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Abstract

Exact solutions are obtained and investigated in different multidimensional
models of cosmology and gravitation. Problem of possible variations of fun-
damental physical constants is analized. Black hole and wormhole solutions
are singled out.
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1 Introduction: Fundamental Physical Con-

stants

In any physical theory we meet with constants which characterize the sta-
bility properties of different types of matter: of objects, processes, classes of
processes and so on. These constants are important because they arise inde-
pendently in different situations and have the same value, at any rate within
accuracies we gained nowadays. That is why they are called fundamental
physical constants (FPC) [1]. To define strictly this notion is not possible. It
is because the constants, mainly dimensional, are present in definite physical
theories. In the process of scientific progress some theories are replaced by
more general ones with their own constants, some relations between.old and
new constants arige. So, we may talk not about absolute choice of FPC,
but only about the choice corresponding to the present state of the physical
sciences.

Really, quite recently (before the creation of the electroweak interaction
theory and some Grand Unification Models it was considered that this choice
is the followings: '

¢, h, a, Gr, ¢, mp{or m.}, G, H, p, A, k, I,

where a, Gr, g, and G are constants of electromagnetic, weak, strong and
gravitational interactions, H, p and A are cosmological parameters (Hubble
constant, mean density of the Universe and cosmological constant), ¥ and
I are the Boltzmann constant and the mechanical equivalent of heat which
play the role of conversion factors between temperature from one side, energy
and mechanical units from another side. After adoption in 1983 of a new
definition of the meter (A = ¢t or £ = ¢t) this role is partially played also by
the speed of light ¢. Tt is now also a conversion factor between units of time
(frequency) and length, it is defined with absolute (null) accuracy.

Now, when the theory of electroweak interactions has a firm experimen-
tal basis and we have some good models of strong interactions the more
prefarable choice is as follows:

ha (C), €, M, aw; GFs Bcs AQCDs Gs H: fH A: ks I

and, possibly, three angles of Kobayashi-Maskawa - 6;,83 and §. Here 4, is
the Weinberg angle, 6. is the Cabibbo angle and Agep is a cut-off parameter
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of quantum chromodynamics. Of course, if the theory of four known now
interactions will be created then we probably will have another choice. As

we see the macroconstants remain the same though in some unified models,

i.e. in multidimensional ones, they may be related in some manner (see

below).

All these constants are known with different accuracies. The most pre-
cisely defined constant was and remain the speed of light c: its accuracy was
10~1° and now it is defined with null accuracy. Atomic constants, e, k,m and
others are defined with accuracies 10~% + 10~7, G-with the accuracy 104,
-with accuracy 10%; the accuracy of H is also 10% though several groups
give values differing by the factor of 2. Even worse situation is now with
other cosmological parameters (FPC): mean density estimations vary within
an order of magnitude; for A we have limits above and below, in particular
zero value is also acceptable.

As to the nature of FPC, we may mention several approaches. One of
the first hypotheses belongs to J.A. Wheeler: in each cycle of the Universe
evolution FPC arise anew along with physical laws which govern its evolution.
Thus, the nature of FPC and physical laws is connected with the origin and
evolution of our Universe. r

Less global approach to the nature of dimensional constants suggests that
they are needed to make physical relations dimensionless or they are measures
of asimptotic states. Really, the speed of light appears in relativistic theories
in factors like v/c, at the same time velocities of usual bodies are less than
¢, so it plays also the role of an asymptotic limit. The same sense have some
other FPC: # is the minimal quantum of action, e is the minimal observable
charge (if we do not take into account quarks which are not observable in a
free state) etc.

Finally, FPC or their combinations may be considered as natural scales
defining basic units. If earlier basic units were chosen more or less arbitrarily,
i.e. the second, meter and kilogram, than now first two are based on stable
(quantum} phenomena. Their stability is ensured by well established physical
laws which include FPC.

Exact knowledge of FPC and precision measurements are necessary for
testing main physical theories, extention of our knowledge of nature and, in
the long run, for practical applications of fundamental theories. Within this,
such theoretical problems arise: 1) development of models for confrontation
of a theory with experiment in critical situations (i.e. for verification of GR,
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QED, QCD or GUT), 2) setting limits for spacial and temporal variations
of FPC.

As to classification of FPC we may set them now into four groups due to

their generality:
1) Universal constants such as & which divides all phenomena into quantum
and nonquantum {micro and macro worlds) and to a certain extent ¢, which
divides all motions into relativistic and nonrelativistic, 2} constants of inter-
actions like a, 8, Agcp and G; 3) constants of elementary constituencies
of matter like m,, m,,, m,, etc., and 4) transformation multipliers such as k,
I and partially ¢. Of course, this division into classes is not absolute. Many
constants shifted from one class to another. For example, ¢ was a charge of a
particular object-electron, class 3, then it became a characteristic of a class
2 (electromagnetic interaction, a = %E in combination with % and c), speed
of light ¢ was nearly in all classes: from 3 it moved into 1, then also into
4. Some of the constants ceased to be fundamental (i.e. densities, magnetic
moments, etc.) as they are calculated via other FPC.

As to the number of FPC, there are two opposite tendencies: number
of “old” FPC is usually diminishing when a new, more general theory is
created, but at the same time new fields of science arise; new processes are
discovered in which new constants appear. So, in the long run we may come
to some minimal choice which is characterized by one or several FPC, may
be, connected with the so called Planck parameters-combinations of ¢, & and

G:
L= (%)1}'2 ~ 10—33cm, my = (CEI2G)U2 ~ 10-59 1
7 = Lfe ~ 10~%3s.

The role of these parameters is important as my, characterizes the energy
of unification of four known fundamental interactions: strong, weak, electro-
magnetic and gravitational ones and L is a scale where classical notions of
space-time loose their meaning.

The problem of the gravitational constant G measurement and stability
is a part of a very much developing field, called gravitational-relativistic
metrology. It appeared due to the growth of a measuring technique precision,
spread of measurements over large scales and tendency to the unification of
fundamental physical interaction (see [2}).

Absolute value measurements of G. There are several laboratory deter-
minations of G with precisions of 10~ and only 4 at the level of 10~%. They
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are (in 10~ 1m3kg=1s%);
1. Facy, Pontikis, F.ra_nce, 1972 - 6,6714 + 0,0006
2. Sagitov et al., USSR, 1979 - 6,6745 + 0,0008
3. Luther, Towler, USA, 1982 - 6,6726 £+ 0,0005
4, Karagioz, USSR, 1988 - 6,6731 + 0,0004

From this table it is seen that first three experiments contradict each
other (they do not overlap within their accuracies). And only the fourth
experiment is in accord with the third one.

The official CODATA value of 1986

G = (6,67259 + 0,00085) - 107" . m® . kg™' . 572

is based on the Luther and Towler determination. One should make a con-
clusion that the problem is still open and we need further experiments on the
absolute value of G. Many groups are preparing and doing them using dif-
ferent types of technique, among them is the Karagioz group (Russia) which
has the installation operating already for two years continuously [3].

There exist also some satellite determinations of G (namely G- M,4,4) at
the level of 10~# and several geophysical determinations in"mines. The last
give usually much higher G values than the laboratory ones.

The precise knowledge of G is necessary for the evaluation of mass of
the Earth, planets, their mean density and in the end for the construction
of Earth models; for transition from mechanical to electromagnetic units
and back; for evaluation of other constants through relations between them
given by unified theories; for finding new possible types of interactions and
geophysical effects.

The knowledge of constants values has not only a fundamental meaning
but also the metrological one. Modern system of standards is based mainly
on stable physical phenomena. So, the stability of constants plays a crucial
role. As all physical laws were established and tested during last 2-3 centuries
in experiments on the Earth and in the near space, i.e. at a rather short space
and time intervals in comparison with the radius and age of the Universe the
possibility of slow veriations of constants (i.e. with the rate of the evolution
of the Universe) cannot be excluded a priori.
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So, the supposition about the absolute stability of constants is an extrap-
olation and each time we must test it.

The problem of variations of FPC arose with the attempts of explanation
of relations between micro and macroworld fenomena. Dirac was the first
to introduce [4] the so called “Large Numbers Hypothesis” which relates
some known very big (or very small) numbers with the dimensionless age of
the Universe T' ~ 10% (age of the Universe in seconds 10'7, divided by the
characteristic elementary particle time 10~ seconds). He suggested that the
ratio of the gravitational to strong interactions strengths, Gmp?/hc ~ 1074°,
is inversely proportional to the age of the Universe: Gmp?/fic ~ T, Then,
as the age varies some constants or their combinations must vary also. Atomic
constants seemed to Dirac more stable so he’ve chosen the variation of G as
T_l. .

After original Dirac hypothesis some new ones appeared and also some
generalized theories of gravitation admitting the variations of an effective

gravitational coupling. We may single out two stages in the development of
this field:

1. Study of theories and hypotheses with variations of FPC, their predic-
tions and confrontation with experiments {1937-1977).

2. Creation of theories admitting variations of an effective gravitational
constant in a particular system of units, analyses of experimental and
observational data within these theories [5-7] (1977-present).

Within the development of the first stage from the analysis of the whole
set of existed astronomical, astrophysical, geophysical and laboratory data
the conclusion was made [6,1] that variations of atomic constants are ex-
cluded, but variations of the effective gravitational constant in atomic system
of units do not contradict available experimental data at the level
1071 +10~*2year—. Moreover, in [5-7] the conception was worked out that
variations of constants are not absolute but depend on the system of measure-
ments (choice of standards, units and devices using this or that fandamental -
interaction). Each fundamental interaction through dynamics, described by
the corresponding theory, defines the system of units and the system of basic
standards.

Now we review shortly some hypotheses on variations of FPC and exper-
imental tests [1):
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Following Dyson (1972) we may introduce dimensionless combinations of
micro and macroconstants:

=e*fhe=17,310"2, v =Gm?/hic=510"%
B=Grmic/i®=9.10°, é=Hh/mcd=10",
e=pGfH? =2.107% | t="T/{(e*/mc) ~ 10

We see that a, § and ¢ are of order 1 and v and & are of the order 10~%°.
Nearly all existing hypotheses on variations of FPC may be represented as:

Hyposesis 1 (standard):
a, B, 7 are constant, § ~ t~1,& ~ 1.

Here we have no variations of G and § and ¢ are defined via cosmological
solutions.

