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ABSTRACT

The mean field renprmalization group is applied to study crit
ical temperatures of the gquenched (F,AF and SG phases) an an-
nealed (F and AF phases) disordered D-vector model. The phase
diagrams, critical temperature against concentration are ana-—
lytically calculated, plotted and analyzed for the Ising{D =1}, Helsenberm
(D =3) and D +«~ cases for several values of the competing para-
meter and coordination number and for a particular distribution
function.. Reentrancies and .limiting_ slope at P, of the . ferro -
and antiferromagnetic boundaries are studied in details. There
is a critical value of the competing parameter for the existence
of reentrancies in these lines. The limiting slope at P, is lower
bounded by the D »+ =« value. A mapping is applied to study the
phase diagram of the antiferromagnetic Ising model with random
decorating competing D-vector bond spins. It is found that for
a fixed competing parameter there is a lower critical dimensiona
lity Dc for the stability of the ferromagnetic and . gpin glass
phases. In all diagrams reentrancies are more prominent for higher
dimensicnalities. The present  results are strictly equivalent

to the exact resulks on the Bethe lattice.

Rey-words: D-vector model; Mean field renormalization group; Re-

entrant phases; Decorated model; Spin glass on the Bethe lattice.

PACS numbers: 5080 + g, 7510H
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1 INTRODUCTION

The D-vector model where the spins are described as "clas-
sical" vectors with continuous symmetry has been widely stud-
ied since it was formally formulated and solved exactly in
one~dimension by Stanley (1968, 1969) (see Stanley (1974) for
general reference). However the effects of digorder in the
physical properties of this model have.nat received the same
attention as for the pure system. In this paper we study the
disordering effects on the critical temperature of the D-vec-
tor model in the framework of the mean field renormaiization
group (MFRG) proposed by Indekeu et al.(1982). The MFRG method
has been successfuly applied to study a very large variety of
problems like geometrical criticalzphenomena and percolation,
ordered and disordered classical and quantum spin models, dyna
mical critical phenomena in Glauber models and in guantum. gpin
systems, bulk and surface critical behavior of spin models
(see Indekeu et al. (1987) and references there in), and also
Ising model with anisotropy (Plascak and Silva (1986)), Ashkin-
Teller model (Plascak and Sa Barreto (1986)), ANNNI model (Va-
ladares and Plascak (1987)), compressible Ising systems Plascak
and Figueiredo (1987)) and mixed spin systems (Veronad de Rezen-
de et al. (1987)).

In the MFRG the interactions within the cluster are treated
exactly while the effects of the neighboring spins is taken
into account by a mean field acting on the spins of
the cluster boundary. This approach has been already applied
for dilute, random fields and random bond Ising systems by Droz et
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al. (1982). Actually we have generalized this scheme by con-
sidering D-vector spins with continucus symmetry (the 1Ising
model is the particular case for D =1) and assymmetric compet-
ing bond disorder. We consider the simplest choice for
the clusters to be renormalized which gives strictly the crit
ical coupling given by the Bethe-Peierls approximation as
stressed by Indekeu et al. (1987). The results can be improwed
to some extent if large-size cells are considered but with
cost of lengthy calculations with slow convergence. In this
paper we make use of this "phenomenclogical™ renormalization
group approach to study the critical temperature of the D-vec
tor model with bond digsorder in a d-dimensional hypercubic lat
tice with random competing coupling constants J and -aJ(J <0)
between nearest neighbours where a{c > 0) is the competing parameter.
We both consider the quenched and the annealed disorder. We
also apply the results to study the antiferromagnetic Ising
model on a hypercubic lattice decorated with random quenched
diluted competing D-vector bond spins. This model is equiva
lent to an Ising model with random bond coupling  constants
J and -vyJ where Je

ef f £
produced by the decorating D-vector bond spins which is tem-

f.is the effective coupling constant

perature dependent (dos Santos et al. (1986)). These latter
results are analyzed and compared with the exact ones obtained
by dos Santos and Coutinho (1987) for the annealed disorder
version of considered model on a square lattice. We  also
study the critical temperature phase diagram of the bond di-
lute limit case (a=0) of the original model -

In section §2 we review the basic features of MFRG for di-
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sordered systems and calculate the phase diagrams of the quen-
ched.and annealed bond disordered systems {subsections § 2.A and
§ 2.B). In subsection §2.C we apply the results to calculate
the phase diagram of the antiferromagnetic Ising model with
random decorating competing D-vector bond spins. Section §3 is
devoted to present and to discuss the.phase diagrams features.

The conclusions are summarized in section §4.

