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ABSTRACT

We show that the rational power law potentials in the
two~-body radial Schrddinger equation admit a systematic treat-
ment available from the classical theory of ordinary linear dif-
ferential equations of the second order. The admissible potentials
come into families evolved from equations having a fixed number
of elementary sinqularities. As a consequence, relationsare found

and discussed among the several potentials in a family.

Key-words: Schrédinger equation; Power law potentials; Solutions

of wave equations.



CBPF-NF-052/85

1 INTRODUCTION

Historically the development of the theory of differen-~
tial equations contributed to several fields in classical physics.
Conversely, the problems of mechanics, continuous media and elec-
tromagnetism were source of advances and stimulated the work of
outstanding mathematicians.

An approach to differential equations from the point of
view of analysis and the theory of fﬁnctions of a complex variable
was developed to a high degree during the préceeding century. The
classical treatises of Forsythe® and Ince’ witness of the level
of qualitative and guantitative understanding of the problem, in
particular the existence, uniqueness and characterization of the pos
sible solutions.

The advent of quantum mechanics with the Schrédinger e-
quation as the differential equation for the eigenvalue problem of

the stationary states in two body problems opened some new appli-
cations for differential eguations. The simplest atomic problem, the
hydrogen atom, was promptly solved exactly with the help of the
classical knowledge previously accumulated on the confluent hyper
geometric equaticn and its solutions, Other problems of two body
forces were later scolved, like the S-wave for the exponential po-
tential. But in fact no important development in the theory of the
Schrédinger equation was made under the stimulus of the pursuit of
new solutions until recently,

It is true also that even mathematicians since 1920 aban
doned almost completely the analytical approach to differential e

quations orienting themselves to the study of global geometric or
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algebraic properties of differential equations.

On the other hand, electronic calculators made increasingly
easier to obtain approximate solutions with better precision. In
all, everything concurred to a situation where the known golu-
tions of the Schrddinger equation for two body problems are pre-
sented essentially as the application of "ad hoc" procedures of
almost heuristic value and references are made to some good text
in mathematical physicsé's. Notice that several texts are not much
more modern that Forsythe or Ince.

Two decades ago Bose® took anew the developments of Ince
in his attempt to obtain a general classification of linear or-
dinary'd;fferential equations of second order. The point made by
Ince is that, starting from an equation with a given number of
elementary singularities (i.e., singularities where the possible
two solutions are analytic and admit a power series with first
powers differing in one solution from the other by one half) from
the gradual confluence of this singularities one is able to gen-
erate families of equations. Bose applied this to the Schridinger
equation and looked for the possible Schrdédinger equations re-
sulting from an original equation having 6 elementary singular-
ities. Since the confluent hypergeometric equation 1is obtained
letting four singularities coalesce at the point at infinity and
the other two at the origin, he was able to obtain the known cases
of the harmonic isotropic oscillator and the Coulomb potential, and
the exponential potential as well, with suitable changes of var-
iables. Other interesting cases resulted, and he later extended
this study with Lemieux’ to the case of 8 elementary singularities.

They started with the singularities already coalesced pairwise,
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which produces a differential equation with four regular singular-
ities studied by Heun® as an extension of the Riemann problem for
the hypergeometric equation (which has only three regular singular
points). They considered the consequences of letting these sin-
gularities coalesce in several ways. The analogous to the conflu
ent hypergeometric case is here cbtained when three regular sin-
gularities join at infinity and the remaining is at the origin; it

produces a family of potentials including

V{x)

u
<
b

- 2 _
+ V. X 1+V X+V, x {1)
and

Vi(x) x® (1)

V.xTiev xt e voxtav

1 2 3 4

which can be related through a transformation of variables which
is by now well known (we shall analyze it in the following sec-
tions}. The first of these potentials was solved exactly by Singh,
Biswas and Datta’. Both have been considered in a series of ar-
ticles by Znojil®®. In fact, most works in the area of obtaining
exact solutions for the Schrddinger eguation ignore the pioneering
work by Bose and Lemieux, which was only recalled by Johnson'l,

The physics of elementary particles gave new stimulus
to the potential theory of potentials with a positive power law,
which are presumed adequate to describe the confining forces be-
tween quarks and antiquarks'Z.

The study of one dimensional anharmonic oscillators like

the one in (1') was also of interest since they present some fea
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tures which seem to be common to relativistic field theory: the e
nergy levels are not analytic functions of the unharmonic coupling
constant, and this prevents for instance the perturbative expan-
sion of energy levels to converge!’., Padé approximants have been

shown to provide the right answer!* for the x"“

potential. Recen-
tly, the solution via a continued fraction for the Green's func-
tion has been given by the indian group?®.

| 2nojil has produced a real leap forward studying in all
generality (rational) power law potentials starting from normal and
subnormal solutions?!’, He then proposed an extended continued frac
tion for the Green function in the general case, studied the trans
formations between families of potentials and gave some systemat-
ic classification for them.

In an almost similar approach Rampal and Dattal'® performed
a study which cared among other things (as Znojil also did}) upon
the existence of polynomial sclutions and gave -some criteria for
them to exist.

In this work we show how the analytic procedures developed
by Ince apply in the general case for (rational} power law poten
tials. The essential feature to allow a systematic study is the
number, N, of elementary singularities of an ordinary linear dif
ferential equation of second order (OLDESO)}. In contrast with Bose
and Lemieux, we consider all possible ways of making these singu-
larities to coalesce in higher order ones. This of course allows
us to obtain a larger number of families, among them some of un-
doubtedly physical interest,

We further study the set of transformations in the inde

pendent variable which transforms members of a given family into
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oné another and how they reflect these properties in the solutions.

With a careful notation we study also the regular solu-
tions of the equations so obtained. We believe that this systematic
procedure allows a unified treatment of all cases known in the 1i
terature. Needless to say this work could have been done half a
century ago with little changes, if any.

A short version of this work has appeared already!®. Wwe
propose however that this article be as self consistent as possi
ble. The terminclogy is restated as can be found in the.classical.
treatises!’?, The proofs of mathematical statements are not
always easy and mostly we omit them and refer to the classics.

| In Section 2 we develop the classical theory of OLDESO
in a reduced form, just to allow the understanding of the basic
technology. This as well as a let of terminology has phased away
with time, and is rarely used in books of physics. The coalescene
of singularities is considered with some detail for the cases N=4,6.
This allows us to give a general account of Ince's classification
criteria for OLDESO.

Section 3 deals with the general case and the relation
ship between potentials of a given family are analyzed, general-
izing results obtained by Johnson?!. This is the extension of the
relationship between the harmonic isotropic three-dimensional-os-
cilator and the Coulomb problem, known in the classic'’ and quan-
tum'® domains. |

Section 4 presents a systematic analysis of the analytic
part of*the normal and subnormal solutions. We show eﬁﬂicﬂﬂy now
the singularity completely determines the kind of possible solu-
tion available and its series expansion.