Hyposesis 2 (Dirac):

a, B, € are constant, ¥ ~ 71, § ~ 71,

Then G /G = 510 "year™ if the age of the Universe is taken as
T = 2.10'° years. '
Hyposesis 3 (Gamow):

v/a = Gm?*/e* ~ 10~¥, s0 e? or « are varied, but not G, 3,7,& = const,
a~tl §~tE,

Then & /o = 107 %ear1,

Hyposesis 4 (Teller): trying to account also for deviations of « from 1 he
suggested a™! = fny~ 1.
Then 8, ¢ are constants, y ~t™1, a ~ (fnt}™}, § ~ 71

& Ja = 5.10"Byear™!

The same relation for a and ~ was used also by Landau, DeWitt, Staniu-
covich, Terasawa and others, but in different approaches in comparison with
Teller.

Some other variants may be also possible, e.g. Brans-Dicke theory with
G~t77, p~t"% r = (24221, the combination of Gamov’s approach and
Brans-Dicke’s etc. [1].
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There are different astronomical, geophysical and laboratory data on pos-
sible variations of FPC.

astrophysical data:

a) from comparison of fine structure (~ a?) and relativistic fine structure
(~ o*) shifts in spectra of radiogalaxies Bahcall and Schmidt (1967)
obtained

& fa |< 2.10"Pyear™!

b) comparing lines in optical (~ Ry = me*/A?) and radio bands of the same
sources in galaxies Baum and Florentin-Nielsen got the estimate

|& Ja |< 10" Byear™,
and for extragalactic objects

| a/a |< 10" year™?

c) from observations of superfine structure in H-absorption lines of the dis-
tant radiosource Wolf et al. (1976) obtained that .

| az(m,/m,)g, |< 2.107M 3

from these data it is seen that hyposesis 3 and 4 are excluded. The same
conclusion is done on the bases of geophysical data. Really,

a) a-decay of Uszg — Phaos. Knowing abundancies of Ussg and Pasg in rocks
and independently the age of these rocks the limit

|& fa |< 2107 Byear™?
was obtained,

b) from spontaneous fission of Uys such estimation was done:
l& fo |< 2,3.10 Byear1.

¢) finally, from g-decay of Rejgr to Osigr
| Ja |< 5.10"PByear™!

was obtained.
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We must point out that all astronomical and geophysical estimations
are strongly model-dependant. So, of course, it is always desirable to have
laboratory tests of variations of FPC.

a) such a test was first done by the Russian group in the Committee for
Standards (Kolosnitsyn, 1975). Comparing rates of two different types
of clocks, one based on the Cs standard and another on the beam
molecular generator they found that & /a |< 107 %year—1.

b) from similar comparison of C's standard and SCCG (Super Conducting
Cavity Generator) clocks rates Turner (1976) obtained the limit

j¢ /o |< 4.1 10 Pyear!

All these limits were placed on the fine structure constant variations.
From the analysis of decay rates of K, and Re;g7 the limit on the
possible variations of the weak interaction constant was obtained (see
approach for variations of 3, e.g. in [8]).

18 /8 1< 107 %y ear?. ;.

4

But the most strict data were obtained by A. Schlyachter (USSR) from
the analysis of the ancient natural nuclear reactor data in Gabon, Oklo,
because the event took place 2.10° years ago. They are the following:

G4 /G |< 5.107*year™, |& /a |< 107V year™
IGF /GF |< 2-10_123}607"’1

So, we really see that all existing hyposeses with variations of atomic
constants are excluded.

So, now we still have no unified theory of all four interactions. There is
a good theory of electroweak interactions, models of GUT which include the
strong interaction and also some attempts to create a theory of everything
(TOE). As we have no such a theory it is possible to construct systems of
measurements based on any of these four interactions. But practically it is
done now on the basis of the mostly worked out theory — on electrodynamics
(more precisely on QED). Of course, it may be done also on the basis of the
gravitational interaction (as it was partially earlier). Then, different units
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of basic physical quantities arise based on dynamics of the given interaction,
i.e. the atomic (electromagnetic) second, defined via frequency of atomic
transitions or the gravitational second defined by the mean Earth motion
around the Sun (ephemeris time).

It doesn’t follow from anything that these two seconds are always syn-
chronized in time and space. So, in principal they may evolve relatively each
other, for example with the rate of the evolution of the Universe or some
other rate.

That is why in general variations of the gravitational constant are possible
in atomic system of units {c, i, m are constant) and masses of all particles - in
gravitational system of units (G, %, care constants by definition). Practically
we can test only the first variant as modern basic standards are defined in
atomic system of measurements. Possible variations of FPC had to be tested
experimentally but for this it is necessary to develop corresponding theories
admitting such variations and their definite effects.

Mathematically these systems of measurement may be realized as two
conformally related metric forms. Arbitrary conformal transformations g:we
us a transition to an arbitrary system of measurements.

One of the ways to describe variable gravitational coqpling iz the intro-
duction of a scalar field as an additional variable of the gravitational interac-
tion. It may be done by different means (e.g. Jordan, Brans-Dicke, Canuto
and others). We prefare the variant of gravitational theory with conformal
scalar field (Higgs-type field {9]) where Eintein’s general relativity may be
considered as a result of spontaneous symmetry breaking of the conformal
symmetry (Domokos, 1976). In our variant spontaneous symmetry breaking
of the global gauge invariance leads to nonsingular cosmology [10]. Besides,
we may get variations of the effective gravitational constant in the atomic
system of units when m, ¢, & are constant and variations of all masses in the
gravitational system of units (G, ¢, & are constant). It is done on the basis of
approximate {11] and exact cosmological solutions with local inhomogenity
[12].

The effective gravitational constant is calculated using equations of mo-
tions. Postnewtonian expansion is also used in order to confront the theory
with existing experimental data. Among postnewtonian parameters the pa-
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rameter f describing variations of G is included. It is defined as
1 d(GM)

GM dt
According to Hellings data [13] from the Viking mission

= fH . (1.1)

Y-1=(-1,241,6)-10°, f={(4+8) 102 (1.2)

In the theory with conformal Higgs field [11] we obtained the following rela-
tion between f and ¥
F=4(7-1). - (1.3)
Using Hellings data for v we may calculate in our variant f and compare it
with f from [13]. Then we get f = (—9,6 £ 12,8) - 10~3 which agrees with
(1.2) within its accuracy. |
We used here only Hellings data of variations of G. But the situation

with experiment and observations is not so simple. Along with [13] there are
some other data [1]: '

N
1. From the growth of corals, pulsar spin down, etc. on the level

|G /G |< 1070 + 10~ 1year?.

-

2. Van Flandern’s positive data from the analysis of a lunar mean motion
around the Earth and ancient eclipses data (1976, 1981):

|G /G |= (6 £ 2)107¥ 1y,

3. Reasenberg’s estimates of the same Viking mission as in [13] (1987):
IG /G |< (0£2) 1071y

4. Hellings result in the same form is
G /G < (2£4)- 107%™

As we see there is a vivid contradiction in these results, so, of course,
further experiments are necessary for solving the problem of temporal G
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variations. The most promising are the planned future missions to Mars
(1994).

According to Hellings estimations [13] after several years of observations
of spacecrafts on and around the Mars one may have the improvement of the
order of magnitude in a testing of G /G.

As we saw different theoretical schemes lead o temporal variations of the
effective gravitational constant:

1. Empirical models and theories of Dirac’s type, were G is replaced by
G(t).

2. Numerous scalar-tensor theories of Jordan-Brans-Dicke type where G
depending on the scalar field o(¢) appears.

3. Gravitational theories with the conformal scalar field arising in different
approaches [6,7,14,15]. And as we see later:

4. Multidimensional unified theories in which there are dilaton fields and
effective scalar fields appear in our 4-dimensional spacetime from ad-
ditional dimensions [16]. They may help also in solying the problem of
changing cosmological constant from Planckian to present values.

As it was shown in [16,17] temporal variation of FPC arg connected with
each other in multidimensional models of unification of interactions. So,
experimental tests on & /& may be at the same time be used for estimation
of G /G and vice versa. Moreover, variations of G are related also to the
cosmological parameters p, ) and ¢ that gives opportunities of raising the
precision of their determination.

As variations of FPC are closely connected with the behaviour of inter-
nal scale factors it is a direct probe of properties of extra dimensions and
corresponding theories.

Other windows for testing hidden dimensions are opening when one is
studying multidimensional models in spherically-symmetrical case. Then,
as we shall see, some deviations from the Newton and Coulomb laws are
possible.

And at last quantum multidimensional models may help in solving such
problems as the creation of the Universe, its singular state, A-term, etc.
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Thus, our main aim here is to investigate different multidimensional mod-
els of gravitation and cosmology based on exact solutions. Chapter 2 is de-
voted to multidimensional and multicomponent classical cosmology. In 2.1
we study Friedmann-Calabi-Yau cosmology and prove that time variations of
the Newton’s gravitational constant is an unavoidable one. In 2.2 we obtain
exact solutions for (4 + N)-dimensional cosmology and find relations between
cosmological parameters and the time variation of G. In 2.3 we study mul-
ticomponent cosmology with Ricci-flat internal spaces and a perfect fluid
matter when pressures in these spaces are proportional to the density and
get exact solutions also. In 2.4 we prove that Gibbons-Maeda reduction of
two-component cosmology to the Toda lattice can not be generalized for the
n-component case.

Chapter 3 is devoted to the quantum multidimensional cosmology. In 3.1
the Wheeler-DeWitt equation for multidimensional cosmology with n spaces
of constant curvature is proposed and some integrable cases are pointed out.
In 3.2. the Wheeler-DeWitt multidimensional equation for the gravitational
theory with cosmological constant is solved and quantum wormbhole solutions
are found. In 3.3 the WDW-equation for multidimensional cosmology with
perfect fluid is solved in simplest cases. r

In Chapter 4 we analyse spherically-symmetric solutions. In 4.1 we give
the extension of Schwarzschild solution for a multidimensional case. Solution
with a scalar field is also obtained. In 4.2 we obtain the"multicomponent
Tangherlini solution. 4.3 is devoted to solutions of system of multidimen-
sional Einstein and Maxwell equations and 4.4 - to the system of Einstein-
scalar-eletomagnetic fields. And in 4.5 we give the solutions for interacting
scalar and electromagnetic fields, study their stability and single out BH
solutions.
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2 Classical Multidimensional Cosmology

2.1 Variations of G in 10-Dimensional Cosmology of

Superstring Origin [27]

The idea of time variation of the Newton’s gravitational constant origi-
nally proposed by Dirac assumed a great importance with the appearance of
superstring theories. Predictions of these theories about the time variation
of G must obey the present observational upper bound.

|G /G107 +10712,

which is a gravitational test for these theories.