2 MEAN FIELD RENORMALIZATION GROUP FOR QUENCHED AND ANNEALED

COMPETING DISORDERED SYSTEMS.

In this section the MFRG approach is applied to investigate
the phase diagram of both gquenched and annealed bond disor-
dered magnetic systems.

To start with we consider a system described by a nearest
‘neighbour spin hamiltonian on a d-dimensional hypercubic lat

tice with bond disorder .given by

- 8% = n® = § x,.8..3. (1)
<ij> 3 I
where K = BJij is the reduced coupling constant of the dis

ij
ordered exchange interaction between the pair of nearest neigh-

bour spins <i,j> and g is a D-dimensional vector spin '~ with
cartesian components s¥(v = 1,2...D) which are subjected to

the normalizing condition

Jisv2 = 32 (2)
“
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In what follows we will assume that 22 = D to renormalize the
exchange coupling constants relative to the spin dimensionali
ty.

We consider two finite clusters with N and N' in-
teracting spins (N' <N) and compute the order parameters
associated with the ordered phases of the systems.

We assume that the there exist an effective symmetry break
ing field acting on the boundary of each cell for each order
parameter. The main step in the MFRG is to self-consistently
impose a scaling relation between the order pérameter and the
effective symmetry breaking field of the two cells, (Indekeu et
al. (1987)), that is

£y (Kb ,p)=E (K,b,p) (3)
b = b (4)

where fn (k,b,p) is the configurational average of the order parameter
{quenched or annealed), k(k')b(b')and.p(p'),being the coupling constant, the
effective field ard the disorder parameter of the N(N') cluster and ; is the
scaling factor. If we are dealing with second order phase transitions, egs.
(37 and {4) can be expanded for small b and b' if the system

is close to the transition, which results that

of of
s = —& (5)
ab ab

b'=0 b=0

We note that eq. (%) is independent of the scaling factor .

There is one recursion equation, like eq. (5), to each order
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parameter. The critical lines can be obtained from these oquation by
assuming  appropriated boundary condition for the cor-
responding phases.

In the present case the average magnetization and the
staggered magnétization per spin are the order parameters
for the ferro - and the antiferromagnetic phases respectively
and we assume the Edwards—-Anderson order parameter (Edwards
and Anderson {(1975)) for the spin-glass quenched disorder phase.
As we mentioned in the introduction we have chose the simplest
clusters to be renormalized, that is, the ones with N' =1 and

N = 2 as shown in Fig. (1). -

A. Quenched disordered systems

The reduced hamiltonian fof the N' =1 and N =2 cells are

given respectively by

z @ =
H' = ) K!S'.b! (6)
i=1 * t
and
H—K§§+§(I’§B+K§B) (7)
T 12”1072 551 *1301°713 2;°2°72j
where b'! and gzj (£ =1,2) are the effective fields acting on

the boundary of the N' = 1 and N =2 cells respectively, q =
(z -1), z =24 being coordination number of the d-dimensional

hypercubic lattice. The effective field associated with the
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magnetization and the staggered magnetization are miﬂeﬂxﬁ to

the following symmetry conditions:

B! = b'a i=1l...2 - (8)
1 1
blj = b e,
j=1l...q (9)
T -
sz = * be1

where the sign +(-) holds for the ferromagnetic (antiferromag
netic) order parameters and él is the unit vector in the

direction 1. For the spin-glass order parameter the symmetry

conditions are

- TURIY — Rt
b = 0 and b; bj h aij 5“ (10)
T
bmj = Q0
{11)
M v
bmjbnk hamndjksuv

with i =1...2, 3k =1...9, m,n=1,2 and u,v = 1,,..D.
The magnetization for the N' =1 and N =2 cells can be e-
valuated straighforwardly from

1
Trg,{s‘lea'}

<8'ls =

“1 (12’
Trg.{e }

and-
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Tr+ Trg {S1 eH}

<Sl> = (13)
n Trg Tr+ {el}

respectively where

Trl...} = !dgatn—iélh{...} (14)
By substituting egs. (6} and (7) in (12} and (13) respec-
tively and expanding the integrand for small effective fields

we get as shown in the Appendix that

<s'l> = Z K. bl (14)
i=1
1, = y 1
<S> = .ZlKljbij + thn(DK ) z K23 2_] (15)

with n =% D -1 where thn(x) is the  generalized hyperbolic
tangent given by
(x}

I
_ _n+l

(16)
where Ih(x) is the modified Bessel function of the first
kind of order n.

