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Abstract

A possible extension of the gauge principle is presented where
two distinct gauge potentials are introduced in association with
a single U(l) gauge group, each of them being taken to interact
with a different kind of matter field. In such a picture, a mas-
sive vector boson naturally shows up in the physical spectrum. A
massive photon without Higgs can be introduced. Renormalizability
is seen to be a feature of the model. Possible supersymmetrizations

are also contemplated.

Key-words: Two distinct gauge potentials in a single group.
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1. Introduction

We could emphasize the relevance of gauge theories in connec-
tion with three aspects. First, the primary fact that the reguire
ment of gauge invariance dictates the interactions governing the
basic dynamics of a prescribed set of elementary particles [1].
Second, the emergence of the self-~interactions among the mediating
gauge bosons which yield the remarkable property of asymptotic
freedom [2] and the appearance of magnetic monopoles as regular
solutions of the classical field equations [3]. Moreover, the good
agreement between the quantum-~corrected mass formulas for the weak
gauge bosons predicted by the Weinberg-Salam-Glashow model [4] and
the recent results of the UAl and UA2 collaborations [5] is another
remarkable success of the gauge principle. Finally, the differen
tial-geometric interpretation of gauge theories in terms of fi-
ber bundles with connections suggests the possibility of a geomet
rical picture for the fundamental forces of Nature [6].

These facts, among many others we did not quote above, encour-
age us to follow the gauge method in our attempts of giving a re
presentation for the interactions among some groups of elementary
particles thought of as the building-blocks of the known matter.
By then adopting the gauge principle, one could pursue an enlarge
ment of the concept of gauge by associating different families of
gauge potentials to different types of building-blocks fulfilling
irreducible representations of a single gauge group [7]. Take,
for instance, two gauge potentials, Au and Bu, having the fol-

lowing transformation laws:
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A s A' =UAU L+ (3 Ut (1.1)
u g U
and
B sB' =UB U L+E b uul, (1.2)
H H H g9 M
which may originate a field strength tensor Guv given by
Guv = auAv-avBu-+g[Bu,Av] . (1.3)

Considering this type of gauge theories, where more than a gauge
potential is associated with the same gauge group, we intend to
develop a proposal: it is to study the interaction of different
families of matter fields by coupling them to different vector bo
sons. The simplest idea would be to couple the vector fields Au
and Bu either to fermionic and bosonic families respectively or to
fermionic fields describing different families of spin-% parti-
cles. We shall here adopt the first viewpoint and try to discuss
the possibility of setting a sensible (renormalizable and unitary)
field theory based on the association of two different gauge po-
tentials to the same gauge group.

The central problem to be faced is the following: the presence
of more than one gauge potential in just one gauge group implies
that undesirable spin-zero modes, intrinsically contained in re-
presentation (%,%) of Lorentz group, do not decouple from the phys
ical degrees of freedom. They can plague the theory with ‘negative-
-metric ghosts, spoiling the renormalizability and the unitarity

of the gauge models discussed in [7]. This a thorny problem to be
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tackled in this class of models.

However, in the U(l) - case that we shall study here, it is easy
to bypass this difficulty, as the theory automatically offers the
freedom of coupling one of the vector fields to a globally con-
served matter current. This leads to the decoupling of the spu-
riou scalar mode that the gauge freedom was not enough to kill off.
Our Abelian model could be interpreted as a Q.E.D. for spin—%-fq;
mions and scalar bosons with the conservation of a global charge
interpreted as a fermionic minus bosonic number.

The outline of our paper is as follows: in Section 2, we discuss
the issue of coupling the different gauge potentials to matter and
establish a U(l)1oca

® U(1) Lagrangian with the property of

1 global
being ghost-free. The power - counting renormalizability, the Ward
identities and the gauge invariance of the renormalized theory are
the content of Section 3. In Section 4, we contemplate possible
supersymmetric extensions of the model, motivated by the fact that
the original theory naturally starts from fermions and bosons as

truly elementary fields transforming equally under the action of

the gauge group. Section 5 contains a few conclusive remarks.