Here we consider the “Friedman-Calabi-Yau” (FCY) cosmology based on
the ten-dimensional SO(32) - or Egx Eg - Yang-Mills- -supergravity theory [18]
with Lorentz Chern-Simons three-form, introduced by G{een and Schwarz
[19] for anomaly cancellations, and with the Gauss-Bonnet term, introduced
in [20]. These additional terms have a superstring origin [21]: they appear as
the next to leading terms in the o’-decomposition (o' is the string parameter)
of the Fradkin-Tseytlin effective action [22] for a heterotic string [23] (see
[24])). The supergravity action is a leading term in this decomposition.

We prove that in the FCY cosmology with the dilation field ¢ = (t) the
solution of equations of motion with the constant radius of an internal space
(as(t) = const) does not exist for all equations of state of ten-dimensional
matter.

It should be noted that, in the open-universe case of the FCY cosmology
with ps = pg = 0 (ps, ps are pressures, see (2.1.9)) and @(t) = const, Wu and
Wang calculated the present value of G /G [25] and got the estimate

(G /G)o m —1.10711E (371 |
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We take the action of the model as [25]

3 _ 9 _
s= [ dey=gl55R - 36 Hione — 15z Ouee) -
1 _
—1¥ 314[%“.FMN + (Riynpq — 4Ryn — RY))} + Sk, (2.1.1)

where gy and  are the metric and dilation fields, Fasn and Hpynp are the
Yang-Mills and Kolb-Ramond field strengths:

F= %FMNdzMAda:N=dA+AAA,

where A = ApdzM is the one-form with the value in the Lie algebra ad g,
g = S0O(32), es @ es {ad ¢ is the image of the adjoint representation of g,
ad g = g for any semi-simple Lie algebra g);

H= %HMdia: A dzN A dsP = dB — way + war , (2.1.2)
where B = %BMNdxM A dz¥ is a two-form, wsy is the' Yang-Mills Chern-
Simons three-form:

wyy = —tr(A AF — —A ANANA), (2.1.3.a)
and wsy, 1s the Lorentz Chern-Slmons three-form:
war = tr(w A — %w AwAw) . (2.1.3.b)

In (2.1.3b) w = wprdz™ is the spin connection, which is the one-form with

the value in SO(1,9):
wu =l wha lI=l exVares Il SO(1,9) ,
ef is the basis (zehnbein} which diagonalizes the metric
IMN = EpENTAB
|| nas [|= diag(-1, 41, ..., +1), © is the curvature two-form:
=dw+wAw
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Sr in (2.1.1) is the Fermi part of the action [18], which is not essential for
us because we are interested in solutions with zero Fermi fields.

The action (2.1.1) and the energy-momentum tensor Thsy lead to the
following equations of motions [25]:

1 9 , _ 1
Eaw — 39un R = 564" (HupqHy® — comnHpqs) +

9 1
+9x4 V(0" Hupq ReR) + 5" [0uwdng — 59mn(9pe)’] +

+ 1, —-3/4

1
30I€ w (tf‘ FMPF§ - ZgMN ir F;Q) -

1
—-é-m @ 3’*[ 2gMN(RPQST 4R}q + R*) — 2RRuMN +

+4RMPRN + 4RMpanPQ - 23;0 Rypgs] + K2 TN . (2.1.4)

V(o 3P HMNP) = o : (2.1.5)
D ((PSHFMP) + gnz(w-anFMNHMNP) = (216)
6Va(p™ 23” @) + 6 (Oue)” + 6x*~* /2 Hiy,) myP '|' (2.1.7)

+x? _”‘[ t" FMN + (Rimpq - 4R§{N + Rg)] =

-

Let us consider the ten-dimensional manifold
MY=Rx M} xK, (2.1.8)

where M = $3, R®, L3 for k = +1,0, ~1, respectively, and K is the Calaby-
Yau manifold, i.e. the compact, complex three-dimensional Kahler Ricci-flat
manifold with the SU(3) holonomy group.

Let the energy-momentum tensor be

T = Tundz™ @ dzV = p(t)dt ® dt + pa(t)a3(2)g"® + pe(t)ad(t)g® , (2.1.9)

where g and g(®) are metrics on ME and K, p(t) is an energy density in a
three-space, ps(t) and pe(t) are pressures corresponding to M} and K.
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The system (2.1.4)-(2.1.7) on the manifold (2.1.8) with the source (2.1.9)
and the following ansatz:

g1 = ~dt @dt + ai(t)g® + a2(1)g® , (2.1.10)
H =0, (2.1.11)
e = t), (2.1.12)
A = ad(t (W) (2.1.13)

leads to a cosmology model, which we call the “Friedman-Calaby-Yau” (FCY)
cosmological model. In (2.1.13) w® is the spin connection on X correspond-
ing to the basis {8, which diagonalizes ¢(®;7: SO(6) — g is the enclosure
of the Lie algebra SO(6) (in the case g = eg @ eg, T may be defined, for ex-
ample, with the aid of the decomposition [23]: es = SO(6) ® Vias). 1t follows
from (2.1.13) that

F = ad(7 (Q9))), (2.1.13a)

where 09 = dw® 4 w® A wE), From (2.1.13) and the tra.ce identity (which
is not difficult to prove)

!
1

Etr(ad('r(X))ad(i' (Y))) = tr(XY) (2.1.14)
for all X,Y € SO(6), we have

way = —tr( 2anF+l A A dA) = tr(—w(s) AQ® 4 Ew(ﬁ) A du'®) = ®

(2.1.15)
In the basis (e194) = (dt, as(t)e®?, ag(t)e(®), where ¢/ is the basis on
M3 diagonalizing ¢®), it is easy to check that

war = wig + W + fs, (2.1.16)

where dfs = 0 and w{) = tr(w® A Q© — 1w® A w® A W), w® s the spin
connection on Mj corresponding to e®¥. From (2.1.2), (2.1.15) and {2.1.16)
we have

H=dB+uw{ +fs. (2.1.17)

It follows from (2.1.17) and dw{? = dfs = 0 that for every domain § ¢ M1©
with H3(}, R) = 0 there is some B such that H = 0.
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The spin connection w® on K obeys the identity _
D, (w®)6mn = ¢ | (2.1.18)

In (2.1.18) D(w) = Vin + [wm, .. The identity (2.1.18) is equivalent to
VS:) R@mnrr .. g

and is valid for any Kahler Ricci-flat manifold [26]. Equation (2.1.6) is
satisfied identically due to (2.1.18), (2.1.10)-(2.1.13) and (2.1.13a) (D =
Dpu(A) = Var + [Am, ]); (2.1.5) is satisfied owing to (2.1.11).

Equations (2.1.4) and (2.1.7) in the ansatz (2.1.10)-(2.1.13) may be rewrit-
ten in the following manner:

3a33(k+ as) (9/16)0~2 ¢ +x3p + As . (2.1.4a)
a3 (k+ &3 +2as ds) = —(9/16)p™2 ¢ —x2ps + B, (2.1.4b)

a3 % (k+ &3 +ag ds) = ~(3/16)¢™? ¢ —(1/3)ps +

2 <p-3f“ 33 i3 (k+ a3) + Ce , (2.1.40)

P —p1 @ 48031 ag® —4xIpM4a3? Gy (k4 a2) + De=0. (2.1.7a)

In (2.1.4a)-(2.1.4¢), (2.1.7a) Ag = Bg = Cs = Dg = 0 when ag(t) = const.
Equations (2.1.4a)-(2.1. 4c) and {2.1.7a) are obtained from (2.1.4) and (2.1.7)
using the Ricci flatness of K and the equality

RS, RO = 301" Frn Fpag @™ gt
which follows from (2.1.13a), (2.1.14) and the relation
6)z
RO = emea

It follows from (2.1.4)-(2.1.7) that

VuTHN = ¢, (2.1.19.a)
Relation (2.1.19a) in the substitution of (2.1.9), (2.1.10) is equivalent to
P+3a3" a3 (p+ps) +6ag g (p+ps) = 0. (2.1.19.b)

In order to close system {2.1.4a)-(2.1.4c), (2.1.7a) we add two equations of
state of the ten-dimensional matter:

Fi(t;p,p3,ps) =0, i=12. (2.1.20)
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It is naturally to demand that for an ordinary matter

p>0,p3>0 (2.1.21)

Suppose that there is a solution of (2.1.4a)-(2.1.4¢), (2.1.7a) with
ae(t) = const.
Case I' ¢(t) = const for all ¢. In this case it follows from (2.1.7a) that

da(k+ a2) =0 . (2.1.22)
But from (2.1.4a) and (2.1.21) we get
k+ai>0. '(2.1.23)

Then we find from (2.1.22) and (2.1.23) that é; = 0 and, using (2.1.4b) and
(2.1.21), we get the inequality

k+a3<0,
which is in contradiction with (2.1.23). _ :

Case 2 ¢(to) # 0 for some t5. From continuity of ¥ () it follows that
® () # 0 at some interval (a,bd) 3 to. Differentiating (2.1.4a) we get

—6a3° G (k+ a3)+ 6052 a3 &3 — (9/8)p™2 ¢ (¢~ ‘@’2) =xp . (2.1.24)
The subtraction of (2.1.4b) from (2.1.4a) leads to
203%(k+ @3 —asds) — (9/8)¢ % ¥'= K*(p+ pa) - (2.1.25)

Multiplying (2.1.25) on 3a3" ds, adding the result to (2.1.24) and using
(2.1.19b) we obtain

—(9/8)p* P (p— @' & +3a31 639) = 0. (2.1.26)
At the interval (a, ), ¥ (t) # 0, so at this interval

¢ — o 19" +3a51 agp=10.
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This equality and (2.1.7a) result in the relationship (2.1.22) for all
t € (a,b). Repeating the subsequent arguments of case 1 we come to a
contradiction.

