cross section
in milibarns. The straight line is a plot of eq. (2.7)

with Oy = 39.4. The points are experimental data(é).

FIG. 2 - The function L(g,n,x) normalized to unit in each Fermi
sphere for A = 2.0 and n = 0.5. Apart from the two circles
that indicate the contour of the two Fermi spheres the
curves exhibited'are lines of constant value for L with

the corresponding value indicated over the line.
FIG. 3 — The same as Fig. 2 for G(X,n,}).

FIG. 4 - The function ¢(n,A) as defined by equation (3.1). The
curves exhibit ¢ for the values of A as indicated. The
horizontal scale indicates the dimensionless parameter n.
The vertical scale indicates one thousand times the

values of ¢ .

FIG. 5 ~ The same as Fig. 4 for values of A-from 2.0 to 8.0 as

indicated. -

FIG. 6 - The function ¢(n,A) as a function of A for n = 1.0. The
vertical scale is the same as in Fig. 4. The horizontal

scale indicates the wvalues of A .

FIG.A.1 - Diagram exhibiting the kinematics of the two nucleon
collision. The two Fermi spheres are indicated by F_ and F,.
The initial momenta of the pair, il and ﬁz,

EO' B and a are represented by arrows as indicated. The

together with

third sphere is the loci of the end points of the vector a'.

The non-shaded region corresponds to the allowed scattering



-18-

angle. The cross-hatched region indicates the admissible
angles for initial pairs with the same total momentum

25 and the same modulus g for the relative momentum.
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FIGURE A.l