Section 5, finally contains some conclusions and points

to possible directions of further research.
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2 CLASSICAL THEORY AND INCE'S CLASSIFICATION

2.1 Singularities of a differential equation and the forms of the solutions

An OLDESO can be written inh general as:

911151 + P(z) dy(z) + Q(zYy(2z) = 0O

= {2)
dz? dz

It is well known that in general may exist two solutions
to this equation: fl and Y,- A point z  is an ordinary one 1if P
and Q@ have no singularity in it, i.e., if they are analytic func-
tions around Z,- The solutions around this point will be analytic

functions of z, and their Tayl®or expansions will be convergent:

o

n
y(z) = n§0 c (z-z ) (3)
If z, is a singularity for P and/or Q, it is assumed that

in its neighbourhood a seemingly similar development is valid:

y(z) = (z-2)° | ‘a (z-z )" . (4)
n=0

When substituting in (2) two possibilities are open:
{i) Equating powers, a 2nd degree eguation results for o.

(ii) Equating powers, the equation for ¢ is linear or, even, there
is no equation for o.

In the first case, z, is a regufanr singularity and the in-

dicial equation has one or two solutions, o,. For |0;-c;|=!=, the

singularity is efementany.
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In the second case, Z, is an {aregular singularity.
The necessary and sufficient condition for Zs be a regu

lar singqularity is:

P(z) = (z-zo)-lg(z) A= 0,1
(5)
Q(z) = (z~z ) "Fh(z) wo=0,1,2
The case A=u=0 is excluded-(z0 is then an ordinary point).,
The functions g and h are analytic around LI
The transformation:
zZ = % (6)

exchanges the points at the origin and infinity. Eq.(2) looks then:

oyl [%_P(“’:”] Qo) Q=) yyy w0 (7)
. w dw

dw? w®

Analyzing the behaviour at w=0, infinity is

(i) an ordinary point if

-1
plw) % P(mz L 0(1)
¢ (8)
-1
qlw) = He ) - o)
w'-l
(ii) a regular singularity if
p(w) = 0(w~?)

(9)
0{w=2)

q(w)
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For what regards the sclutions to Eq. (2), let us first
consider the case that z, is a regular singularity. The numbers

G, resulting for the roots of the indicial equation are the ex-

ponents of the singularity. The two solutions will be:

y,(2) = (2-2)%*u,(2)

(z-2,) "~ u_(z)

yz(z)

if |H+-0_| is not an integer. If 0,=0_=0, then the two solutions
wifl differ by a logarithm, If [U+-U_l is an integer, then . the
solutions may differ by a logarithm. For z, a regular singularity,
the general solution of (2) will have a pole or a branch pointat
Z,-

For irregular singular points,two situations may be present:
a) the indicial equation is independent of o; b) the indicial e-

quation is linear in ¢. There is no loss.of generality by tak

ing z, to be the origin. We shall take

p(Z) - z I‘)“zl:l+5
n=0

q(z) - z qnzn'i'Y
n=0

wiz) = § w 2™*®
n=0 2

We see then that if

-1 = y<=1

we have one index:
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For B2~1l, y2-2 we always have two indices. If these con
ditions are not fulfilled, we have no indicial equation. On the
other hand, f and y must be integers, otherwise the series expan
sions would not match coefficients.

In general, it can be shown? that if the series for w
ends (i.e., is a polynomial) we have a regular solution. However,
in most cases the series expansion is infinite and there is no
regular sclution at the origin.

If no regular solution exists, a normal solution is tried.

A normal solution is of the form:

w(z) = exp(-P(z)) v(z) (10)
where
—GN n
P(z) =2z " ] mz (11)
n=0

and v(z) has a series expansion around the origin. The normal so
lution has an essential singularity at the origin. The problem is
up to what point the normal solution may work. There is no a priori
knowledge about the answer to this question, and in fact what is
done is to try a solution and test that the new differential e~
quation for v(z) admits a regular solution.

A current example allows to see how to determine P(z).
Let's consider the one dimensional Schrddinger equation for the

linear oscillator:
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dx?

d.z
[_ a?, mzxz:lw(x) - E ¢(x)

That the point at infinity is an irregular cne is seen

by transforming it into the origin:

Then we have:
a2 aviel [%-w_z.]wp) -0
Trying a normal solution:

Vi{p) = exp(-P(p)) vip)

we have:

2 i ' 1. 2 2 2
av(g)+l-%,2dt-p) dvip) , {@By*_ &P 28R E _o | 1.0
P do |  ap dp ap* P a p* oS

We have one posgsible choice to eliminate the sixth o©oF-

der pole:

ae a;“‘;+otp"=) .

dp p

wWith this,
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and a1=0 since it would give rise to a p—3 pole, whereas the coef

ficient in the derivative may have only a p~? pole. So, at the erd,
p(p) = expl-w-/2p2)v(p)

and the equation for v(p) is:

2 . o2 in 2
Q.L(E)_ + 3(1-‘-2—-)% + (E-_w.)v(p} = 0 {12)
dp? 0 p2 dp o*

The regular sclutions of this equation are the Hermite polynomials.
This can be seen coming back to the original variable.
It may also happen that instead of a normal solution like

{10) a similar one but in a transformed dependent variable

1/k 1/k

wi(z) = exp(-P (2 vz )

may originate an equation with a regular solution for v. In this

case, we speak of the subnoamal solutions'’?.

2.2 Normal form of the equation and the Schrédinger equation.

An unfortunate use of the word (normal) is the one which

tells that equation (2) is put in the following form:

2
d—(lx_z%l + T{z)x(z) = O (13)

where the "invariant"
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I(z) = q(z) - 2 L 2 p(2))2 (14)
dz
is obtained by eliminating the coefficient of the first deriva-

tive, piz),via:

wiz) = x(Z)exp(—u% Jp(Z')dZ') (15)

There is an important property of an equation in normal
form like (13), Performing the transformation z=p~ ', it is easily

shown that the new invariant
I'(p) = p~"I(p=%)

In the radial Schrddinger equation one has thenormal form
after separation of variables in spherical coordinates, Rir}, going

t0o the radial wave function ulr):
u(r) = r R(r) (16}

Notice that there is often an interplay between the ex-
traction of a singularity via a normal (or subnormal) solution
like (10) {or (12})) and including the term with first derivatives.

It is essential for our study the relationship between
the normal form of a given differential equation and the normal
form for the Schrédinger equation where two particles interact

through central forces. Following Bose®, given

4*x(2) | 1(z)x(z) = 0
dz?

r
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-13 =
writing
z = z(r) , (17a)
- @12 4y (17b)
we shall have
dfulr) | 108) (r)u(r) = 0 (18a)
dr?
with
1(8) (r) = (4%)2 I(z(x)] + 3 {z(x),r} (18b)

dr

{daz, ld’z 2

' dr? 3 {\dr?2 :

{z(r),r} = ld—zl -3 F;z—- | (Schwarz derivative)
dr dr

To be useful as a representation of a Schrddinger equation,.l(s)

should be 0of the form
1(8) 4 k2 - Ar~2 - U(x)

with A a real number. If we know the regular solution of the o-
riginal equatieon (13), we may expect that this transformation may
lead to a solution of a Schrédinger equation for a given potential.
As an example of the procedure, involving also the treat.
ment we shall give in the following to similar problems, let us
take the case of the Whittaker equation for the confluent hyper-

geometric equation {(dealt with alsc in Bose's article®):
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P 2 .
d:(zz) . (_% +%+1/+L) Wi{z) =0
z z

The linearly independent solutions are:

1

(1) -
. _ zu+1/2 e ]

z 1
M d{p=2 +5 , 2u+l;z)

xul?) = 5

which is regular at the origin (assuming u2-73) and valid for
2 +1 £ 0,-1,-2,... ;

(i1)

1
: -z
Mk.-'(z’ =M1/ 2 45(—'u-’\-%'r—2u+132) v

H

which is irregular at the origin (-p > -1/2) and valid for

“2u+1 £ 0,-1,-2,...