Thus in the FCY cosmology the solution of the equations of motion with
ae(t) = const does not exist. But

G = const ag®

(it follows from (2.1.1}). So we prove that the time variation G is an un-
avoidable one in 10-dimensional cosmology of the superstring origin [27). Of
course, in other models we may find solutions with a,,(t) # const (see be-
low).

If we do not apply conditions (2.1.21) then we may obtain the result
ag = const, These cases are:

1. ¢=const, az3=const, ps=const, ps=0, p=0, k=0,
2. ¢=const, pe=ps=p=0, k=-1, az=t+e,
3. d#const, p<0, ps<0, ps<O. ’
;.
We see that all these variants are unreasonable in the modern epoch from
observational point of view.

2.2 Solutions with Perfect Fluid in (4+N)-Dimensional
Cosmology [28]

Support for time variations of fundamental physical constants especially of
the gravitational constant G comes from many modern theoretical schemes:
unification theories, modified theories of gravitation, e.g., scalar-tensor the-
ories, etc. [1]. Corresponding experimental data on G are still controversial.
Evidently, more tests of G variations are needed, both astronomical and lab-
oratory ones. Much is expected from joint missions of space crafts to Mars
in 1994,

As we saw multidimensional cosmological models {27] also provide a pos-
sibility of time variation of G. In these models G is not a fundamental
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constant since it depends on the internal space scale. Its time variation leads
to varying G.

When the contribution to the gravitational field equations from the Gauss-
Bonnet term (see [25]) is negligible compared with that from the Einstein one,
then gravity is governed by the multidimensional Einstein equations and the
cosmological problems are reduced to ordinary 4-dimensional equations with
a contribution from a Ricci-flat internal space.

We consider here a more general problem, namely a (4 + N)-dimensional
cosmology with an isotropic 3-space and an arbitrary Ricci-flat internal space.
The Einstein equations provide a relation between G /G and other cosmo-
logical parameters. In particular, for a spatially flat universe (k = 0) the
present observational upper bounds on G /G taken in the form

|G /G5 1107 (™)
lead to the following bounds upon the density parameter (2
0850<12.

Some (4 + N)-dimensional theory is considered in an epoch when all the
higher corrections to the action of gravity are negligible.' It is described by
the standard expression

1
So=55 f d*Nz/—gR, (2.2.1)

where «? is the fundamental gravitational constant. Then the gravitational
field equations are

T
RY = —x*(T} - 5}?m—2) , | (2:2.2)

where TH is a (4 + N)-dimensional energy-momentum tensor,
T=TY,M,P=0,..,N +3. For the (4 + N)-dimensional manifold we
assume the structure

MYN =Rx M x KV, (2.2.3)

where M} is a 3-dimensional space of constant curvature,
M3 =83 R®, L3for k = +1,0, 1, respectively, and KV is a N-dimensional
compact Ricci-flat Riemann manifold. The metric is taken in the form

gundz™dz = dt* — o’ (t)g{)(e*)de'de’ — (g (yP)dy™dy" , (2.2.4)
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where 1,7,k = 1,2,3; m,n,p =4,..,. N+ 3; g,(s), g,(g,), a(t) and b(t) are,

respectively, the metrics and scale fa.ctors for M; s’ and K¥. For TM we a,dopt
the expression

(Tp') = diag(p(t), —ps(t)8}, —pn (£)6T) . (2.2.5)
Under these assumptions the Einstein equations (2.2.2) take the form
3¢ Nb  «?
=42 = (N +1)p—3ps — Npw) (2.2.6)

a b N+2

% & 26 Nap o |
a_+E+ v + < N+2[P+(N 1)ps — Npnl, . (2.2.7)
b B 3ab K2
-+(N—1)bz+-ﬁ=N+2[p—3p3+2PN]. (2.2.8)
The 4-dimensional density is _
P00 = [ YT @ett) = p)) (2.29)

where we have normalized the factor 5(¢) by putting

f Ny /g™ = 1.
K

On the other hand, to get the 4-dimensional gravity equations one should
put 87G(t)pW(t) = x%p(t). Consequently, the effective 4-dimensional gravi-
tational “constant” G(t) is defined by

87G(t) = k26N (1) (2.2.10)

whence its time variation is expressed as

G/G=-Np/b (2.2.11)

Some inferences concerning the observational cosmological parameters
can be extracted just from the equations without solving them. Indeed,
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let us define the Hubble parameter H, the density parameter 2 and the
deceleration parameter ¢ referring to a fixed instant g in the usual way

H=afa, Q=8rGp"W/3H?=x%/3H?, q¢=-ad/d . (2212

Besides, instead of G let us introduce the dimensionless parameter

9g=G/GH=—-Nab/ab. (2.2.13)
Then, excluding b from (2.2.6) and (2.2.8) we get.
N_ 1 9 ’
with 1
AN, = N+2[2N+ 1+3(1 - N)vs +3Nwy],
where

va=psfp, wvn=pn[pn p>0.
If ¢ << 1 and §2 << 1, then either g is also small and equals

!

g g— An,Q ‘ (2.2.15)

or (if N > 1) it is comparatively large and is described by amother root of the
quadratic equation (2.2.14), namely g = 3N/(N — 1). Note that (2.2.15) for
N =86, v3 = vg = 0 (30 that Ay, = 13/8) coincides with the corresponding
relation of Wu and Wang [25] obtained for large times in case k = ~1.

If k¥ = 0, then in addition to (2.2.14), one can obtain a separate relation
between g and f), namely,

N-1,

N 7 —g+1-0=0 (2.2.16)
(this follows from the Einstein equation R§— 1R = —«?Tg, which is certainly
a linear combination of (2.2.8)-(2.2.10)). Furthermore, excluding Q from
(2.2.14) and (2.2.16), we get

N-1
6N

(Any ~2)8* + (1 - Anu)g+ ANy — g =0. (2.2.17)
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The present observational upper bound on g is
lg <02 (2.2.18)

if we take in accord with [13] |G /G | 1.107(y™!) and H R
5.10"1(y~1) =~ 50(km/s.Mpc). Using (2.2.16) and (2.2.18) we get the crude
estimate

08<0<12 (2.2.19)
independent of N. In the case of dustlike matter (v, = vy = 0) (2.2.17) and
(2.2.18) yield the following estimates on ¢ for N = 1,6, 0o, respectively:

g=1, 153¢2175, 1854522, '(2.2.20)

The above relations refer to a fixed instant, e.g., the present epoch. To
answer questions concerning model evolution, it is helpful to solve the field
equations. Here we consider the general solution of (2.2.6)-(2.2.10) for the
case k = v3 = vy = 0 (dustlike matter)'. The solution is

a(t)= At*(t+T)*, ‘ :
{ bt)= Bt +TW, (2.2.21)
p(t) = 2N +2)/k3(N+3)T(t+T),

where A > 0, B > 0, T > 0 are constants, 0 > £ > oo, and

o

{g} N+3(i"N"+1)’ {F} T 3(3F33r+1),

= /(N +2)/3N,s = +1. (Equation (2.2.21) is the general solution of
(2.2.6)-(2.2.8) up to the choice of a direction and a reference point of time).

Solutions like (2.2.21) were first considered in {29).

1Equations (2.2.6)-(2.2.10) can be solved exactly at least in the following cases: i)
k = 0,5 and vy are arbitrary constants. ii) ¥ = 0,%1; v3 = 1; vy is an arbitrary

constant. iii) £ = 0, +1;2vn = 3u5 — 1; v3 is an arbitrary constant.
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Time dependences of ¢ and b for the case T > 0 and N > 1 are plotted
in fig. 1,2. One sees that the cases s = +1 and s = —1 are highly different.
For H and §} solutions (2.2.21) give

H=3+ HLT (2.2.22)
and
_ AN+ T)
"~ 3(N +3)a(t + T) + BtJ? (2.2.23)

It is easily checked that for s = —1 the density parameter on the expansion
stage (a> 0) is @ > Q, = (N + 2)(N + 3)/6 > 2. In the case T = 0 which
is common for the branches s = +1 and s = =1, = {,. These cases are
unacceptable due to (2.2.19). See fig. 3. '

So let us discuss the remaining branch s = +1, T' > 0. The parameter
() monotonically increases from 0 to (1, while the product H(¢)t monoton-
ically decreases from (\/N(N+2)/3+1)/(N+3)to 2/(N+3)if N > 1,
and H(t)}t =1/2if N = 1. For the parameters ¢ and g we have

= lala = 1)+ TV + 2aB(e + Tt + 66 - 1))

ot + T) + B (2224
and _ *
a(t+T)+ pt
= - m. (2.2.25)

So ¢ monotonically increases from (1/3N(N + 2)-N—-2)/(N—1) to 3(N+1)

when N > 1and ¢ = 1for N = 1(¢ > 0). On the other hand, ¢ monotonically
decreases from 6N/(3N 4 /3N(N +2)) to —N. (This follows from (2.2.24)

and (2.2.25)). At the moment ¢t = ¢; = 1(1/3(N/2)/N — 1)T we get } =
1,¢g=2N +1)/(N +2) and g = 0.

Consequently, the model based on solution (2.2.21) with s = 41,7 > 0
may be considered as one of the candidates for a realistic cosmological model
in the dust-dominated era. Besides, this model has also one more attractive
feature. The scale factor of the internal space has a minimal value (when it
is constant and so the effective gravitational constant is also constant.
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2.3 Perfect-Fluid Type Solution in Multidimensional

Multicomponent Cosmology [30]

Here we consider (1+Ny+...+ N, }-dimensional cosmology (n, N, ..., Ny € N)
with n + 1 Ricci-flat spaces. For the “perfect-fluid” matter with the density
p > 0 and the pressures

p=(1-hk)p, (2.3.1)
where k, are constants (v = 0,...,n), satisfying
A(R) #0 (239)

(with A(k) defined in (2.3.10)), an exact solution of the Einstein equations
is obtained. Note that the n = 1 case was previously considered in ref. [31]
for all A,, v =0,1.

Let us consider the manifold

i

M=Rx M x..M,, t (2.3.3)
with the metric n
g= -4t @ dt + Eem"(‘)g{y) . (2.3.4)
=0

where n € N and M, is an N,-dimensional Ricci-flat manifold with the
metric ggy), ¥ = 0,...,n. For the energy-momentum tensor we adopt the
expression in the “perfect-fluid” form

(T) = diag(—p(t), po(t)82, .., Pu(t)E7) 5 (2.3.5)

where k,,{, = 0,..., Ny; p > 0 and the equations of state (2.3.1) are assumed.