2. The Classical Theory

We start from two massless matter fields: a Dirac spinor, v,
and a complex scalar, ¢, which undergo the following phase trans
formations:

ig.a
~ ¥ =e Fly (2.1)

1
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and

ig a
ot =e 274, (2.2)

generated by charges whose interpretation we shall discuss later.

Now, we wish to render these transformations local and, wvia the
principle of ‘gauge invariance, to introduce two distinct potentials
and analyse the dynamics which emerges from this scheme. By im-

posing that ¢ and ¢ have the local U(l) transformations,

igla(x)w

> YP' = e (2.3)

and

igza(x)
> ¢' = e ¢ (2.4)

the first step is, as it is usual to do, the definition of the co

variant derivatives. In this case, we define two different kinds:

DAl = (9+ig,A)y (2.5)
and
D[B]¢ = (8+ig2B)¢ ’ (2.6)
with
A}1 > A& = Au—naua (2.7)
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and

11

_ > B' B -3 a . 2.8)
B > B y y (

By then defining the field strengths associated to the vector

fields A and B_,
U M
A =3 A -3 A (2.9)

and

Buv = SUBV--B\)BLl ' (2.10)

one can propose the following Lagrangian density which exhibits in

variance under the local U(l) transformations given above. It is:

io = -Lava  _lgwvg 122,
2 LA L)
+ Uiy.D[AJY + (D[B1¢)*(D[Bl¢) . (2.11)

Some remarks are worthwhile:

(i) The factors 1 in the vector - field kinetic terms have been

2
chosen in order to reproduce the usual term-—%EMvF when the La

A
grangian will be rewritten in terms of the physical vector fields,
as we shall see later.

(ii) A term like AuvBuv is also allowed by gauge invariance. How

ever, when re-expressed in terms of the physical fields, one can

see that it has no physically significant consequence. So, we do
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not introduce it in our classical Lagrangian. At the quantum level,
we shall come back to this point.

(iii) An interaction term of the form (A-B)"® would be forbidden.
by the requirement of renormalizability. The reason being that
the component (A°-B°) does not propagate. Consequently, it has
its scale dimension fixed by the mass term, and not by the ki~
netic term, as it is the case for the components (Ai—Bi).Thepmeg
ence of an interaction like (A°-B’)"* would therefore spoil the re
normalizability of the theory we are attempting to set.

(iv) The canonical momenta conjugated to the gauge potentials

are
I (Al = 0
(o]
T.[A] = -A , = -g> (2.12)
1 o1 1
and
I [B] = 0
T,[B] = -B_, = -~Ef . (2.13)

This first analysis then leads to G degrees of freedom. Now,
by using the gauge freedom we have at our disposal, we can re-
duce this number by 1, so that we can finally state that the gauge
potentials carry altogether 5 physical degrees of freedom. More-

over, the Hamiltonian for the free vector fields is non-negative

definite,
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Ho= 1 B2482)+ 1 B2+482)+ 2?2 (@%-8Y)%+ B-B)21 >0, (2.14)
A B A B —
2 2 2
where
+ —
BA = %XA
(2.15)
. - > ->
and BB T VXB .

At this point, our treatment will become more transparent if we
re-express the Lagrangian proposed in (2.11) in terms of the phys
ical vector fields, that is, those which diagonalize the mass ma-

trix. They are s;mply

C. =A -B (2.16)
and

D ZA +B , (2.17)

which are massive (mass m) and massless, respectively.

Du is the genuine gauge field of the theory,
D ———> DL = Du-ZBUu ’ (2.18)

and it has 2 physical degrees of freedom, whereas Cp is gauge in-
variant and carries 3 physical degrees of freedom (a Proca field).
In terms of these physical fields, we clearly see that , despite

the presence of the gauge potentials AU and Bu, there is only one
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true gauge boson in the model.
The Lagrangian now reads:
ID = _iDpVD _LCUVC + 1 m2c? +
4 HV g Vo2

. 1 ; 1 -
+ Piy.dy - ;ngFw.D—;gl VYy.C +
1 <> 3 <
+ 36*.00 - -32:g2¢5*8¢.D+§g2 o 06.C +

1 2

+ = g2 ¢*¢p? E cb*qbcz—%g;_ s*¢C.D . (2.19)

> |

The presence of the gauge-invariant massive field Cu in our model
may in principle lead to the suspicion that it lacks of the re-
normalizability property. Let us then consider this  issue more
carefully.