To perform the configurational average {(c-average) we as
sume that the Ki parameters and the bi effective fields are
independent random variables according to a.probability dis-

tribution. Therefore, by using the symmetry breaking condi-
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tion given by egs. (8) and (9) we get.

— —

<S'“_1> - bh'z K;- (17)

1, =
<sl> quij * hqkzj ﬂ%JDKIZ) (18)

- where sign +{-) holds for the ferromagnetic (antiferramagnetic)
order parameters.

The Edwards-Anderson spin-glass order parameter for the
N! =1 and N =2 cells be obtained by squaring egs. {14) and
(15) respectively and performing the c-average following the
appropriated symmetry breaking conditions given by egs. (10}
and (l1), that is

<§'1>2 Z p'z Kiz _ (19)

b

1,2 2= _2. 2 2
<si> hg Kis+ thzj th? (DK, ,) (20)

Now, by imposing the scaling relation for each order pa-

rameter we obtain from eq. (5) that
zK' = gK(1 + t_) (21)

for the ferromagnetic (sign,+) and antiferromagnetic (sign)

order parameter, and

el

zK'Z = gKAL + t2) (22)
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for the spin-glass order parameter where Zf = thztDK). In egs.
{21) and (22) the subscript indices are dropped out for cleaness.
We assume for simplicity that the independent probability

distributions for each bond are like
P(K;}) =pé&(K; =K) + (1 -p)S(K, + aK) (23)

and we force the renormalization distribution to have the same
form for both cells but parametrized with different concen-

trations. Therefore from eqs. (21) and (22) we get
zK' [p' {1 +d.'- )-ail =qKE:>(1 +u.}-—u]E_ = (pt=(1-p Ea)] (24)

zK%[p' (1 -a'2) + a"2]= ql([p(l -a2) -l--uz] I:], +pt? + (1 —p)ti]
(25)
where t = thn(DK) and t, = thn(aDK}..

The complete renormalization flow in the (XK,p,a) space
can mot be fully determined by the egs. (24) and (25) except for
symmetric distributions (o = 1 in eq, (23)) or for some in~-
variant sets which are known a priori on the bhasis of other
symmetries. For instance for the pure case di'str.ibution {(p =1} we
always expect to have p' =1 after a scaling step (Droz et al,
(1982}). Therefore we restrict ourselves study the = fixed
point solutions in the subspace a = o' and p = p', that is,

the szolutions of

ch = th[E + (pt - (1 -p)ta] (26)
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zKC2 = inEl. + pt2 + (1 -p)tg] (27)
which is Kc = 0 or the solutions of

1 =1+ gipt - (1 -—p)ta] (28)

1= g |pt? + {l - p) ti] (29)

We note that for p =1 one recovers the Bethe-Peierls critical
temperature of the ferromagnetic and the spin-glass phases for the
pure system, th (DK )=1/g (Stanley (1969)andth (DK ) = 1//q (for
D=1, tanh K_ = 1/Yq as obtained by Katsura et al (1979) res-
pectively. On the other hand for the symmetric bond disorder case (4 =1)

we have

'—l
it

: g2p-1)t (30)
1= qt2 3D
while for the bond dilute case (2 = 0) we have
l =+ gpt (32)
1l = gpt? (33)

For D =1 egs. (30) and (32) recover the results of Droz et al, (1982}

for the ferromagnetic boundary of the bond disorder and bond
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diluted Ising system cases. However for the Edwards-Anderson
order parameter critical line our result given by eg. (31) dif
fers from the one obtained by Droz et al. (1982) since the
spin glass random boundary conditions used by these authors
de  dnclude correlations between the symmetry breaking fields.
We argue that correlations should not be present in this case
as expressed in eq. (l1). For the Ising systems (D =1) our
spin~glass critical line given by eq. (31l) is the same as the
onexachieved by Thouless (1986). We note that eg. (33) does
not represent the critical line between the spin-glass and
the paramagneti¢ phases since it is actﬁally located in the

ferromagnetic region (under the ferromagnetic line in the

(T x'P) diagram.

B. Annealed disordered systems

For annealed distributions the disorder wvariables are not
independent any more and the randomness of the disorder is
allowed to adjust itself so that the system achieves genuine
thermodynamic equilibrium. This means that the configurational
average should be done over the partition function (Thorpe
and Beemann (1976}).