We put vy =37 _ N,8, in (2.3.4) (the harmonic time is used). Then the
Einstein equations RY — 26} R = k*T} for the metric (2.3.4) on the manifold
(2.3.3) with the energy-momentum tensor {2.3.5) and the state equations
(2.3.1) have a rather simple form and are equivalent to the following system:

n 2 n n
(EN, b,) -3 N A= 2% exp (221\’,5,) : (2.3.6)
»=0

v=0 p=0
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n n -1
B. = Kpexp (221\7,,8,) bu(h) (ZN., - 1) . (2.3.7)

v=0

k£ =0,...,n; where p > 0, k? is the gravitational constant and

b, = b,(h) = i Noh, +h, (1 - zn:N) . (2.3.8)

=0

Let us introduce new variables x,,:
Xo = hN.B, ,xi = bo(h)B; — bi(R)Bo , L (23.9)
y=o

1,..,n. Egs. (2.3.9) may be written as ¥ = S8, where the matrix
S (h) is implicitly defined in (2.3.9). A straightforward calculation gives

N II

A = det S(h) = [bo(R)]"A(R) , | (2.3.10)
where n " _
A' = A'(h) = b,(h)h,N, X (2.3.11)

and b, (k) are defined in (2.3.8). From eqs. (2.3.7) and (2.3.9) we have ¥; = 0
or equivalently

xi=Cit+D;, (2.3.12)
where C;, D; are constants, : = 1,..,n. The conservation law
VMTH =0 gives

p=Aezp(d_ Ny(h, - 2)8,), (2.3.13)
=0

A > 0 is a constant. In the non-exceptional case (2.3.2) considered here, the
map (2.3.9) may be inverted,

B=S5"%. (2.3.14)
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It may be checked that the matrix S~ = §~1(h) in (2.3.14) has the following
components: :

- by - h;N; _ b;
Sml = “‘A"';., Sojl = —"""J"A"‘;"{, S"_ol = E N
- bh;N; ., . '
Siil - "E');'A_;ly i#j, n>1,
_ . 1
s3t = [ Mbb, vk (2.3.15)
i

n > 1and S5 = Noho/A' forn = 1;4,7 = 1,...,n.
The quadratic form in the left-hand side of eq. (2.3.6) may be expressed
as ,

ZKuv B,,sz Ef"“’ )'(p)'(p ' (2316)

v=0 #=0

where K = (K,,,) = (N,N, — N,§,,) and
K=(8")'Kks"? ; (2.3.17)

Calculations give for (2.3.17)

- R _— .
Koo = E(EN,-—x),K.,.:O,

v=0

Ki; = % [N,—N,- — Nibij + % (1 -y N,,) h.—N,-h,—N,—] ,(2.3.18)
D=0

n > 1and K3 = —NoN,/A' for n = 1;4,§ = 1,...,n. Then from (2.3.2),

(2.3.6), (2.3.12), (2.3.13), (2.3.16) and (2.3.18) it follows that

5(3: C + D ezp(xo), Xo # const (2.3.19)
(the assumption xo = const leads to A(h) = 0), where

C = A (Z ci"f;jcj) (gm—-l)-l,

f,7=1

n -1
D = 2A'%A (EN,,-1) , (2.3.20)

v=0
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The system of eqs. (2.3.6) and (2.3.7) is equivalent to the system of eqs.
(2.3.12), (2.3.13) and (2.3.19) (this is not difficult to prove). Solving (2.3.19)
we get

xo = &n{C/D sh’[%\/a(t— )]}, ALC>0,
= M[4/D(t-4)°"), A'>0,C=0,
= ta{-C/D ch’[%s/a(t —t)]}, &'<0,C>0, (2.321)
where {p is a constant. Note that the quadratic form in (2.3.20)
C = C(C;) is positively defined if A’ > 0 and has the signature (+,—, ..., —)
for A" < 0. This follows from (2.3.18), (2.3.20) and from the fact that the

matrix K (and hence K) has the signature (+,—, ..., ~). The latter follows
from the relations

n n n n 1)(2 n
S Kudb = za—z:zf,zﬁ[(z:m—l)xz:m] S N8,
v=0 v=0

#,0=0 i=1 ) ) " ;. =0
- o) )
X Z N, (8, — Bi=1). | (2.3.22)

¢ = 1,..,n. So the solution obtained here is given by eqs. (2.3.4) and
(2.3.13) with v = 3°7_, N8, and 8 = (8,) = Sx, where S~ is defined
in (2.3.15) and x = (x,) has the components (2.3.12) and (2.3.21) with
C and D defined in (2.3.20). The integration constants A > 0,#; and D;
are arbitrary, the constants C; are arbitrary, when A’ > 0, and obey the
restriction C' = C(C;) > 0 (see (2.3.20)), if A’ < 0,5 =1,...,n (A’ is defined
in (2.3.11)).

To illustrate the general solution let us consider the dust case: k, = 1,
v =0,...,n. In this case the solution in the proper-time parametrization with
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0 < 7 < 400 has the following form,

g = —drQdr+ Z a}(T)90)
=)

6, = Afr(r+ D)o /(r + T)]*,

p(r) = 2 (Zn: N, - 1) / (iNy) Kr(r +T), {2.3.23)

w=0 y=0

where A, > 0, T > 0 are constants and a, are constants, satisfying the
constraints

n n n | -1
Y Ny =0,) Neol=1- (E N,) , (2.3.24)
=0

=0 =0

v=0,..,n; n €N. (One may also consider the case n = oo in (2.3.23)).
Note that special cases of solution (2.3.23) were considered in ref. [29] (N, =
v =Ny =1) and (n=2).

!
i

2.4 On Reduction of Multicomponent Cosmology to
Toda Lattice [35)

Toda lattice equations [32] occur in many areas of physics and in gravitation
as well [33,34]. Gibbons and Maeda [34] suggested a reduction of a multidi-
mensional cosmology with two spaces of constant curvature to an open Toda
lattice. Here we try to apply their approach to n spaces.

Let us briefly review the relations of ref. [34]. For the metric

2 2
g = —ezxp|2 Z: N:Bi(t)|dt @ dt + E ?#i® g(9)
i=1 ’ i=1

(the harmonic time is used; we slightly change the notations of ref. [34]) on
the manifold

M=R>(M1XM2,
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where the manifold M;(dim M; = N;) with the metric ¢{) is the space of
constant curvature (i = 1,2). The vacuum Einstein equations reduce to the
system of Lagrange equations for the “Toda lattice”-type Lagrangian

- 1 3 .2 2 .
Lzﬁz'a‘- g+ fienen (2.4.1)

=1 =1
and two constraints

Y wgi=0, (2.4.2)

t=1

3 2
—_ 1 . g
E=5> mid; =) bt~ =0. (2.4.3)
i=1 .

i=1
In eqs. (2.4.1)-(2.4.3)
N 1 N
M=Ten, -1y T2 BTTEN, )

(6; is scalar carvature of g'). The identification between two systems is
v

(2.4.4)

reached by the use of the following relations: ‘
G — @ =20 ~2) Nifj, i=12 . (2.4.5)
J=1

Let us try to generalyse the relations (2.4.1)-(2.4.5) for n-component case,
n > 2. Consider the metric

g=—eLiaMAOd @ dt ) £2lt)gl) (2.4.6)

i=1

on the manifold
M=RxMx..xM,, (2.4.7)

where n > 2, dimM; = N;, and (M;, g%")) is the space of constant curvature,
(¢ = 1,...,n). The vacuum Einstein equations for the metric (2.4.6) on (2.4.7)
are equivalent to the system

n n 2 n . .
E = Z:N.' ﬁf — (E N; ﬁ,) + Za_,-e-"’#’ Lims NiBi 0, (2.4.8)

i=1 i=1 =1
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Gie'zﬁ‘“ E:"“ N;Bs + N;B{ =0. (249) :
where : = 1,...,n. The system (2.4.9) is a Lagrange one; the corresponding
Lagrangian is ' :

L=3N.ji - (Z N; B:')z 30T (2410
i=1 i=1 i=1
Here 8; = Rl¢g")],i = 1,...,n. In the variables
a; = 26; -2i:Njaj, - (2.4.11)
j=t
the Lagrangian (2.4.10) may be rewritten as

2
lﬂ .2 1 n ) Ei] ‘
L== N; a; — - Noag) + 0;e7%, 2.4.12
Iy 4(:,.=1N,--1>(E )}:, 412)

=1 i=1 =1

In o-variables the system (2.4.9) is equivalent to the sgr‘stem of Lagrange
equations for (2.4.12) and (2.4.8) is equivalent to the constraint

-

1 — .2 i - . - - _
_-;ZZ:N.-a.- ~4( - N,——I) (ZN.-&,—) =) 8™ = 0. (2.4.8+)

Consider the hyperplane V, in R*+!:

n+l
Vi={glqe B, > pigi = 0}. (2.4.13)
i+1
o =¢n—¢ =1.,n (2.4.14)
from the hyperplane V,, (2.4.13) to R is a biective one if and only if
n+l
> wi #0. (2.4.15)

i=1
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If there exists a set g = (p1,..., ins1) satisfying (2.4.15) such that for all
ueV,

n 2 n+1
ZN,-(u,-“ —u)? - 5N, = 1) [ZN(u..H — ;) ] = 22,“,-11? ;
j=1 i=1

i=1 =1
(2.4.16)
then using (2.4.8%), (2.4.11), (2.4.12)-(2.4.14), it is not difficult to check that
the system (2.4.8)-(2.4.9) is equivalent to the system of Lagrange equations
for

n+1 )
T - Fi— %41
I 2;;« g; +§9e | (2.4.17)

with two constraints: (2.4.13) and E = 0 (E is the energy functional for ).