2 .
¢ (a,v;2z) = ,F (a,y;2) = 1+%1L+°‘_(°‘:£ 2t .

y{y+1l) 2!

Let us restrict to transformations of the independent variable
using a power (more general transformations are given in Bose®
and Lemieux and Bose’ but they are of no interest for the mat-

ters considered in what follows):

Then,
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W= (a;tprp“']‘)”2 u(r)

{z(x),r}) = i-p°

angd

1 A 1/4-u?
I [zir)]l = —F+ +
v T7 orP 2% 2P

The corresponding candidate for an invariant .of the

Schrddinger egquation is:

2.2,.2p=2 . 2.2
I;s)(r) = - E—E—E————ubpzalrp'z +ll£:%—2—
' 4 r

To make it an invariant for a Schrddinger equation we

have two possible choilces:

p=1 ,
PCO IS WA A VL '
‘1 B ry r )
- E+2+ Lit+1) ‘:1’ (the Coulomb potential)
r
Then
u, () = (2¢r) T e F g (£+1- L, 2(Lel) ;2kx) (19)
2
K= V=B

The series (19) terminates if

2+1 -g/2x = N
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which gives for «k (and E} the values for the Coulomb potential
well.

p=2

B . 2
Iés)(r) = - a?r? +4a) + i/4-4p°

r2

= =T?r? +x?2- ﬁ‘;ill , the isotropic harmonic osciliator

- 1 2 .
21 77T e3/2

uztr)= B 5

2 .
k_,u% ; Tr?) (20)
4T

zr

The series {(20) terminates whenever
k? = 4r(n;£*73£)

which are the energy levels of the harmonic oscillator.

We have obtained the laws of force and their solutions from
the differential equation. This is the main content of the arti-
cle, to show that a family of differential equations that can be

suitably characterized produce a corresponding interesting family

of laws of force.

2.3 The classification of QLDESO's made by Ince

The number cof elementary reqgular singularities can be

taken as a starting point, a basic set of data, to begin considering

systematically OLDESO's.

The most general equation having N elementary regular sin-
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gularities, one of them being at infinity is

r=1 -
- zzr

dulz) , e - T0 N '“r(“x*lf':" .
dz dz ral  (2-2_)'

A0+Alza-...+AN 3z""3
= w(z) =0 (21)

(i} (2-2,) o« (22 )

+

The N-1 singularities at finite distances are located at
zr(rzl}...,N-l) and their exponents are o and ar+1/2.
The constants Al,...,AN_4 are arbitrary. Since the point

at infinity is also an elementary regular singularity we must have:

N N-1
(lm='a'—1.— I 'ur
r=1

and this fixes the value of AN-S to be

N-1 N-1 N-1
A= (1 o) - o2 N2 7] o , 0N-2)0:4) (22)
r=1 r=1 2 r=1 16
The sum of the exponents is not arbitrary:
R-1 .
1 1, _
20,+5 + 1 (2a +3) = N-2
r=1
Let now two singularities coalesce, for instance, by making
PRET Then, the pole term in p{z) picks a new residue:

3-20, > 1=2(a,+a,)

The double pole in (21) which contributes to the indicial equation

at z, has a residue now
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: N-3
A +tA,Z.+ + Z.
1, . 1 o 171°°**"* AN-—3 1
nl(u1+§J+ az(u2+§J +

(21'23,(21-24)"'(zl-zﬁ-l)

Since the coefficients Au(n=0,l,..;N-4)are fully arbitrary the in-
dicial equation has two roots that in general will nrno{ differ by
1/2.

In the notation by Ince, the initial equation was of the
kind [N,0,0] and became [N-2,1,0]. In general, by making singular

ities to coincide we can get
- [N,0,0] ~» {N"KrKorKlrxer_-rKs]

such that KO describes regular singularities, K, irregular singu
larities coming out of the coalescence of three elementary singu

larities, K, irregular singularities coming out of the coalescence

2
of four elementary regular ones and, in general, K, will indicate
the number of singularities produced by coalescence of J+2 ele-

mentary regular ones. That is:

K = E (r+2)Kr
r=0

In this notation, the Riemann problem?, that is to write
the solution of an OLDESO having three reqular singularities is
obtained from.[G,0,0] into [0,3,0].

In this work we shall talk almost exclusively of the co
alescence of elementary regular singularities to the origin and/or
infinty.

Let us try a simple application. Consider N=4. We then

find:
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A, = 2(0, 0, +0, 0, +050,) --(ulfu2+u3).

Making 2, +z,+ 2, »», and imposing

1 2 3
no
1im —— = k% , real
zl+22+23+wn 2,2,2,
the equation becomes
2
dwlz) |, x2w(z) = 0 (23)
dz?

This is a well known equation: is the classical harmonic oscilla
tor in one dimension (with z  the time parameter), or the quan
tum mechanical Schrddinger equation for the free particle in one
dimension (stationary states).

It is at this point reasonable to make some remarks about
the physical relevance of the elementary regular singularities of
the equations. It seems that the equations of interest in Physics
are precisely those having irreqular singularities. The origi-
nal elementary regular singularities might be of some value for
physical situations 1if one could, knowing the solutions of the
corresponding equations,keep some control on the parameters as
the singularities coalesce. To our knowledge, this problem has
not been solved in all generality.

A comment at Ehis point on the free particle case is
perhaps in order. The link between the quantum mechanical case (23)
and the classical case for the free particle in one dimension is
provided by the superposition of solutions which gives a solution

of the Schrddinger equation depending in time. Mean values in
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these states are related to the classical chservables. For ins-

tance,

<x>(t) = X, + <v>t

This is the solution of the classical equation, which is linear-~
ly divergent for t + te, It is a milder behaviour than the origi-
nal solution of the stationary quantum case (23). This could have
been expected since the start, and if singularities of the dif-
ferential equations govern the dynamical behaviour of physical sys
tems, it is plausible to expect that classical equations will be
less singular than the original quantum equations,

In fact, the classical free one dimensional equation cames
out of the equation with only two elementary regular singularities.
We ére considering two different variables, but it may be apparent
that the singularities in space are somewhat reflected and washed
out in the superposition procedure giving rise to singularities
less fierce in time,

Let us continue with the -analysis by increasing N For
N=5, the equations resulting from the confluences of sinqularities
are

d?w(z) .

dz?
which is obtained by imposing
A A
o 2
1im NI = k ’ lim e
zl-rzz-sz-»zk-*w 1727374 zl-rzz-i—za-vz&-vw 17273%4

This is the Schrddinger equation for the linear poten-—
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tial whose solutions are Airy functiong¥®

0,1i,11;
By taking
Iim b2 _ lim Ll .
- 1. - - v
23+z o 2324 o 23"21;‘”" 2324 1

we have:

-1 1
2 1-2{a, +a,) a,{o,+x)ea,. fo,+ =) B B
a’w 12dw+[1 1I.Iz.z'2‘.+o ]w=0

+ + L
dz? z dz z? 22  z

Now, putting:

o, +0,=1/2
wiz) =z b 2 f(z)
we get the normal form:
2 B B
af 12 lle_ g
dz? 2z z

with

- ) i 1 ) 2
B2 = a1(a1+1/2_}.+a2(a2+ 1/2) + l—2(a1+a2). -3 (1-2((:.1-1-0:2)) +B°
The invariant of this equation goes into the Schrdédinger form by
writing

1/2

z = ar? , f = (2ar) ' “ulr)
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and, finally

O

dr? x?

u =0
+ 4aB1

which is the Schrdédinger equation for three-dimensional free mo-
tion provided_432—3/4:=-£(£+1) and 4aB1==k2. Other confluences
can be found in the book by Ince?, but most of them do not pro-
duce equations of interest to us here.