The reduced hamiltonian of the system should be rewrit-

ten as

H{%) = <§j>[(tij (1 +g) - U)Kgigj] + Aijti'

i (34)

where tij is the disorder variable for the <ij> ~ bond, i.e.
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tij = 1(0) if the bond is ferromagnetic with reduced coupling
constant K{antiferromaynetic with reduced coupling constant
-oF} and ¢ is the ratio between the antiférromagnetic and fer
romagnetic coupling constants. Forg=l the annealed bond disorder is
symmetricwith respect to the ferro- ard antiferromagnetibonds
whilefor -g= 0 the system is annealed ferromagnetic bond di-
luted. For a =-1 we should recover the pure system case. In
(34) Ajj = -Buij is the reduced chemical potential assoclated
with the annealed disorder that should be chosen as to  make
<tij> temperature independent since the thermodynamic average
of the disorder variable tij should gives the concentration
of ferromagnetic bonds. Therefore the chemical potential "ij
will be temperature dependent (Thorpe and Beemamn (1976)).

The reduced hamiltonian for the N' =1 and N =2 cells are

given by

¥ g ] +l g
H izll:(tifl +a') -a')K'S .bi + biti] {35)

q “p -
H = t .(1 +08) =a)KS_.b_. + & .t .
5-511 m-?l,z[( m "Ry

+ (£, (1 +a) -u)xgl.gz + Alztlz:! (36)

where the ﬁ's are the symmetry breaking fields acting on the
boundary sites, A; and b g 2re the effective reduced chemical
potential associated with the surface bonds of the N' and N
cells respectively and 8,9 is related with <1,2> bond.

The ferromagnetic {antiferromagnetiq) order parameter fox
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both cells should be calculated under the following boundary

conditions

b = b'&, i=1l...2 (37)
*1' =bé&, \
T _ (38)
J=1l...9
sz = +(-)be1

Furthermore the effective chemical potential should satisfy

the self-consistent condition

<t!> = p! (39)
1
<tmj> = <t,,>=p (40}
where <...> means the thermodynamic average and p(p') the

average concentration of ferromagnetic bonds for the N(N')

cell,

The magnetization for both cells can be evaluated from

Hl
Tr>, Tr {s'l " 3
<tls = 8" *{t'} . (41)
Trg, Tr{t,}(e }
and
H
Tr z,Tr {st e}
<%§> = =S (r} mH (42}
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where 'I'r{t} is the trace over the disorder variables.
The average concentration for both cells can be straighfor-

wardly calculated from

N " u'
p' = <t} > = 3L, £n[%rs, Trie iy ] (43)
and
p = <t,. > = —4fn|Tr,> EH] (44)
12 3512 {s} it}
= <t >=-———a—£nTr+Tr el (45)
P wj 34 {s}y " {c}

mj

From egs. (35-45) and with help of the Appendix integrals we get

<8'> = p'k* ( (46)
z n +l) _

i

<§%> =bk E (“1i+1)+ §(n +1) l: I o) ¥I_(- =aDK) ] “47)

ni—a

p'=—'—'+__i i = 1...2 (48)
"
n .=a

P = o m=1,2 i=1l..q (49)
ml

-1
(- anx) 1
P = I—l + 'l'l \UK}-I (50)
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]
From egs. (48-50) the unwanted fugacities-“{ ==eﬁ1,nmi =elni
and Nyp = €212 can be eliminated by writting them as functions

of the average concentrations and by substituting in egs. (46)

and (47) we get

<s''> = zb'k'[p' (1 +a') ~a'] (50)

<s!> =gbk{p(l +a) -o] |1+ (pt~(1-p)t )] (51)
where sign +(~)} holds for the ferromagnetic (antiferromagnetic)
crder parameter.

Now by imposing the MFRG scaling condition given by (5) we

get
2k' [p' +a") =a"] = qk[p(l +e) =c][d t(pt -1 -p)t ] (52)

We note that eq. {52) is identical to eq. (24) therefore the
ferromagnetic (antiferromagnetic) critical lines for the an-
nealed bond disordered system are the same as for the gquenched
bond disordered one with the probability distribution given by
{23). This is an expected result and can be generalized for an
arbitrary distribution as shown by Thorpe and Beeman (1976) (see
also Thorpe (1978)}) in agreement with an earlier work by

Matsubara (1974) for the Ising model on the Bethe lattice.
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C. Random decorating D-vector systems

This approach can be straighforwardly applied to study a
generalization of the Syozi model (Syozi 1966) in which de-
corating D-vector bond spins are randomly diluted in the system
In this model the decorating spins are randomly diluted on the
bonds with probability p, with an exchange coupling Jlﬁ5?0}
with the Ising. spins at either end ¢f the bond. We assume that
there is an antiferromagnetic coupling J, (.::'2 < 0)- between the Ising
site spins. This model has been already exactly solved for an-
nealed dilution on the square lattice by dos Santos and Coutinho
{1987) . However for quenched {or annealed) dilution on the
Bethe lattice we can make use of the above results of subsec-
tion A and B by wsubstituting the previous ferromagnetic re
duced coupling constant K by the effective exchange coupling
. mediated by the decorating bond =gpin.if it is present or by