The Euler-Lagrange equations of motion for the physical vector

fields are

1 — i e 1 .
aUDU-\) = ; g]_ \UYulp + ; gz ¢* 8\)4) _; g; Cb*(bD\)"'
+ 2 g2e%ec = g (2.20)
2 2 vV y
and
3 - _m2 l _ i * 5
¢) CHV = -m°C + 291$Y\)¢ ggqu 9,0 +
1 2 .« 1 > x _ 2
+ _2-g2 Cb (bD\)— ;gz d) d)c\) = =N C\)+]\)o (2.21)

The current Jﬁ to which the Proca field couples is not necessari
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ly conserved and we could conclude by the non-renormalizability
of the model.

However, let us recall that we started from two global U(1l) sym
metries, of which only one was truly gauged and this is supported
by the existence of a single genuine gauge field, Du. We have
still to exploit the remaining global U(l) invariance we have in
our model.

Notice that if the fields ¢y and ¢ have opposite values of the
global U(1l) charge, the globally conserved current turns out to

be
. . ’*H * *
3= Dyb-16%3¢ +9,47¢D -g,¢7¢C . (2.22)
So, if we choose the coupling constants 9, and 9, equal,
91 = 95 =g, (2.23)

the current juis nothing but the current Ju up to an overall fac

tor and (2.21) becomes

a“cuv = m’C_+3, , (2.24)

with
9.3 = 0 , (2.25)
that is, C, couples to a conserved current. Consequently, our model

U
enjoys the property of being renormalizable [8], provided we take
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9,=9, and matter fields with opposite values of the global U(1l)
charge, as this leads to a decoupling of the spin-zero mode car-
ried by C]J from the physical degrees of freedom. In the path in-
tegral formalism, this means that one can suitably redefine the
matter fields and then integrate over the longitudinal component
of Cu, ending up with an effective interacting theory for the new
matter fields and the transverse component of CU'

As a conclusion, the classical Lagrangian density we arrive at

is
,’£= ~ipWvp L oMV - L mec? .
4 WV g H 2
. 1 - 1 —
+ Py.i0y - = gPyP.D - =g Pyy.C +
2 2
. - .
+ 90%.9¢0 - X g6*36.D + g 6*50.C +
g g
1 1
+ Tg?¢*ep? + 1 g2 o*¢c? -1 g2 ¢*¢p.c (2.26)
4 4 2
which is U(l)locale(l)global invariant.

The fields Du and Cu couple respectively to the currents J" and
ju. Du could be interpreted as the photon field (universality of
the coupling g) and JH as the electromagnetic current. The con-

served global U(l) charge can be taken as

Q =F-B, (2.27)

where F and B are respectively a fermionic and a bosonic number.



CBPF-NF-052/84

- 11 -

3. Quantum Properties

To study the behaviour of the model previously discussed wupon
guantum corrections, we have first of all to adjoin the gauge-
-fixing term for the "physical" gauge field of the theory. We

choose to work in the covariant class of gauges,

Eﬁgf_=-L(LDV , (3.1)
20

and the Faddeev-Popov ghosts, as in the usual U(l) case, complete
ly decouple from the other fields.

Recalling that the massive field Cu couples to a conserved cur

rent, the power-counting formula canAbe readily derived. The su-

perficial degree of divergence, §, of the primitively divergent

graphs is dictated by the expression

$

A-E_ -E. -2>E -E. , (3.2)
2

which evidenciates the power-counting renormalizability of the
model. In (3.2), E stands for the number of external legs corre-
sponding to the field appearing as a subscript.