We shall now consider the case of N=6. This is quite im
portant both theoretically and practically. Starting from (6,0,0],
going to [0,3,0] one gets the hypergeometric equation, well stud
ied during the last century, and which provided several useful
gsets of functions largely used in mathematical physics. We shall
skip most of the intermediate steps, going straight to the hyper

gecmetric equation. Letting z2 .+ ™y zl,z-*O and 2402, 2

2
A A A
m 2 -8 ; lim 1--3 ; 1m -%- B,
25+w zS ZS+°° Z5 zs+m Zg
one gets:

z{z-a)? Q,iE + {[1-2(a1+u§-}lz(z-a)2 + [\1-2(a3+a )]zz(z—\a.)}E
dz? 4 dz

+ {la, (@;+1/2) +u2(az+-];-n"(z-a)2-i- {a3(0t3+-;-)+u4(a4+%)]zz
+ B, +Bz +Bzzz}w =0

Writing now the indicial equation for z=0, a and =, calling the

two indices at each point {x,a'}, (B,B8') and (vy,v'), respectively
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one has the famous relation:
a+0'+8+B'+y+y' =1
and the differential equation will look now

2.
z2(z-a) 2 a’w +2z{z-a)[(l-a-a') (z-a) + (1-B~-B')z] dw

dz? dz

+ [yy'(z-a)z + aBR'z - aaa‘(z-a)ljy = O

The solutions of this equatieon are denoted by the famous Riemann

P symbol
¢ a
P o B v : =z
al‘ Bl Yl

which indicates an equation with three regular-singular points.

Setting a'=8'=0, a=1l, one gets the usual form

2
AW . [(2~0-B)z - {(1-a)] ¥ & vy'w = 0
dz? dz

(z=1)z

The confluent form of this equation 1s obtained by letting

z,*z2,*0 , Zy>2, v v

Calling again a and o' the indices at the origin:

2 —tty ! y . B '
aw + lra—o’ dw + [%“ -e—lutB%]w =0

dz? 2z dz z? z
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or,writing

2 2 B

This is the equation [0,1,12]. We have already analyzed, following
Bose® some of the laws of force obtained from this equation (Egs.
(19) and (20)).

There is another possible confluence that can be made: this
happens when both the origin and the infinity are made irregular
singular points of the first kind by making three elementary sin

gularities confluence at each of them. Defining

3 3 3
F = ; -2 2 a; : G = z ar(ar+1/2)

i=1 r=1
AI
1lim = Br (r=0,1,2)
z£+z3+w 2423
We get:
2z B G+B, B
d__!+Ed_W+ _O+ 1+£ w=20
Aaz? 2 dz z? z? z

With the transformation:

W = v(z)z—FIZ

we get
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' F 1
2 B B,+G+ = (1= F) B
av, e, 1 2 2 +2lv=o (24)
dz2 {z3 z? z

which may be written as:

22 Q¥ L 2dv L pn Lyzilkegdyiv- o
az? dz 4 2 4 z
and, under a transformation
2ix

becomes the Mathieu equation

d?v

ax?

+ {a+k?cos?x)v = 0

Notice that with the invariant of (24), putting

and transforming v correspondingly (Eq.(17b)) we obtain a Schrd-

dinger invariant of the form

I(s)(r) = Y T +Y,T +k?

20 (*)

which corresponds to a potential studied by Spector for'y1<0.

For the validity of our procedures, however, y,> 0. This lifts any

(*}
In our previous letter'® it could be interpreted that we were in same case as
Spector.
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restriction on the value of v,. which could be 72«<-1/4,
The main point here is that the classification made by
Ince allows to handle appropriately the OLDESC's of several types.
From the point of view of Physics, it is clear that as
the number of elementary regular singularities, N, increases, the
same happens to the difficulty of some physical problem. Just we

have seen

N=2 , Classical free particle motion in one dimension.

N=3 , Classical motion on a linear potential in one
dimension.

N=4 , Classical one dimensional linear oscillator;

Schrddinger equation for free particle motion
in one dimension.

N=5 , Schrddinger equation for the linear potential
in one dimension.
Schrodinger équation for the three dimensional
free-particle motion.

N=6 , Schrddinger equation for three dimensional Cou
lomb potential and for the harmonic oscillator.
Repulsive r*" central potential.

Notice also that it is always commented in textbooks that
the S-waves in two body central forces are easier to solve. It is
attributed to the fact that the problem of S-waves has the struc-
ture of an one dimensional problem; this translates in Ince's clas-
sification by the elimination of the regular singularity at the
origin, i.e. to the elimination of the contribution of two elemen

tary regular singularities which were made to coinclde.
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3 POWER LAW CENTRAL POTENTIAIS IN THE SCHRODINGER EQUATION

3.1 Application of Ince's classification

This section is the crux of the article. We are interested
in differential equations in normal form (remind (13)) with sin-
gularities at the origin and infinity. They will then be transformed
through the procedures applied in section 2.2 into families of ra
dial Schrédinger equations for power law potentials, i.e., with

potentials of the form:

_ o4
Vir) = Y.T {25}
PR 1
1==L
where the numbers Y; are in principle arbitrary couplings and a,
are members of a set of rational numbers specific to the transfor
mations used.
Let us just look to what was done in the study of the des
cendents of the original N=6 elementary singularities. The possi-

ble confluences and invariants were:

a) r=0 regular singularity, r=«, irregular singularity: [0,1,12];

I(2z) = Az~ +Bz~ & C

b) r=0 irregular singularity, rs« irregular singularity: [0,0,21];
3 -2 -1

I(z) = A'2" +B'z" " +C'z

These are the only possibilities; to have r=-~ as a regular singular
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ity is just to exchange the origin and infinity in the first case.
Remark that the second case is invariant also as a re-
sult of the exchange of the origin and infinity. This will al-
ways happen for equations represented by the symbo; [O,O,ZE_zl,
N=6,8,10,... 2

Let us now consider the general case starting from Eqgs.

{21) and (22): make:

We then have the case represented by [0'1'1N-4] with one

regular singular point at the origin and an irregqular singularity

of order N~4 at infinity. The corresponding differential egua-

tion is:
dz? * z dz
1 1 N-4
a, (. +%) +a, {a,+5) +B
z2 r=1
Here:
An :
Bn = lim ;-"I"_ r n=°'1' . au 'N-4
r
re}
Writing:

{0, e, }=1/2
wiz) = z 172 viz)
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the differential equation is,now in. normal form:

2 - B N-4 _
a‘v .| o, ) B, zt %]'v(z) = 0 (26)
Now only one censtant changes:

B B 1
o C.'.'l+ (

1
» +a2) +——2a1a2

1 4

The invariant in Eq. (26) may be in the form of a Schrddinger e
quation provided Bzé 0.
An analogous procedure for [N,0,0], but making now

21-+zz-+z3-+0 and 24'*25'*""+2N-1"w results in

2 N-4
d_V(;E)_ . c, z"‘{l vi(z) = 0
dz =

The equation is of the type [0,0,11,1N_5], and it is of the Schrd
dinger kind provided <, and C3 are not zero.