Keff

an antiferromagnetic reduced coupling constant K, = BJ2 if it is

2
absent., This effective exchange coupling has been already e~

valuated by dos Santos et al. (1986) and reads

- i In2
K = K, + > in Gn(ZD K1) {(53)
with
I -n
G (¥)= 2'r(n+llay "I (¥ (54)

where k. =8J.{i=1,2), n==% D-1, a =1+38§
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{Gn,n' being the Kronecker delta function}, I(n) being the
gamma function and In being the modified Bessel function = of

first kind of order n. The expression of Gn(y) for D=1,2,3 and = are
given in Table 1. Finally the critical lines for the ferramagnetic {(anti-
ferromagnetic) amd spin—glass phase transitions can be obtained from ecgs.

(21} and (22) by using an independent probability distributicn given by
P(K,) =p8&lk, =k_..) + (1'-p)6(ki ~k,) (55)

Therefore from egs. (28) and (29) we can writte straighfoxr

wardly that

_ - - ~“1
1=zxqpt - (-p) ] (56)
- 2 - 2 _
1 =gqfpt + (-p)tZ] {57)
with teff = tanh Keff and ) = tanh k2 for the ferramagnmetic.

(sign +), antifervomagnetic (sign -) and spin glass critical tem
perature as a function of the concentration of decorating, spins

respectively.

3. THE PHASE DIAGRAMS AND DISCUSSION

A. Quenched and annealed disordered systems

The phase diagrama ('i"c xp) for both quenched and annealed

disorder systems can be plotted from eqs. (28} to (33), where
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Tc = Kzl is the reduced critical temperature. WNote that the
spin glass lines (egs. (29),(31) and (33) are valid only for
guenched systems. The corresponding generalized hyperbolic
tangent thD(x) for Ising (D=1}, XY(D =2), Heisenberg (D =3}
and D »» limit cases are given in the table 1.

In figure 2 we show the diagram {ic‘xp) of the ferromag-
netic diluted system for D = 1,3 and » and for z =6. We
observe that the critical concentration at T = 0 (percelation
threshold) is D independent as expected. Also, the slope at
p =1 is almost independent of spin dimensicnality (Note that
all lines are normalized with respect to the spin dimensiona-
lity with 22 = D as mentioned in the beginning of.section 2).
However, the slope at p =p_ is given by d'fc/dplpc = 2Da/ (D -1y
being infinite only for the Ising case (D=1) and equal to 2q for D=«
(lower. bound). Figure 3 shows the tf["c xp)-diagram for the symgme-
tric disordered system (& =1) for D=1 and D +o, and for z =6,
The diagram is symmetric with respect of p =0.5 showing the
presence of the ferro-,the antiferromagnetic and the spin-glass
phases. The dependence of the limiting slope with the spin di
mensionality at p =p_ and p =1(0) have the same features as
for the diluted system (fig. 2). We note that the spin glass
line is p independent in agreement with the results of Kat-
sura et al. {(1979), Katsura and Shimada (1980), Thouless (1986}
and Carlson et al. (1987) but in contrast with the one
obtained by Droz et al. (1982) (see fig. 2(b) of this re-
ference) that have, erroneously, included correlations between
the symmetry breakixig fields boundary conditions for spin glass

phase. In the figure 4 we show the (fc xp)-diagram for an
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assymmetric disordered system with strong competing parameter
« = 2.5 and for 2z =6. We call the reader's attention for the
appearance of reentrancies in the antiferromagnetic line and
crossing between the all lines with different D for small T.
These features are dictated by the limiting slope of critical
line at P =P, that is given by

ar_| .

8Dagq
d
P P

_ . (58)
(D -1) (g t1) {a ~a,)

c.

where ai = (q+1)/(g +1) with the up (down)sign._holding for
the ferromagnetic (antiferromagnetic) line. We xote  that
tf!.'-f‘?’/dp'lpc = » for the Ising case (D =1) whatever are the-vaiues
of a and g as it should be expected, but it is also infinite
for a = a_. We also note that the limiting slope at p_
is bounded by 8ag/(qg 1) {a fac)for D += (lowexr bound). From
eq. (58) we can also see that reentrancies appears in the fer

romagnetic (antiferrcmagnetic) boundary for o < L (a > ac).