Thus, we have a reduction of n-component cosmology to the Lagrange
system of “Toda lattice”-type with two constraints when there exists the
set of “masses” satisfying (2.4.15)-(2.4.16). Unfortunately, this takes place
only for n = 2. When n > 2 thereis no 4 = {u,..., ,u.,.,.l) satisfying (2.4.15)-
(2.4.16). The outline of the proof of this proposition is the following. Suppose
that there exists g = (f1y sy fing1) sa.tlsfymg (2.4.15)-(2.4.16), then from
(2.4.16) g1 # 0. If we put in (2.4.14) ug = ... = uy4y and

a4+l

= _—— Z,u:u: : (2.4.18)

1=2

then we get from (2.4.14) the system of three equations on y;, ¢z and fi; =
Yo+ ;. Solving it by the condition of (2.4.15), we find

M(Ns-1) oy = 1-N; _ Ny(N3—=1)
22N, + Na—-1)" "° 2 22N, + Ny — 1

= ), (2.4.19)

where N3 = 300 N; # 1; in the N3 = 1 case the solution is absent (note
that for N3 = 0 we have (2.4.4); this solution is unique). Putting us = ... =
Un41, and u; from (2.4.18) in (2.4.16) we reduce (2.4.16) to the system of six

n+l

equations on py, fia, tia, By = Z:,u,-. One of these equations (the equality on
=4
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coeflicients at usug-terms) is the following

M (1+) %—m'[m (1+2) -]
x (ME + Ny) = 29Ba, (2.4.20)

But eq. (2.4.20) is in contradiction with eq. (2.4.19). This contradiction
proves our proposition [35].

Thus, it is impossible to generalize the Gibbons-Maeda reduction pre-
scription [34] for n-component case with n > 2, and therefore another ap-
proach (or some modification of ref. [34] is needed for studying integrability
of multicomponent cosmology.
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3 Quantum Multidimensional Cosmology

3.1 On Wheeler-De Witt Equation in Multidimen-

sional Cosmology [52]

Recently a growth of interest in investigations of Wheeler-De Witt (WDW)
equation [36-38] for multidimensional cosmology is denoted. (We should note
that the Hartle and Hawking paper [39] played an essential role in stimulating
the new activity in quantum cosmology. This fact is connected, on one side,
with a great attention to more-dimensional field theories: supergravity and
superstrings, and, on the other side, with the consideration of the quantum
cosmological models, containing more than one scale factors [40-42].

In quantum multidimensional cosmology we hope to find answers to the
same problems as in 4-dimensional one: singular state, creation of the Uni-
verse, cosmological term nature and value, possible “seeds” of structure for-
mation, variations of constants etc.

Besides, quantum cosmological models may open the way to the “third
quantization” scheme which allows us to come from qua'x‘lt.um mechanical
approach to the quantum field theory one. '

And, finally, quantum cosmological scheme is adequate mainly for the
description of the Early Universe and as far as we believe in some unified
theories of fundamental interactions then we had to use some multidimen-
sional variants of quantum cosmology.

There are some technical problems of quantum cosmology such as bound-
ary conditions and operator ordering.

It is well known that one of the main problems of quantization is the
operator ordering one. In [43-47] the operator ordering problem is solved in
favour of the following covariant form of WDW equation.

(—%A[G] +aR[G] + V) ¥ =0, (3.1.1)

where ¥ is the wave function of the Universe, (G is the metric on the su-
perspace {36]), A[G] and R[G] are the Laplace-Beltrami operator and the
scalar curvature, respectively, constructed from G, V is a potential and a is
a constant. The term aR[G] in (3.1.1) is responsible for an operator ordering



-35- CBPF-NF-051/93

ambiguity (and for renormalization, when it is needed, as well). The Laplace-
Beltrami form of WDW equation was considered previously in [36,48].

Here we consider multidimensional cosmology with n > 1 spaces of con-
stant curvature and obtain the WDW equation (3.1.1) with

a=(n-2)/8(n—1). (3.1.2)

In this case eq. (3.1.1) is invariant under the conformal transformations of
G and V¥, induced by the choice of gauge. Such form of WDW equation
was discussed earlier by Misner [48].2. In our case the WDW equation has
the simplest form in the harmonic-time gauge (H), because in this gauge
the minisuperspace metric Gy is flat. The metric Gy is diagonalized. It
has a pseudo-Euclidean signature. In the case of Ricci-flat spaces the WDW
equation is reduced to the d’Alembert equation. When n = 2 and one of the
spaces is Ricci-flat, the WDW equation is reduced to the Klein-Gordon one.

Let us consider the metric
" !"' _
o) = —ezp[2y(2))dt ® dt + ) exp|26(¢)]g()» (3.1.3)
i=l
on the manifold
M=RXM1 X i )(Mn, (3.1.4)

where the manifold M; with metric g(;) is a N;-dimensional compact space of
constant curvature. Substituting the metric (3.1.3) into Einstein’s action

1
S=55 d.—.:|g|1f’R+—/ dy || K

where the second term is the standard Gibbons-Hawking boundary term [50),
we get

f L (3.1.5.8)

with

2Such form of WDW equation was also discussed in [49]
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L = gezp —1+2Nﬁ‘] [EN(ﬂ) —(ZN ﬁ’) ]

=1 §=1 =1
+ %exp v+ Z N; B‘] Y bexp[—287].  (3.15b)
=1 =1

In (3.1.5b) 6; = R|g(;] is the scalar curvature of g(¢),i = 1,...,n (usually, the
metric g;) is normalized in such way that 8; = k;N;(N; — 1), k; = 0,£1) and

p= (H V.-) /<2,

where V; is the volume of M;. The system of Einstein’s equations for the
metric (3.1.3) on the manifold (3.1.4) is equivalent to the system of Lagrange
equations for L (3.1.5b).

The Lagrangian (3.1.5b)may be written in the following manner:

L

L=N (%N"”G.-_,- ¥4 —V) . (3.1.6)
where

V= ——ea:p [221\7 ﬂ’] Z Biexp[—26'] (3.1.7)
i=1 3=1
is the potential, G;; = N;§;; — N;N; are the components of the metric
G= G.'jdﬂ'l ® dﬂj (3.1.8)

on the minisuperspace R™ and A is a Lagrange multiplier

—exp[ ZNﬂ"

The Lagrangian (3.1.6) is a degenerate one. Its degeneracy is connected with
an invariance of the action under the gauge transformations

B - F), N - NBOT,
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where A is an arbitrary reparametrization of time (h € Dif fR).
Let us fix the gauge in (3.1.6):

N = exp[-2f], (3.1.9)

where f = () is an arbitrary smooth function on the minisuperspace R".
Such a gauge we call the f-gauge. Then it is not difficult to check that the
system of Lagrange equations for L in the gauge (3.1.9) is equivalent to the
system consisting of the Lagrange equations for

L =2GL(B) BB -V!(8) (3.1.10)
and a constraint . .
B! = LGL(B) BF +vI(B) =1, (3.1.11)
where
G! = exp2f)G, VI = exp[-2f]V.
Introducing generalized momenta 7, = 3—% = G, Bp one may see that

this system is equivalent to the system of Hamiltonian é‘qua.tions for the
Hamiltonian

H = %(G")‘-‘(ﬁ)mw,- Vi) (3112)
with the constraint
H! =0, (3.1.13)
where (G/)¥(f) = ezp(-2f(8)]G¥, and
- & 1
=t TN A (3.1.14)

In (3.1.12) 7; are the canonical conjugate momenta.

At a quantum level the constraint (3.1.13) transforms into the WDW
equation R
HIW =, (3.1.15)

where ¥/ is the wave function in the f-gauge and H{ is an operator corre-
sponding to (3.1.12). Standard quantization procedure using change from =,
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to #, = —id/8B*(k = 1) leads to nonsingle-valued definition of H’ due to
factor ordering problem. As it was shown in [44] for quantization of a simple
Lagrange system with Lagrangian

1 .a.
L= E%,g(a:) &3’

and correspondingly with Hamiltonian

1 £,
h= 5’7 ﬁ(x)PorPﬂ:

where 7 = 745(2)dz® ® dz® is a metric in a configuration manifold, in order
to ensure the independance of quantization procedure from the choice of
coordinates one should use the following form of the operator A:

h=—2A() +aR(y),

where A(7y) and R(7) are the Laplace operator and scalar curvature for metric
5. . , '
Then, in our case the demand of covariance of HY[GY}'under general co-
ordinate transformations in the minisuperspace leads to the following quan-
tization prescription:

N !
H = -EIEA[Gf] + %R[Gf] + V7, (3.1.16)

where the constant af fixes the operator ordering ambiguity in the f-gauge.

It is natural to claim that WDW equation (3.1.15) has gauge-covariant
form, i.e. the WDW equations (3.1.15) in fi-and- fa-gauges are equivalent
for all f; and f;. This takes place if and only if (3.1.15) is equivalent to

AV =0 (3.1.17)

for all f, where o
H=H |0, ¥ =¥ ;.

We call the f-gauge with f = 0 (v = %, N;f*) the harmonic-time gauge.

=1

{In this case A[g(g)l¢ = 0, where ¢{¢,y)} = t). It is natural to put
¥ = exp[bf]¥, of =aq, (3.1.18)
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where b is a constant. Then, using (3.1.18), it is easy to prove that the
equivalence of (3.1.15) and (3.1.17) takes place only when

n
b=1-7 (3.1.19)

and a is given by (3.1.2) (n > 1). For these values of a and b

H = exp[—2f]ezp[bf)H exp|—bf).

The coefficients a and b are the well-known ones in the conformally covariant
theory of a scalar field [51]. (Note that the n = 1 case is an anomalous one:
there is no b, satisfying the gauge-covariance condition when n = 1}.

So, we obtained the WDW equation in the conformally covariant (gauge
covariant) form. Note that in the n = 2 case ¢ = 0 and ¥/ = ¥ for all f:
the ¥ function is gauge invariant.

We may also consider the case n = 1 cosmology with homogeneous scalar
field. It is not difficult to show that in this case eq. (3.1.15) is equivalent to
the WDW equation considered in [42], where the a.mblguxt.y parameter [39]
isp=1.