In the task of computing quantum loop corrections, we can choose
to work with either the Lagrangian (2.11) with 9,=9,=9 or the one
given by the expression (2.26). In the latter picture, the mat-
ter-matter interactions can be easily observed as both ¢ and ¢
couple to both DU and CH' In the former representation, the fer-

mionic matter couples only to Au whereas the bosonic one couples

only to Bu. The y-¢ interaction can however be visualized through
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a mediating mixed AU—BV-propagator, whose explicit form is

2 4 2 2 2
<T(A B )> = l ___EL____Y] . 1 k'+(l-a)m“(k“+m”) k k , (3.3)
[V 2 wov

k2 (k2+m2?) HY 2nm? k" (k2+m?2)

already in the Wick-rotated momentum space. Notice the positions
of the poles at k?=0 and k%= -m?, indicating the presence of a
massless gauge boson and a massive vector particle. Though in
this picture the vertices read very easily, the expressions for
the propagators are not suitable for computations beyond the tree-
=level.

The power-counting formula (3.2) indicates that divergent quan

tum corrections of the type C"'D (Cucu)2 and ($*¢)? can be in

uv’
duced already at the one-loop level, whose superficial degrees of
divergence are respectively quadratic and logarithmic. At this
point, we should consult the Ward identities of the theory.

If we denote by F[Cu’Dv;w’w;¢*’¢] the effective action of the

theory (generating functional of the 1P.I. diagrams), the Ward i

dentities it obeys is given by

1 ma.px - . v igTx) = o
8D (x) SP (x)
—ig(x) = v igeteo —L ige L 0 (3.4
&V (x) 8™ (x) 8¢ (x)

Besides the usual non-renormalization of the longitudinal com-
ponent of DU' they also imply that a term of the form C“%%ﬂ) must

necessarily have the form

H 2 \Y
C"(-k) (k nuv—kukv)ﬂ(k)D (k) , (3.5)
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with (k) being only logarithmically divergent, Since CuvDuv is
a gauge-invariant quantity, one could include at the tree - level

Lagrangian a term

Ac“vav ,
and then reabsorb this infinity into a logarithmic renormaliza-
tion of the dimensionless parameter A.
As for the corrections of the form (C“CU)” and (¢*¢)?, gauge
invariance does not reduce their superficial degree of divergence;
a correction-term like (CUVDU\))2 can be induced, but it contrib-
utes a finite amount to the effective action.

As a final result following from the analysis of the Ward iden
tities, by taking functional derivatives with respect to suitable
classical fields, one can obtain useful relationships among the
various wave-function and vertex renormalization factors. These
relations ensure that all gauge couplings renormalize effectively
in the same way, that is, the final Lagrangian accounting for all
the renormalizations exhibit only one renormalized coupling con-
stant, 9y r as it should be. This consequently indicates that the
renormalized version of the theory is indeed gauge invariant. The

outcome of this analysis is that our U(l)].o ® U(1) - invariant

global
theory exhibits the desirable features of renormalizability and

cal

unitarity.
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4. Supersymmetric Proposals

As the theory we are trying to establish starts from fermions
and bosons and they transform equally under the action of the U(1)
gauge group, let us go a little further with the similarities be
tween the fermionic and bosonic sectors and let us look at a pos
sible supersymmetric extension of .the Lagrangian (2.26),

Let ¢1 and ¢2 be the chiral scalar superfields which accomodate
Y and ¢ respectively. They are parametrized by the following ©6-
-expansions:

- %919, Loy 4 02h) (4.1)

and

800.19
= e

©
I

(¢ + 6% + 6%g) , (4.2)

where z and x are the physical supersymmetric partners of ¥ and

¢ respectively, whereas h and g are complex auxiliary fields.
The gauge field Du and the massive vector boson Cu are located

in the vector superfields V and U respectively, whose complete 6-

expansions are given below:
V =R +0x +0x + 02M+02M* + 000.D + 028 (X += 0¥.0) +
2

+ '6—26()\+£0.8Y) + 62§Z(E+l [1a) (4.3)