We can continue this procedure to obtain all possible
invariants with regular and irregqgular singularities at the origin

and infinity. They are listed in Table I for 5 <N < 10.

3.2 The construction of Schrddinger invariant

We shall extend the procedures applied before to show
that a given invariant in an equation with a given kind of maxi-
mum irregular singularity can be related to invariants of the ra

dial Schrddinger equation with two body central forces.
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As we have seen, the invariants obtained from a given e-
quation with N elementary regular singularities are in general of
the form

M
I(z) = ] Az +a 270 (27)

k=-L

kg-2
If the origin is a regular singularity, L=1 and M=N-6, If it .is not,
it can only be an irregular singularity of order 1L-2, and .then,
M=N-L~-4. The other point of interest is infinity; the singularity
there is of order M+2. All interesting invariants for 5<N <10, are

found in Table I.

Let us now transform the variable:

2
2

+

{28)

The index j must not be =2 and may have any other wvalue between
-L and M., For the dependent variable, we have:
T IGeD)

w(z(rj)) = N.r.

35 uj(rjl {29)

and the corresponding Schrddinger invariant is:

) "'"-l—LZ. . . .
1) = =4 a2p, 3*2 1(z2(r.)] + 24 -2 (30
] (§+2)2 3 3 ] 4(3+2)2
Substituting (27) in (30) it is rewritten as:
. 2(k-j) A ,+3(j+4)/16
1y o4 | ¥ Aka.k+2£T5;fL_ L (31)
] ‘j+2)2 k._L ] 3 rj

Yg-2
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Obviously, the term in the sum with k=j,Ak#0, plays the rGle of

the energy. We can also write:

M Q.
(s) _ ik -2
I (rj) = kZ_LYj'k'rj ™. Yj!'z r R (32)
k#-2
to use a more popular form, with
4 k+2 .
Y. = ————— A a, k#-2 ; (33a)
J'k (j+2)2 Ak J !
Yi,-2 F . [A-z'*jiliill ’ (33b)
1» (3+2) 2 16
0 = 203 (33¢)
s 42

In Table II we represent .all the Schrddinger invariants cbtained
for each invariant of Table I, once we make a transformation. Other
possibilities can not appear, except the trivial ones obtained by
exchanging the singular points at the origin and infinity.

How many transformations are available from a given in-
variant in Table I to generate Schrddinger invariants? In prici-
pie,the index j in (32) can take N-4 values. A glance .at .Table
II shows that this is not always the case: when the two singular
ities are of the same kind, not all the transformaticns will be

different, but only half of them (for N=even).

3.3 Transformations between Schrddinger invariants

As we studied the obtention of Schrédinger invariants,
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we showed that we could get several of these out of the same in-

variant. Now let us take two transformations:

2
2 = ar m+2 (34a)
mm
2
z = ar "*? (34b)
nn
The indices . in {33c) take the same values for j=m ard

i,k
for j=n, only they are related to different constants Ak in the

original invariant., With this in mind, we find:

m+2 2 {m-n)
a = o £ Se—— kf=2 ; (35a)
n,k n+2 m, k n+2 '
. m=~n
_ (m+2) (n+2)
unhh) = Nm,n r um(rm) ' (35b)
k+2
Y = | — — Y - H o
n,k a (n+2) mk
m
Y 5 =(m+2)_ Ym s + n(n+4) m(m+4) . (35d)
n, n+2 ’ 4(n+2)?

It is easy to see that any "diagonal" term Yk,k is just
the energy of the relevant problem.

It is also easy to see that the term Yo,n is related to
the coupling Ym,n for rm.

Applications of these transformations have been made to
the case N=6 for the Coulomb and spherical oscillator problenms.
Since n=-1 is the harmonic potential, calling

2

- . - 12 . - —
Yor,—2 = gD 0ovy gtk e Yy o7
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the angular momentum, energy and force constant, the correspending
Schrodinger equation is
2
4 u_y

- P -2 2 _ 2.2 _
E;g—— (r ) + [-&_, (& ;+L)x_; + k2, -w’rf lu_,(r ,)=0 (36)
-1

For j=0 we have the Coulomb potential, writing
Yo,-2 © —£0(40+1" v Yo,o1 T 79 and Yo,0 ° k; i
the corresponding Schrédinger equation is

2
a%u, (x,)
: 2
dxb

. - -1
+ [-£°(£0+1)rg%-g1ro -+kgluo(ro) =0 . (37)

We obtain the well known relat#onsli’/1l6rs21

-1 1l
£ . += = 2(L_+=) (38)
a
2 -1 (39)
k 1= ‘4(a0) 9

Notice that the signs are such that for positive kfl and w? only
negative kg and positive g, are related, showing that only bound
states enter the game.

Bose® and Gazeau?' studied these transformations for the
rather special case of potentials with a single term (apart from
the energy and centrifugal terms). Johnson!! has developed this
work to cover multiterm potentials. All this work represents a
set of special cases of the transformations we present here. 1In

our case we profit from the knowledge of a common foundation for
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all.cases to understand better their properties; in othex terms,
we take advantage of the fact that all potentials in a family are
obtained out of the same invariant.

A remark fits here: since we inténd to discuss normal so-
lutions (Eq. (10)), which decrease strongly ét infinity the signs
of the several couplings are important. If the origin is a reqular
singulafity for the corresponding equation, for potentials with
positive maximum power the corresponding coefficient must be posi
tive, as well as the energy term. If, however, the highest power
is the energy term, it has to have a negative coefficient, as well
as the highest negative power. If the singularity at the origin is
not regular, the smallest (more negative) power must have a posi-
tive coefficient to avoid the "fall into the center" catastrophe®.

We shall now concentrate on the particular case of poten

tials with a single term. For these, we have

= - .4 . . = k?

i,=2 151

and the only term in the potential we choose to be'ﬁ nhn#j,nﬁ-zk
There are three cases possible, corresponding to the range of val

ues of «. . They are
jn

l) —=<qa, <=2

_ im

2) =2<a. <0
jn

3) 0<o, <o
_]n

Let us consider the second case. Then, as the centrifugal
term controls the behaviour at the origin and the energy temm that

at infinity, we have the following conditions:



CBPF-NF~052/85

a) The lowest power,_r}z, imposes L=1.

b) The highest power being rg we must have

=M
So
I(S)(rn) = Vy,_2 Ty * Yu,nr:u'n Y, u
Toc allow aH,n to take values in the interval (-2,0), we must have
-1 <ngM-1.

Choosing one particular value for n, say m, using the transforma-

tions (35):

-

=

=

]

mlm

B I
=
+

A

M+é)

-
=
=
L}
ﬂllﬂl
g |=
A

The invariants will be:

(e) - “Mym
- -2 s
IV = Yy 2T *Yu,m Tu * Y, M

-3 . m,M

Y r

m,-2 "m

(8)
I (rm)

We see that the potential coupling Y M. m becomes the ener
»

gy of the new invariant, and the respective energy now becomes the

highest potential term whose exponent is, now:
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2 (M=m)
o = ————
m,M m+2

which is positive, since m g M-1. That is

2
(M+1)

< amJigz(M+1)

A study of Table II shows several examples, among them the rela-
tion -1+ 2, Coulomb to oscillator, already considered (Egs. (36)
to (39)).