! .
L

Let us consider the harmonic-time gauge. In this gauge the metric Gy =
G! |y—o= G is flat and the WDW equation (3.1.15) becomes

a o
(__Gv-é-ﬁ@- 4 v) ¥ =0, (3.1.20)

where G/ and V are given by (3.1.14) and (3.1.7), respectively.
It is easy to show that

n—1
= —d®® d:° + Z dz'® dzi,

f=1
where

= (S5 1) 5] " B,

#=[m/( :—.N:')( W) S ),
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i = 1,...,n — 1. Thus G has a pseudo-Euclidean signature, 2° is a “time”
coordinate.
The WDW equation (3.1.20) is an integrable one at in the following two

Cases;

1) &, = ... = 8, = 0. In coordinates (3.1.21) eq. (3.1.20} has d’Alembert’s
form 2 1 2
g —/ 0
[— (7870) +> ('37) ] v =0. (3.1.22)
=1

Equation (3.1.22) describes, for example, the evolution of Bianchi type-I
Universe (n = 3, N; = 1,¢ = 1,2,3), which was studied in [42].

Dn =2; 6, #0, 8; = 0. In coordinates = = z(2(B)) where z = z(B) is
given in (3.1.21) and = = z(z) is defined in the following manner:

2% + 2! = explas(2® £ 2Y)) /a4,

where

N\
ar = (Ny+ ) V2 (N + Nz — 1)1-“'2 + (Fl) )
4

i

the WDW equation (3.1.20) takes a Klein-Gordon’s form

9 2 ) 2 -
[-— (@) + (%) + pze{l ¥ =0, (3123)

with mass m? = —u%8,. Here z° is a “time” coordinate. For #; > 0 we

have a tachyon. Equation (3.1.23) is relevant not only in the case of the
Kaluza-Klein cosmologies, but it describes, for example, the Bianchi type-III
Universe [42} (NMy = 2, N; =1, 6, < 0) and the Kantowski-Sachs Universe
[41,42] (N1 =2, N. =1, 6, > 0).

Here we obtained the WDW equation for multidimensional cosmology
[62]. The WDW equation has superspace covariant form and the demand of
the covariance of the WDW equation under the gauge transformations fixes
the operator ordering ambiguity parameter uniquely. The WDW equation
has the simplest form in the harmonic-time gauge, because in this gauge the
minisuperspace metric Gy is flat. The diagonalization of Gy shows that Gy
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has a pseudo-Euclidean signature. Two integrable cases were considered. If
all spaces are Ricci-flat the WDW equation is reduced to the d’Alembert
equation. When n = 2 and one of the spaces is Ricci-flat the WDW equation
is reduced to the Klein-Gordon one. The solution of these equations may be
found anywhere.

Let us introduce the scalar field into this model: ¢ = (?).

Then, the total action will be § = § + S, with

1 _
S, = /d:-: | ¢ |/ {-—Eg“"a,,cpaytp - u(go)] . | (3.1.24)

where u(¢p) is a potential of a -field.
Putting (3.1.3) in (3.1.24) we obtain S, = [ dt L, with

1 : n . n )
L,= Efczp exp (—‘y + Z: N,ﬂ") ¢ —K2uu(p)ezp (1 + E N,ﬂ”) .
v=0 =0
(3.1.25)
Combining (3.1.5) and {3.1.25) we get

L=L+L, =N [%I-W‘_Q(GW B#Bv +4? g-p?) _ (V + pnzd’txp {2iN?ﬂu})

v=0

with lapse function A defined earlier. So, we see that introduetion of a scalar
field changes the minisuperspace, its metric and a scalar field potential in such
a way:

Rﬂ-l-l —DR"-”, G—>é=G+!¢2d§0®d<p,
V=V =V+«uu(p)ezp (2 E N,ﬂ”) .
=0
Now, if we take f = f(8,) on a minisuperspace R*? we obtain in f-gauge:
B =,

where ﬁIf is obtained from A’ substituting f —+ fandn - n+1. In
harmonic (f = 0) gauge we have:

1w ® 8 18\ ]
5 (oo wam) 7|00
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For all §; = 0, u = 0 (minimally coupled scalars field) this Eq. reduces to
the d’Alembert equation in coordinates (z#,xp). Forn =0, u =0, 6§, # 0,
it leads to a Klein-Gordon form:

2 3
() () vou] -
with y° £y = [No/(No — 1)} exp[f%(No — 1) £ k], ¥°>|y' .

Here we present the explicit form of the solution of WDW-Eq. for 8, #
0, #; =0, i =2,...,n and a scalar field as a source of Einsteins eqs. [53].

The WDW equation in the harmonic time gauge v = Y&, N;f* and the
minisuperspace metric & takes the form:

2 2 2 2
- 2uHY = ( 3602 + 3613 +..t v ?—12 + %4‘#291529"0) v=0
(3.1.26)

where ¢ = & @ and ¥ is a mlmma.lly coupled ma.ssl&ss;sca.lar field, u =

[Ti=, Vi/ %, V; is the volume of M;, £? is the gravitational constant (w1thout.
losing generahty, we can put g =1),

-

=M -1)/N;

and we use the coordinate transformation

g = (Mi-1)8"+) N,

=2

n /1 ,
N —1 .
o = (N—*T) > Nib

§=2 =2

12

. (M — 1)N; ) L

gt = N -8) i=2,...,n—1.
(Nl J_IN E;—l-l-l j;l ’

It was shown in [52] that equation (3.1.26) is covariant under the coordi-
nate transformation in the minisuperspace and conformal covariant under
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the conformal transformation
G- = G
U ¥ = -ty
U-Uf = e%'U=—Zgp

The conformal minisuperspace metric G/, is the Milne-type one

d5'= (@O 4 (@ 4t @ = ~@ TP 4@ T (FY
= 3121)

where

L ~' .
p=v" t=¢te” ZT=/ i=1,..,n.

The equation for the scalar field ¢ with the mass pu(~6,)Y/? in the Milne
universe (3.1.27) coincides with the WDW equation (3.1.15) and reduces to
equation {3.1.26) after the conformal transformation ¢ = [ea:p(l —n/2)qO 0.

One may use this fact to investigate the WDW equation since the theory of
the scalar field in the Milne universe is well known. Solutions of the WDW
equation (3.1.26) are obtained by the separation of variables

¥ = ‘Ilg(vo)...'lin_l(v"'l)‘liﬂ(cp) - (3.1.28)
where

W) = e i=1,..,n-1
Vulp) = e

and ¥, satisfy the equation

( df” + 0162’“ ) \I‘o = E\I’o (3129)

where ¢ and arbitrary numbers v; are related to each other

n
E=Zv}‘.

i=1
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The solutions of the equation (3.1.29) are

\Y l 6, quv")

Ciﬁ;q ( q

where C is the modified Bessel function I or K in the case 8; > 0, or the
Bessel function of the first, second or third kind in the case 8, < 0.

The solutions (3.1.28) are the eigenstates of the quantum-mechanical op-
erators [[,; = —(i/0)8/dv', i =1,...,n - 1; [L. =[], = ~(i/€)8/3¢ with
eigenvalues (1/£)v,, where £ = 1 for the Lorentzian spacetime region and
£ =i for the Euclidean one.
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3.2 Exact Solutions for Models with Cosmological Con-

stant

1.In this and the next section we investigate several models of classical and
quantum multidimensional cosmology with the aim of finding exact solutions
and their applications to main problems of cosmology. We start from the
study of the cosmological constant role in multidimensional scheme and find
classical and quantum solutions of the wormhole and tunnelling types. The
scalar field generalization of the solutions is also obtained.

The quantum wormholes were defined by Hawking and Page [54] as so-
lutions of the Wheeler-DeWitt (WDW) equation with boundary conditions:
(i) the wave function is exponentially damped for large spacial geometries;
(ii) the wave function is regular when the spatial geometry degenerates.

The given approach may be considered as a quantum extension of the
classical wormhole paradigma (see, for example, [55-58] ). We remind that
classical wormholes usually are euclidean metrics that consist of two large
regions joined by a narrow throat (handle). They exist for special types of
matter [55,59-64]. Macroscopic wormholes may ensure the evaporation of
BH and the microscopic ones may be used in solving tHe problem of the
cosmological constant.

In {65,66] the quantum wormhole solutions were obtained for the cosmo-
logical model with 1 (n > 1) spaces of constant curvature, when one of them
has a non-zero (positive) curvature and the space-time is minimally coupled
with a massless scalar field. We note, that when the scalar field is absent,
the WDW-equation for this model was proposed in [52].

Here, we first consider the cosmologial model with » (n > 1) Ricci-flat
spaces and non-zero cosmological constant A. For A < 0 we found a family
of quantum wormhole solutions with a continuous spectrum similar to the
approach used in [67] and also in [65-66]. Solutions of the WDW equation
in four dimensions with A # 0 and conformal scalar field as well were first
found in [38] and [37] correspondingly (see also {1], where the solution with a
minimally coupled scalar field is also described). They also satisfy conditions
[54] for quantum wormholes. Formally even DeWitt’s solution with dust has
a quantum wormhole behaviour though it is rather questionable to apply
solution with dust at small scales.
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2. The model. We consider the cosmological model with the metric

g = —ezpf[2vy(t)]dt @ dt + Z exp(2z*(t)]g®, (3.2.1)

=1

on the manifold
M=RxM x...xM,, (3.2.2)

where the manifold M; with the metric g(") is a Ricci-flat space of dimension

N.‘, 1.e.

Ronin; [g(")] =0, (3.2.3)
t=1,...,n;n> 2. Weput ‘
y=h=) Na' (3.2.4)
1=1

in (3.2.1) (harmonic time is used). Using (3.2.3) and (3.2.4), we get the
following non-zero components of the Ricci-tensor for the metric (3.2.1)

Roo = - ) Ni[&' - hi' + (&)Y, . (3.2.5)
=1
Ron, = 91(12n.- iexp(2s' — 2h), (3.2.6)

i1=1,...,n.
The action of the model is

- .2_’15 / PrlglH(R - 2A) + Sex, (3.2.7)

where x? is the fundamental gravitational constant, A is the cosmological
constant, D = 1+ 37 | ; is dimension of M and Sgg is the standard
Gibbons-Hawking boundary term [50]. It follows from (3.2.5), (3.2.6) that
Einstein equations (corresponding to the action (3.2.7))

1
Run — ERQMN = —Agun (3.2.8)
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for the metric (3.2.1) with v from (3.2.4) are equivalent to the following set
of equations

E= %G.-,-.i-":&f +V =0, (3.2.9)
w=i - DZI_\ 2ezp(2h) =0, (3.2.10)

i=1,...,n In (3.2.9)
Gi; = N;bi; — NiN; (3.2.11)

are the components of the minisuperspace metric,
V = Aezp(2h) (3.2.12)

is the potential. (We note, that Rog — 1Rgoo + Agooc = —E.) Equations
(3.2.10) are equivalent to the Lagrange equations for the Lagrangian

1 .-
L= §G;ji‘i’ -V=0, (3.2.13)
This equivalence follows from the relations K
d oL oL .
aa—i; —_ % = G{_J'UJ', - (3.2.14)

i =1,...,n, and non-degeneracy of the minisuperspace metric {30,52].