B. Random decorating D-vector systems

The phase diagrams for the random decorating D-vector mo-
del are given by egs. (56} and (57).with help of (53)and (54).
In the present mcdel the existence of ferromagnetic and
spin-glass phasés will be dependent of the sign of random ef
fasrive interaction since there is an uniform antiferromagnetic
coupling through the system. At T =0 the effective  coupling

is given from eq. (53) by
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Joeg = (ro = I3, (59)
where y = -JZ/JI is the actual competing parameter andyc=D”2.'1here—

fore for v <« Ye competing interactions will be present in the
system and the ferromagnetic and the spin~glass phases will be stable,
In other words we can say that for fixed values of the ori-
ginal coupling constants Jl > 0 and Jz < 0 there is a lower
critical dimensionality of the decorating bond spin D_ =(J2/J1)2
for the stability of the ferromagnetic and the spinglass phases.
In figure 5 we show the normalized (tc Xxp) - diagram  where
t, = Tc(p)/'l‘c(O) with y = 1,z =6 and for D=1,3 and =. We
note the absence of the ferromagnetic and the spin-glass
phases for D <1 while they appear for D=3 and «. In
figure 6 we plot the (t_ xp)-diagram with y=.5, z=8 for D =
1,3 and «. In this diagram we note the presence of several reentran
cies which are more prominent for higher dimensionalities.This
behavior has also been observed by dos Santos and Coutinho (1987
in the annealed dJecorating D-vector model on the square lattice
{exact result). As it has been pointed out by these  authors
the existence of re-entrant behavior is a consequence of the
presence of local dilidted competing effects in the system in-
troduced by the decoration. In figure 7 we show the (ﬁc xp) - dia
grams with y = .5, D=1 and for 2=6 and 12. We observe that
the domain of the antiferromagnetic phase increases with the
coordination number. In the g +~ limit the system is antifer-

romagnetic for all region of the normalized (tc Xxp) - diagram.
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Actually the antiferromagnetic reduced critical temperature
_ KEQ/QJZ is independent of the concentration and it is equal
to one with qJ, = constant in the g +» limit, which corre-
sponds to the mean field behavior. Another particular feature
of the random decorating system is that the limiting slope
at P, is always infinite and independent of the spin dimen-
sionality, competing parameter and coordination number since
we have considered site Ising spins variables. This behavior
has also been observed by dos Santos and Coutinho (1987)).
In all diagrams shown in figures 3-7 the'critigal concen
tration p, at T =0 for both ferro - and antiferromagnetiq
critical lines are independent of the spin dimensionality and

competing parameter, that is,pi = (q £1)/2qg where sign +{-)
holds for the ferromagnetic (antiferromagnetic) lines. We
note that p+ -p = 1/q which is the well known perceolation

threshold for the Bethe lattice (Pisher and Essam (1961)).

We also rote that the critical lines for the D = 2(i¥) - case,

omited in all diagrams shown in figures 2-7, have the same

features of the critical lines for D >1. For the size of clusters
choose in the present work the MFRG method is strictly equivalent
to the Bethe-Peierls approximation and wé should not expect to
have ‘topological transitions characteristic of the XY model on

two dimensional Bravais lattices.

Finally we comment that the critical frontiers between
the spin-glass phase and the ferro - and antiferromagnetic
phases shown in figures 3-7 are not the actual exact ones
for the Bethe~lattice but they represent the zero order ap=-

proximation in the moment analysis. These lines has been cal
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culated under the symmetry breaking fields boundary conditions
for the ferromagnetic (antiferromagnetic) to paramagnetic
transition where both ferromagnetic and spin-glass order pa-
rameters goes to zero. The actual transition line between
the ferromagnetic and spin-glass phase cannot be evaluated
exactly by the MFRG approach and should be determined by
moment analysis. In a very recent letter of Carlson et al.
(1987, preprint) they found a magnetized spin glass (MSG)
phase between the ferromagnetic and the spin glass phases for
the Bethe lattibe Ising spin glass model where the transition
should be marked by the onset -of a small but non-zero magnetization. The
stability of the spin glass phase as well as the existence
of the MSG phase in the disordered D-vector model on Bethe

lattice is now being in study.

4 CONCLUSIONS

We have studied the eritical temperature of the quenched
and annealed bond disordered D-vector model in the framework
of the mean field renormalization group approcach. For the sim
plest choice of clusters (fig. 1) used here the results  are
equivalent to the.exact solution on the Bethe lattice (or
Bethe-Peierls approximation). The results has been applied to
study an antiferromagnetic Ising model decorated with random
quenched diluted competing D-vector bond spins. The phase
diagrams, critical temperature against concentration has been
studied for D =1,3 and « values of the sSpin dimensionality

and several values of the competing parameter, and for a par-
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ticular distribution function. Figures 2 to 4 shows these
diagrams for the quenched and annealed bond disordered D-vec-
tor model. The quenched and annealed ferromagnetic (and anti-
ferromagnetic) critical lines are found equél in agreement
with general previous results of Thorpe and Beeman (1976).