The relation between both exponents is

2q

a —__'._E_Pi

am,H+2

Considering potentials in the first range of values of
the exponent, they transform into potentials in the same interval.
Since the energy term and the singular term at the origin must

be present, the starting invariant is:

Cl-j k -
r.) = v. r 7'+ ., r.“+ ¥.
( J) Yi,k Yi,-2%; \

1¢e) )
. i3

An analysis analogous to the one performed before shows that a-
gain the energy term in one invariant becomes the potential term
in the other.

For potentials with several terms, or multiterm poten-
tials, we can use again the transformation from a given invariant
via the change of variable (34).

Looking at egs. (35) we see that the energy term Ykﬂsin

I(s)(rk) is related to the coupling constant ij for the potential
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in I‘s)(rj), whose exponent a, is:

Jak

o. K = 2(k_-.)
s j+2
Conversely, the energy term Yj j-in I(s)(rj) is related

»
to the term with coupling y, ; in 1(s) (r,) with exponent % 5 such
’ 2
that

o . zil;hl ’
> k+2
or, again:
20 Jk
o, P
»
aj ,k+2

The remaining potential terms are of the form:

2 a. -av
a = ( J,m J_)k)
k,m
+ 2

aj,k

and these relations are extensions of the ones.cbtained by Johnson™
The fact that the coupling constants and exponents trans

form with the change of variables that carries from one menber of
a family of potentials to another member of the same family might
Create the illusion that scme sort of transformation may bring for a
given N to a simpler case, such as N=6. An examination of the re
lations involved (eqgs. (28)~(30)) shows this to be impossible. The
number N gennuinely represents a set of functions which are d4if-
ferent from the ones that resulted for N=6. In other terms, un-

less one makes to vanish the coefficients in the original invari
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ant different from A_,, A_, and A, in no way it is possible to

relate any solution for a given N(#6} to the oscillator or Coulomb

solutions.

4 ON THE SOLUTIONS FOR POWER LAW POTENTIALS

The problem of solving the radial Schrddinger equation

can be faced by first looking at the solutions of

d?wiz)
dz?

+ I(z)wiz) =0

where I(z) is an invariant such that with appropriate changes of
variable several Schrddinger invariants follow. The changes oOf
variables and the corresponding changes in the dependent variable
are Eqs. (28) and (29}, respectively.

The Schrdinger equations so obtained are of different
nature according to whether the origin is a regular or irregular

singular point. In the first case, we must have:

We exchange the points at the origin and infinity, as we

did before, by the transformation z=p ':

d2w(p)

-1
= oD , L g(z(p)lwip) =0 (40)
P

2
+-—
e dp P

In the notation of Eq. (8):
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2
pip) °

M .
2 Aip-(1+4)
ima=2

qfp)

There is no regular solution at infinity, since the smallest

value for M is -1. If we now propose z normal sclution:

wip) = exp[-ftp)lvip)

with f(p) a polynomial in 1/p:

I a, _
f‘p) = E "'"l p ] r
=1 ]

subgstituting in (40) we have:

2 J ) T3 3 )
dp? Lt B dp jul k=1

-% (j-l)a.p_(-j"'z) + % A.p_(i+4):| v=_20
ju2 3 T

To obtain a possibly regqular solution for v at infinity,
since the strongest pole in the second bracket is of order -J-1,
we must ask that the third has no term with a pole of higher or-
der than ~2J-2. The only possible relation involving the original

invariant is:

={23+2)

-{M+4)
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or

The remaining coefficients result from (40) by asking t6
cancel the following unwanted singularities in the coefficients.
It is, however, an easy and interesting exercise to cal-
culate these terms in the exponential by another, physically more

appealing way. Let's look at the action-like integral

Jp dr = I[211113:-£—2—--V(r:)]1/2 dr
T ) rz

If the potential is divergent at infinity, let's extract
the most divergent term. Then we expand the sqguare root, and keep
all the terms up to the convergent ones at infinity. This deter-
mines uniquely the éoefficients of the exponential factor in the
normal solution. For instance, be

Vir) = Vlrz-rv r"-rvar5

2

Vv
= V.rf(1 +—2-}’_‘-2 + L r-%)

3
AE 3
The sguare root in the above integral becomes
\'4
V;/z-::"(l-n-l 2 %) 4 o0(r”?
2V
3
which upon integration results in the same coefficients for the

exponential as the substitution in (40).
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It is the same for the origin. Exponentiating the re-
sult, renders the r£ term for the radial Schrddinger wave func-
tions.

The amazing thing is perhaps related tc the WKB approxi
mation for the potential.

The only possible normal solution of Eq. (40) is for even values

of M (and of N, consequently). To obtain a solution for odd M one
needs a subnormal? one.

We past now to the Schrédinger equation, through (28) and
(8)

(29), one having I (r_1) as invariant:

' M a
I(s)(r_li = 1 v Bath

k=-2

-1,k T
These cases (see Table II) correspond to potentials of the con- -

fining tfpe with maximum power

a_l,M = 2;6;10'14'-0-

for N=6,8,10,12,..., reSpectiveiy and

08 = 4'8'12;16'.--

-1,M
for N=7,9,11,13,..f respectively.

The cases for N even are the ones related to normal so-
lutions of (40); for odd N, the solutions of the Schrddinger e-
quation are normal but for (40) are subnormal,

This result for odd M (and N) gives support to the choice
made by 2nojil in his original work; for the Schrddinger equation,

the potentials with even positive power admits always a normal solution.
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The other potentials in a given family for any N admit
at most subnormal solutions. For N even, two kinds of potential
admit a normal solution: the one cobtained directly from the .in-
variant I(z) anhd the one with-a_l’M:=2,6,10,l4... For N odd, just:

the potentials with o =4,8,12,... admit a normal solution.

-1,M

The normal or subnormal solutions may be expanded in pow
er series. The relevant expressions may be found in the articles
by Znojil'’ and Rampal and Datta'’.

It has been proved!’? that if the series in a normal or
subnormal solution doesn't end, it must be divergent. That's why
solutions are written®’® in terms of continued fractions. Znojil™
has proved the coﬁvergence for the Green function of the extended
continued fraction, and showed numerical examples of good conver
gence for the solutions.

When the origin is not a regular singular point, andthe

infinity either, the procedure just applied is extended to study

when normal solutions work for the origin.

5 CONCLUSION

We have presented what we believe to be the most syste-
matic mathematical treatment for the two body Schrédinger egua-
tion with power law potentials. It is probably the most general
admissible in terms of the theory of analytic functions,

The method developed by Ince allowed us to establish re
lationships between families of potentials, as exemplified in Ta

ble II. This may be quite useful when trying to devise a solution
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for a given problem if the solution for another member of the fa-
mily is known.

The potentials displayed in Table II are all at rational
exponent, and cover most of the ekamples found in the Physics 1li-
terature. It is curious, at least, that a potential which was pro
posed almost entirely from heuristic arguments, the famous 6-12
of Lennard and Jones, is a member of one of these families. It is
possible that other combinations useful in other domains of phys-
ics appear in the list.