2 4

and
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U = S+0f +BE+02N+082N* + 600.C + 628(E+= 9£.0)
2

+526(£+-j—'0.8f)+ 62'9'2(F+l OB) . (4.4)
2 4

The physical components of V are the gauge boson D“ and the gauge
fermion A; R, y and M are pure gauge modes: they can be eliminated
by a suitable choice of the gauge parameters, in this case the com
ponents of an arbitrary chiral scalar superfield. As for the vec-
tor superfield U, it is a gauge-invariant quantity so that it can
not obviously accomodate any pure gauge mode. Its 8 fermionic and
8 bosonic degrees of freedom are distributed among physical an aux
iliary components: the pseudoscalar mS, the Majorana spinors (m&)
and £, and the transverse component of Cu describe physical par-
ticles of mass m (the longitudinal component of C is = a ghost
which decouples from the physical sector of the Fock space), whereas
N, N* and the pseudoscalar F play the role of auxiliary fields.

A straightforward supersymmetric version of the Lagrangian (2 26)

could well be given by

;& - faver-L (v p*D2p v +UuD’D?DY) +

) 16
- Inzgz o L (p2y) (B2v) 4
2 16a
- g (V-U) _ =g(v-1u)
+ ®1e ®1+ ®2e @2] . (4.5)

However, the non-polynomial interactions of the pseudoscalar phys
ical component of U with the matter fields (coming from egU and
e_gU) leads to the non-renormalizability of the Lagrangian (4.5),

as U does not obey even some broken Ward identities (remember that
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U is a gauge-invariant object).
Then, to overcome the problems stemming from non-polynomial in

teractions, we propose the following supersymmetric Lagrangian:

5£ = [d"e[-i (vD%*D2%D V + UDOLEZDOLU) B 2T
16 & 2
_ L p2v) (B2v) + @.e80. +7,. 6%V )(1-gU + L g2U?) (4.6)
160, 1- 12 2 2

which, upon a component-wise analysis, can be seen to reproduce
the Lagrangian of expression (2.26) and exhibits vertices of the

renormalizable kind.

5. Conclusions

We have in this article considered the possibility of _establishing
a renormalizable and unitary gauge theory with the unusual fea-
ture of introducing two different gauge potentials in association
with a single gauge group, each of them interacts with a different
family of matter fields. Such an attitude naturally leads to the
emergence of a massive vector boson accompanied by a genuine mass-
less) gauge field: this was the actual motivation behind the whole
approach.

This picture may have some interest to the physics of electro-
weak interactions, where massive and massless vector bosons are
present in the spéctrum of physical particles and mediate the de
cay and scattering processes. However, for the time being, ours

is not yet a very realistic claim, as we have been able to give
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a meaning to our attempt only in the Abelian case. Thus a physi-
cal aspect for (2.16) and (2.17) is to interpret them as massive
and massless photons respectively. Although experiments as the ge
omagnetic data sets limits on the photon mass [9], there is no in
tuitive arguments against it. The model in (2.11) can also be ex-
tended for fermions fields, i.e., one can use a fermion x(x) in-
stead of ¢(x). Observe that there are other models looking for a
massive photon [10], where gauge symmetry can be broken explicitly
or not. The contribution of this paper was that of generating healthy
massive photon without gauge symmetry breaking.

The mismatch between the gauge freedom and the number of gauge
potentials implies an abundance of spin-zero modes which may plague
the theory with negative-metric ghost states. However, in the U(1)
case, we could verify that the theory naturally offers the free-
dom for decoupling these modes from the S-matrix elements through
the coupling of the massive vector boson of the theory to a glob-
ally conserved matter current. One can then end up with a sensible
theory: renormalizable and unitary.

The most interesting case of non-Abelian gauge groups is now un
der investigation. One can readily realize that in such a case,
we cannot trivially follow the same patterns we established in
this paper: due to the presence of the three- and four-vector coup
lings, the undesirable ghost carried by the massive vector field
do not decouple from the physical degrees of freedom, through they
can decouple from the matter sector. Any progress in this direction

shall be reported in a further publication,
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