The spin glass phase is present only for quenched disorder as

expected. The limiting slope at p==pc(T‘=0) of the ferro - and
antiferromagnetic lines are found to be lower bounded by the
D + » limit value and infinite for D =1. The iower bound
limiting slope is also dependent upon the competing parameter
and the coordination number. The appearance of reentrancies in
the ferromagnetic (antiferromagnetic) boundary occurs for cer-
tain values of the competing parameter a < a:(>a;) when the
limiting slope becomes negative (positive), where u: depends
of the coordination number only. We also observe crossing be-

tween critical lines for different spin dimensionalitjes when

reentrancies occurs. FOr a ui the limiting slope at P, are
infinite irrespective to the value of the spin dimensionality.
The phase diagram for the random decorating D-vector bond
spin model, which is mapped in the quenched bond disordered
Ising model with random bonds Jeff and Jz(:O) where Jeff is
the effective exchange interaction induced by the decoration.
In this model the stability of the ferromangetic and the spin glass
phases is dependent on the dimensionality of the decorating
bond spin and the competing parameter., For y <« Ye =D1/2_
these phases are stable. Therefore for a given competing pa-
rameter there is a lower critical dimensionalitybc =y? for

the stability of these phases. We also found that the reen-

trancies of the ferromagnetic (and antiferromagnetic) phase
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are more prominent for higher dimensionalities. We also found
that the domain of the antiferromagnetic phase increases with
the coordination number for a fixed competing parameter re-
flecting the mean field behavior. In all phase diagranms we

observe that the critical concentration pz at T =0 for the
ferro and the antiferromagnetic lines depends only on the co-

ordination number as'expécted from the geometric character of
transition at T = 0. However as we comment in the end of sec
tion 3 the point T =0, p==p: " represents the zero order
approximation in moment analysis for ferromagnétic to spin
glass boundary at T =0. We expect that the ferromagnetiq - spin
glass boundary should shifts to higher concentrations when
high order moments is considered as obtained by Carlson et al.
(1987) for the symmetric Ising spin glass on the Bethe lattice
However we believe that will persist the re-entrant and 1li-
miting slope behavior if higher order moments is included in

the moment analysis.
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APPENDIX: Magnetization for the N' =1 and N = 2 cells.

From eq. {(12) and (13) we have

[DS'S'lexp{ Z KiS". b}

<s'ls = i=1 t (Al)
[Dg'exp{ Z K! §' b'
i=1
> > -+ _
JD§1JD§ texp{k, s1 s + ZI(KIjslblj'+K2jsz'b2j)}
<S1>» = j - {(A2)
' (0%, exp(k, 8 y g..b
. JD 1} S exp{ 1257 S +3=1(K13 1 +K2j 9 Zj}

where Jng{...}‘s Jdg 5 (D ~1812).
Now, expanding both the numerator and the denominator of

egs. (Al) and (A2) for small b's up to first order, we have
1
iz} _ (A3)
jns'{l + ) K S b‘}

i=1

p§rsri{1 + J k8" b}

"
<S'1>‘ -

(A4)

The D-dimensional integrals in  the egqs. (A3) and (A4)

can be evaluated from particular cases of the integral

- Jd“é 6 (D - 1812)F (8 texpikE. R} (AS5)
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Integral I can be written as

-]

fatie D
I = =& J duexpEJDK]vEIJ as’r{sYYexp -KE(SV)_Z -szv] (A6)
2ni

a-ie -

where we make use of the integral representation of de &§-func-

tion

- 2 k iw ' D \J.
§(D ~|s]?) = T I dv exp KVEJ - ZI(S )2] (A7)
Y-

-iw

and multiply the integrand by an unitary factor

; D

exp{KaiD -Z (Sv)%}? following the approath used by  Stanley
vel

(1969).