We have discussed shortly the solutions for members of
these families of potentials. Normal solutions should exist for
several, and presumahly, the relations among the members of a fa-
mily help in finding new sclutions. An important gquestion is: are
these the onfly possiblé solutions? A potential such as r" doesn't
fit in the scheme; does this means it doesn't have a normal or sub
normal solution? The question surely admits several roads to its
answer.

The understanding of the properties of the possible so-
lutions remains also far from complete. The.case N=6 has been wide-
ly studied in the past and its applications eontinue. However,
for N> 7, the possible solutions constitute in general gemnuinely
new classes of functions, with the exception of the generalizations
of the hypergeometric case (N even, the origin as a regular singu
larity). It would be quite interesting to advance in the sense of
allowing substantially a classification of solutions and their prop
erties in terms of the singularities at the origin and infinity.

Another interesting question is the apparent one to one

relationship between the spectra of energy values of several po-
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tentials in a given family as was originally remarked by Johnson®™.
We conjecture that discrete spectra map into discrete spectra, and
continuum into continuum. This can be seen in the oscillator-Cou-
lomb relationship?® and deserves further exploration.

Whereas we have made an analysis in Section 4 of the ex
istence of normal or subnormal solutions, it restricts obviocusly
to the discrete spectrum. Regarding scattering (or unbounded) so-
lutions, almost nothing is known, and the present treatment might
be of relevance to them. This is of special interest for people
working in atomic collision theory,

Another point to be considered is how could we generate
applying similar reasoning solutions for non central potentials,
such as multipole interactions for two body problems.

We hope to have shown that a promising field of future re
search is open, once we have made evidenta powerful analytic method

to group problems in non relativistic quantum potential theory.
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Invariants obtained from the ordinary linear differential equation

of the second order with n elementary singularities through

fluence to the origin and infinity.

10

11

12

I(z)

az™?

-2
Az
-3

Az

az~?

_ + Bz~

-l
+ Bz
1

-2
+ Bz

+Bz !
+Bz~?

+ Bz~

+Bz~?

+ Bz_3
+Bz"?
+Bz”
+ Bz
+Bz~?
+ Bz~
-3
+ Bz
+Bz”"

-1
+ Bz

-3
+ Bz
+Bz~"
+Bz" !
- -2
+ Bz
: -3
+ Bz
4
+ Bz

+ B2z

+C .
+cz~?t

+C + D2
+Cz~ ' +D

+C+Dz +Ez?

+Cz - ¢D+Ez
+cz- % +Dz" M E
+C+D2z +Ez? + 2t
+D +Ez + Fz?
iDz”' +E +Fz

+Cz~"
- -2
+Cz

+C +Dz + Ez? +Fz® + Gz"

2 4 Cz ' +D+Ez + Fz?2 + G2°

1 VE +Fz + G22

+Ez ' +F + Gz

+Cz-% v D2

+Cz-° +p2"?

+C+Dz + E2? +F2? + G2" + H2®

+ Bz 24+Cz +D+Ez +F2? +Gz® + Hz"

2 4 Dz" " +E +Fz + Gz? + Hz?

+Dz" % +Ez" ! + F + Gz + Hz?

+Cz”
-3
+Cz
+C +Dz +E2? + F2? + Gz" +Hz® + I1z°
+Cz  +D+Ez+Fz® + Gz® + Hz" + 125
+Cz 24Dz 4 E+F2+G2? + Hz? + Iz"
+Cz"3-+Dz"2+Ez"1+F+Gz+sz+Iz’

+Cz 4Dz + Bz 2+ F2"  + G+ HE + 122

- con-

Classification
(0,1,1,]
[0,1,1.]
[0,0,2,]
[(0,1,1,1]
[0,0,1,1,]
{0,1,1.]

[Qoorll;lsl
{o,0,2,]

{0,1,11]
[otoglltlhl
{0,0,12,1,]

[011:1§1
[oroalirlsl

_[0'0'1.2;-1 q]

(¢.0,2,]

(0,1,1,}

[0,0,1,,1,]
(0,0,1,;1,]
[0,0,1,,1,]
(¢0,1,1,1

(0,0,1,,1,]
[0,0,1,,1,]

10,0,1,,1;]

(0.0,2,1
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Schrddinger invariants coming
of the independent variable.

N=5 ; [0,1,1]
j=1 z=a lrfl ;
N=6 : [0,1,1,)] ;
=-1,z=a_,r?, ;
= 0,z=a r, ;

[0,0;21] H

N=7 H [0r1r13] i
2 -
j==1l,2=a_,r-, ;

[}
o
™
[}
j+)

1
a]

[0;0;1;}12] H

] -2
j=-3,z=a_,xr_, ;
=-l,z=a_ r?, ;
2 -
j=-1l,2=a_,r", :
= 0,z=a0r0 H
= l,.z:a.1r§/3 ;
= 2,z=a,ri? ;
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TABLE II

from Table I by power transformation

L-—l' M=—l
(s) - -2
I (r_)=¥v 1,-2F0 *Yoq,
L=1p M-o
(s) _ 2
I(s)(r_;) Y_1,~z?-1+ Y—l,-r+Y?lso -1
- -1
1 (ro) =Yo,-2%0 *Yo,-1%0" *Yo,0
L=3, M=-1
(s) ~h =2
I (r_1) =Yy, it +Y—1,—zr-:|;. . =1
L=l, M=l
ey 2 ' 2 *
( ) =Y Sord e o -or*"—i 1f-1
(s)(r Y=Y, y=2 0 *e Y 11‘6 +:.¥ Yo, klo
(r ’-YI’ L "'Yl 4 T4 “_' -r.lpr-‘z +Y1_,I
L='3, M=0
(S) . -2 -h -8
(s)(r )= Y_a -3+Y—3 AR -1r-3+Y-3‘,°r'3
(s)(r ) Y_l_srs.- +Y_1 _Zrl -1i-1+Y-2L,O =1
(£ }=Y, ¥ *+Yo, 2:0 *Yo,-0 V0,0
L=l’ M=2
(S) _
()w RER SN _2 Yl.d+7104+Yi1r 1g;J
(r) Yr _ot3 +Y1, "’""’“Y; "’”3 0

(s)(r )= Yg r— +Y2 ' / +y,_’ r' +'\r2 l1'-1/'2+\«

-1z 2,2



[0,0,1,,1,)

-2
Z=a

2
Z::a._ 1r- 1
zZ=a r

o 0

2 /3
Z#a, Xy

{0,0,2,}

2
z-a_Lr_l

= r
zaOO

: [0,1,15)

2
z=a_,T_,
= r
z=a ¥
z=a,r /3
1
z=a,r;/?

4 /5
z=4a argl

[0 '0;1-1’11’1

_ar_s.