D _
If f{Su} = 71 F{(s’) the integral I contains a product of
v=l
D independent guassian integrals of the type of

Lo
1

o
= I ds"f(s“)exp.-KE:(s">2 - s"R"] (A8)

For F(S!) = (S})® and F(8Y) =1V v = 2,3...D we have

® L R0 KR2 (n9)
I, [:J de{ +3 u] exp{-Kux }]exp e

which equals

1/2
_1Rlzs K(R!)?2 -
I, =5 (““xu) exp {_—"w for n =1 (A10)
_ 1 RIN21, mN1/2 |[K{R1)2 - :
Iy = Efﬁ‘ii * (2u)]tﬁi) exP{“‘_“"m - for n =2 (All]

and
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-2 T=

1 = (L 1/2ex Eigilz for n=0 and v 1 D (a12)
v (Ku) P _n - ' Tt

4u

By substituting egs. (Al0)-{(Al2) in (A6) we have

1

2D-1
I = w(il*- 2> 'z (DIKR]) for n =0 (A13)
|K] Ip1 |
. 2
-1
T = w(kr-—)f T, (D|k|)R!? for n=1 {al4)
I3 o
and . .
1
<D-1
1= o252 . kD RHZ + 21, (DIK]) (A15)
1 K71

Furthermore, integrals of type

TDE £18) = tim IDE #{s"lexp(k8.R} (216)
J K-+0

can be evaluated straighforwardly from eqs. (Al3)-(Al5}.  For

example, for f{s’} = (s1)™(n > 0) we get

o™/ 2r @ 44y (B
! 2 "2 2 Q £
Or n even
it/ 2p @42y D
2 2
- TiaVy
W= Jns(s ) =< (a17)
.&0 for n odd
D D,
where (X} is the gamma function and QD = Hz D2 /T {D/2) is
1/2

the surface of the hypersphere of radius D in the D=dimen

sional space.
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Therefore with help of egs. (Al0)-(Al2} and (Al7) we can

get.
.
1 =
Jnsls1 0 (A18)
QD v = 1
laV -
Jbglslsl = (A19)
0 v #1
-%-0-1
- > - - _ 2" : .
JDSJDSze"P{KuSl'Sz} = 1(—@) ILD-I(DIKH““D {A20)
: 2

g ql =
JDgljnszsl exp{Kl2§1.§2} = 0

, 1p-1
11-(-_'—%-1-]—>2 1, ik v=1
K, 30-1
1gqV 3 =
J{D§JD§2$151 exp{KnSl.gz} = { (a21)
0 v #1
1
| £p-1
ffﬂ( 21 )2 I (DIR J)a; v =1
[k, 3 1%
- = 1 v -> - _{
J°§1,[0525152 exp {K,8,.5,] = (A22)
0 v #£1

\

Finally eqgs. (13) and {l14) can be obtained be using egs.
(A18)-(A22) in eqgs. (A3) and (A4) and expanding up to first

order in the b's.
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TABLE 1
Table 1, Functions thn(x) and Gn (Y) for n = %— D -1 and x = DK
and y = ZDNZKI |
D | thn (x) | G (y) )
1 tanh x 2 cosh y
2 Il(x)/.Io(x_) Io(y}
. + :
3 i (x) senh(y}/y
2K
® - exp (2k2)
1 + (1+44K2) 1/2 St

(t) &

(x) = {coth x~ 1/%}) is the Langevin function.
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CAPTIONS

Schematic representation of the simplest clusters with
(a) N' =1 and i =l...2 and (b) N=2 and j =1,..(z ~-1).
Reduced critical temperature f;=(kBTc/J) against con-
centration p for the diluted ferromagnetic D-vector
model with z =6, for D=1 (Ising), D ='3 (Heisenberg)
and D + =,

Reduced.critical temperature §c=(kBTc/J) against con-
centration p for the symmetric (o = 1) bond disordered
D-vector model with- z =6 and for D=1 {Ising) D »e,
Reduced critical temperature §L= (kBTc/J).against con-
centration p for the assymetric bond disordered D-vec-
tor model with z =6, o = 2.5 and for D =1 {({Ising}, D =
3 (Heisenberg) and D «+ =,

Normalized critical temperature t = Tc(p)/Tc(O) against
concentration p for the antiferromagnetic Ising model de-
corated with random D-vector bond spins with z =6, y =1
and D=1 (Ising), D=3 (Heisenberg) and D +w,
Normalized critical temperature t = Tc(p)/Tc(O) against
concentration p for the antiferromagnetic Ising model
decorated with random b-vector bond spins with z = 8,
y = 0.5 and for D=1 (Ising), D=3 (Heisenbergqg) and
Doe,

Normalized critical tomperaturc t = Tc(p)/Tc{O) againsf
concentration p for the antiferromagntic Ising model
decorated ith random D-vector bond spins with D = 1,

¥y =0.5 and for z =6 and z =12.
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Figure 2
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Figure 4
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