-~y - -

-

-y

-

- - - -~

-

-

-y - -~ -

-

-

-y - - -

-
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‘L=3, M=1
i Y -8
Esi(r DNy Vs o Fat Yo aFoa* Yo st Yoy T
8 4,
)(r )=Y -l ...3r:h:[ T-l -zr::. Y—-l -1+Y—1 sO -1 Y 11r
(Fg) =Yy 4 5T5* * Yo, _Qr-ﬁ-l-'v r'*-n-Y *Y, 1Y,
( )(r )=y, _x78/8 Yy L +Y1 1';““ +Y3, r’z’ i1
L=4, M=0
7(8) -6 2
( )(r )= 1.-'-0r"'-_1+Y 1, 3 -1 +Y 2 +Y 13—1+Y_-1i0r"1
8 _» -2
(r)- o,-Fa *o, ao'wo Fo +Y0"¢0 *Yo,0
L=l' M=3
(s) - 2 O 6 8
( )(r ) =Y Yoo, P CTA F g A ,or-i"'T ir..-1+:-1 P 1+Y—'i,t§:-1
(8)(“ T Vo, 6t Yoo o1 To* Yo, * Yo, To g /3
8 (x,) ‘Yz zr- *Yl r-l‘* 3 +Y1 r-2/‘°*-;-1r1 ¥t Yy 2rL/ Yy, o
(s) (r )-72 21:" +'Y2, r"3/2 +Yy r"’M(2 lr'1/2 +Y2 >+Yy 3T 1'
215
()(r)- :r_'-'?-c-'\r3 r';3/5 Ta;o r—8/° +‘Y3 gy 4/ 5 +'Y3 ,X3 /+'Y$’3
L=3; M=2
( ) _ -2 - - - r—'lo
(s)(r 3\) V.o -3+Y_E _27-'_3*Y__g’..f?-s"'Y—'_a,or—si:Yv'a,lr—:-'s:Y-a,',z -3
r—2 4 L r o+ r
(3)(r Y=, _33_‘_1+Y 1,=2501 Y-l, D I a8 PO 2 Yoi,2f
— —l
( )(r )= Yo,-—s*.ro +Yo, 2r32+Yo, 1ro Y T Jﬁro"'Yo zro fifﬁ'
S(r) =Yy, -aT1 /a'+Y1; 2r; Y,y -1rIE/3+1i, r ., 1Yy o
l
I(S)(rz}__-\rz r-'slz +Y 2 +-Y 2’.—;]’_'2 ,2 +Y2 I" +Y2 lr_l/ +Y§ 2
L=4, M=1
( ;r )= Y|“_3+1;4 - _4FY “ zr_4+7_4 1]:--'1"'Y ,0 =4 :Ylelr-#s
S(I ) Y.3 r FY_ o st Y, 2_3+Ya 1._3¥Y3 o 3ty 31r:3
: 4
(s)(r =Y (s, r- Y -3 _1+y 1,-2 _1+Y . —1+Y 2 0r_ +Y -~ lr_1
Es:(r =Y, 1'— Yo o5 * Y, er *+Yo,-1%5 Y, o"'Yo,lro Y
Ve, 0 My E P, ey, Dy, e
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N=10 ; [0,1,1 ]
j==-1, z=a

j= 0,
=lr

r.
z=a°

-

-

3, z=a, r2/5

-

= 1/3
z-au_rq

[0;0,11,1_51 H

j=”3r Z=a r-2

|
w
[
[
.

==1, z=a_lrfi ;

= 0, z=a I s

=1, z alrffa ;

=2, 2 azr;h s

=3, z 33F§,5 ;

[Ofoflzf]'»];

j=-4, z=a_hr::_ :
==3, z=a_, :: i

=_1' z=a_ 1r..2.1 i

L=1, M=4
I(S)(r }=y r‘ Y PO 4 ey -
-1 -1 8 -1 gl l;:l,ﬂ -] ‘ml,l =1 '=1,2 =1
( ) +Y—1’ -1t Yeg, it
1
(8)(r =Y Yo, 6 +Y -1Fo  *Yo,6* 0,170 V0,2 o”fo 3’:0“" s
(x )=Y r- +Ysl_r?lh,3+Y101 a""Yl, .2r1/3+
u/s 2 :
(8) +‘t’1 31‘ o+ Y;’k § ) |
I r,)= Yy, 2 r- Y, o5 / +Y2,or_1+Yz, ik 4y Lt
.y gl +Y' r
( ) 2,3 2 - 294 2 )
(ry)= LET +Y3 -Lr_B/S+Y r’5/5 Yy, —h 5,
2/s z]s
( ) +'Y3 2:I.‘3 | +Y3 .5 +/Y3 Hrg? 1 ,
5 uf3 2
(r )= YL, r' -IJY.. r‘ +Yﬁ,or:-/ +yg’1r: +Y-J+,zr: 34

1/3
"'Y_1+ o + Ylo,u

’

I=3, M=3
(s}, y_
I ‘r-g)"Y _3+Y_3 _21::3+y ,-1 r_, "'Y 3 or‘ Y 4 1r- +
( ) * -3,2 r-'lo Y 3,31:22
8 u 2 r? 4
(r )"' 1,.-_3?. +Y-.1,-2::1+Y—1, +Y1,0 -1"'7_1,11-1*'
(s) +Y_1-2r_]:tY_1’3ré1 1 :
3 j
(r )aY -3 "'E *Yo —2?5 *Yo,_:.rS -+‘Yo,'0+70,1r0 *
(S) +YO ZrO + YO SrO )
(r, )==Y r‘3/3+‘y Sui S .lr'l'“’?- +Y, or’lzfa +
- ]
N g2y,
8 - 5/2 2 1
r,) =y, r'z‘/ +Y_2’_ r; +Yz’ 11”3;’2'”2,0’75 o+
- 1
(s) "'Yz,:erl/_z tY, 2,2 +Y, arz 2
18 (r,) =v, _31‘;12'{5+Y r-2+y 11.‘;3/5-1-'\fa or'35/5 +
. ’ »
*T 4 1r;k/5 "'Y r—-z/s L
My ’
L=4, M=2
(s) 1 2. 3
i) * MR AT & (PRI S S ATUI g & SPS SN
=Y - g2 -
(r ) ur-a ‘+Y-a -3_*,T—3,;z§:3 + Y-a,-ljr'.-a
g -5
(s) +Y_a Or:iﬁf ,1r-3:.Y'3’2 = .
(r_ )- -1 —ur:l'l'Y—l,-sr:l+Y_—:_,-,-zr:1+Y-1,-'1+Y-1,or-1+

+Y11r_+1'12_1



Zﬂaoro
- 2 43
z-alrll

- 1 /2
z=a, r,’®

{0,0,2,]

2
¢ Zma 1Jl.‘_ 1

-

-

-y

.y

-a

CBPF-NF=052/8%
- 48 -

(8) 4o, 3 2 1
L +
I (ro)=y°’_“__r3 Yo, 55" * Yo,~2% *Yai% *Yo,0

) gy 2 1r°+Y‘/’ S /2
o/3 r=v/ -
IV (r,) =¥ Y s r;} +Y, T Yy Tt
+Y1 r- /3‘*T r-2/3 + Y5
8
I(x,) =Y, 2,- r‘3+1'2 3";_3 2+Y r;2 + Yz,-lr;”z +
1
+Y ’Orz -PT r*lfz + T?
L=5, M=1
(&) r—9 4 2
(r )" -1,=5 -1+Y1—H —1+Y -5 Y., —ar- +
z &
ey +Y_1 Y PVt Yata :
4 3 2 -1
€)=Y, T *Yo,-u50 *'Yo,ara *¥o,250 o %ot
+
(B)(r } = YO °r_I°+1 ° ~1e/3 r-s/a + -2
LAY Yq,- Yy, 0%t

+Yl,-1r'f SARES r"zf3 +Yy
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