Equations (3.2.9), (3.2.10) are easily solved {68,69]. After an appropriate
redefinition of the time variable the metric (3.2.1) may be represented in the
following form

g=—-dr®@dr+ Z a}(r)g", (3.2.15)

&(r) = Alsinb(VE 5)/val fanh(QE)/Va™,  (32.16)
where v = (D — 1)1, A; # 0 are constants, € = A/|A| = %1,

T = [(D — 2)/2|A|(D — 1)]*/%, (3.2.17)
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and the parameters o; satisfy the relations

i N,-a,— = 0, i N,—(a;)z =1-v (3.2.18)

i=1 =1
Remark 1. In [30] Einstein equations

1
RMN — -é-RgMN = RQTMN (3219)

for the metric (3.2.1) were integrated even for the "perfect-fluid” matter,
when pressures in all spaces are proportional to the density : p; = (1 — &;)p,
h; = const, t = 1,...,n, p > 0. We note that in the case h; = 2,p; = —p
the solution from {30] coinsides with the solution (3.2.15)-(3.2.18) with the
relations A = x2p > 0 and p = A = const imposed.
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3. The WDW equation. The WDW equation for the model in har-
monic time gauge (3.2.4) reads as follows:

(%G"'aaaj —@*V)¥ =0, (3.2.20)

where ¥ = ¥(z) is a wave function of the Universe, V is the potential (3.2.12)
and §; = 8/dz'. In (3.2.20)

i 6: _1

G N, + 3-D (3.2.21)

are the components of the matrix inverse to the matrix (G;;) (3.2.11) and

g = [Tz, Vi/ &%, V; is the volume of M;. (We suppose that all V; < +o00; in

other cases the parameter u should be introduced "by hand” as a parameter
of the theory.)

The WDW equation (3.2.20) can be easily deduced by a procedure similar

to that of Ref. [52). It is also in an agreement with a general scheme of [49].

Without a loss of generality we put 4 = 1 below. The minisuperspace metric

G = Gydz' ® dz* (3.2.11) was diagonalized in [30) (see a,lsé‘ [52))

n—1
G=-d"®d"+ Z d ® d', . (3.2.22)
i=1
where
2= q'l Z ijj, (32.23)
1=1
? = [NifLZiu]? ) Nia' - o), (3.2.24)
F=i4l
1=1,...,n—1, where
¢=[D-)/D-2" 5= N (3:2.25)

i=

(we remind that D =1+ 37, N;).
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The WDW equation (3.2.20) (x = 1) in variables (3.2.23), (3.2.24) takes
the following form

8 8 19 8 o
[_é—z—a—@ + 2 po i 2A exp(2¢2°)|¥ = 0. (3.2.26)

We are seeking the solution of (3.2.26) in the form

U(z) = exp(ipz)®(z°), (3.2.27)

where § = (p1,...,Pn-1) i8¢ a constant vector (generally from C*~?), 7 =
(z',...,2" 1), 57 = piz'. The substitution of (3.2.27) into (3.2.26) gives

[—(%)2 — 2A exp(2¢2°)]® = E® (3.2.28)

where E = = 5oy p?. Solving (3.2.28), we get

&(z°) = B,(V=2Aq"'e?”), (3.2.29)

where v = i\/E/q = i|pl/q, and B, = I, K, is modified Béssel function. We
note, that

n
v=expqz’ = H al * (3.2.30)
i=1
is the volume scale factor (a; = ¢*').
The general solution of Eq. (3.2.26) has the following form

W)=Y / F5C5(5)e™ By (V=2 ™), (3.2.31)

B=ILK

where functions Cp (B = I, K) belong to an appropriate class.

4. Quantum wormbholes[68-69]. We restrict our consideration by real
values of p;. In this case E > 0.

If A > 0 the wave function ¥ (3.2.27) is not exponentially damped, when
v —» 00, i.e. the condition (i) is not satisfied. It oscillates and may be
interpreted as corresponding to the classical Lorentzian solution.
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For A < 0, the wave function (3.2.27) is exponentially damped for large
v only, when B = K in (3.2.29). But in this case the function ¢ oscillates
an infinite number of times, when v — 0. So, the condition (ii) is not
satisfied. The wave function describes the transition between Lorentzian and
Euclidean regions. (If F < 0, we have an analogous transition for A > 0 and
the Euclidean region for A < 0.)

The functions

Us(z) = e Ky V=2Kq "), (3.2.32)

may be used for constructing the quantum wormhole solution. Like in [65]
we consider the superpositions of singular solutions

N +oo . )
5 2(z) = % / B on(2)e=*, (3.2.33)

00

where A € R and i is unit vector: (R)2 = 1 (# € §™1). The calculation
gives

¥, 4(z) = exp[—~ —2A e cosh(\ — ¢Z7)]. (3.2.34)
1

It is not difficult to verify that the formula (34) leads to solutions of the WDW
equation (3.2.26), satisfying the quantum wormholes boundary conditions.

These results can be easily generalized, when a massless scalar field mini-
mally coupled to gravity is included. In this case the action (3.2.7) is modified
by the substitution S +— 5 + S,, where

S= [ dPalgl -39 Bup. (3235)
Then, the minisupermetric (3.2.22) of the model is changed:
G~ G+ kdp ® do. (3.2.36)

If we define 2" = &y, then all formulas of this section are valid with the
substitution n— n 4 1.
Remark 2. We also note that the the functions

Vi = Hp(2%) Hpu (') exp[— @X%Lﬂ] (3.2.37)
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where
2 = (2/0)//*(~2A)"* exp(g2"2) cosh (3457,
2 = (2/q)1f2(—2A)1’“ exp(gz°/2) sinh( %qé’fi),

m = 0,1,..., are also the solutions of the WDW equation with the quan-
tum wormhole boundary conditions. Solutions of such type were previously

considered in [54,65,66]. (They are called discrete spectrum quantum worm-
holes.)

3.3 Model with a Perfect Fluid [70]

Now we consider another cosmological model with the metric (3.2.1) on the
manifold (3.2.2), but in this case metrics g are Einstein spaces of constant
curvature,

BrnmilgP1 =N ¢Vmin;  i=1,.,n; nX2 (3.3.1)

stress-energy tensor is taken in the form:

Ty = f T, | (3.3.2)

a=]
where
Ty = diag(=p (1), 5" ()85, .., (1) 8, (3.3.3)
a=1,..m and
VuTH @ =0 (3.3.4)

with o = 1,...,m — 1 (when m = 1 relation (3.3.4) is absent).

So, the material content of the model is a multicomponent perfect fluid
with a conserved stress-energy tensor of each component. We remark that
(3.3.4) is also valid when a = m. It follows from V,,T% = 0 due to multidi-
mensional Einstein Equations:

_1

By =3

MR = k'TH, (3.3.5)
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Equations of state for each component are taken as

pi(t) = [1 = A3 (x(£))]p°(2), (3.3.6)

with 1 8

@)y} = — gl

A0 =, 3x:'¢ (x), (3.3.7)

i =1,...,n, functions ¢*}(x) are smooth,
a=1l,..,m. (3.3.8)
Now, non null components of Ricci-tensor for metric (2.1) are the following;
Ro = - N~ %' +(x), (3.3.9)

i=1
Roini = 9.+ (B4 X Q_ Nix'— 1))ezp(2x* - 27)(3.3.10)
=1
t=1,..,n

Here we also use the harmonic time gauge with v = ‘rul"‘
Using (3.2.4) and (3.3.9-10) Einstein equations for metric (3.2.1) and
stress-tensor (3.2.6-T) are equivalent to the following system:

%G&j X‘J\fJ +V = 0, (3.3.11.a)
N+ Xexp(2x' — 270) =

&% exp 2x'. Z[psa) +(D-2)"(p' - Z: Nap{™)), (3.3.11.b)
a=l i=1

1=-1,..,n.

Here D =14 Y7, N; is the total dimension,

are components of a supermetric and

18 . , m
=-_= i AT, — ot ()
V= 22,\ N; exp(—2x" + 290) + & Zp“ ezp(2vo)

=1 a=1
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is the potential.
Relations (3.3.4) may be written in the form

PO+ MK (09 45 =0 (33.12)
=1
for a € {1,...,m} and due to (3.3.6)-(3.3.7) are easily integrated:
pE) = Agezp[-2Nix'(t) + 6 (x(2))], (3.3.13)

where A, = consi..
Using (3.3.13) it is easy to see that Eqs. (3.3.11b) are the Lagrange Eqgs.
corresponding to the Lagrangian

1 i g
L= 3Gy X X -v (3.3.14)
where the potential is of the form

P : .
V=Vi(x)=—5 2 XN expl-2x" + 270(x)] + x* Y Asezn(¢*)(x)).
=1 a=1
: (3.3.15)
Eq. (3.3.11a) plays the role of the constraint:
1 P§.d
E =Gy X X 4V =0 (3.3.16)

We see that as usual the energy is equal to zero. In quantum approach
the multidimensional Wheeler-DeWitt equation in the harmonic gauge is as
in [52}:

%(gua‘.aj +@PV)E =0, (3.3.17)
where '

and p? is a dimensional parameter.
For simplicity let us consider a particular case

=0, t=1,.,n m= l,hgl)(x) = h; = const.
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We introduce the following notations:
w = Nphi, o' =G"u;, (3.3.19)
W@ = Guu, = ): Ni(h:)* + —(Z Nih;)? (3.3.20)

=1 i=1

Let 2 < 0.

Remark 1. In isotropic case h; = h : u? = h”’ 2 < 0. When & = 0 we
have p; = p that is a stiff equation of state. For h = 1 we get p; = 0, ie.
dust; for 2 = 2 one obtains p; = —p - the case of the cosmological constant.

The minisuperspace metric G;;dz ®dz’ is diagonalized by the linear trans-
formation

2* =iz’ (3.3.21)

So,
nav{vi = Gy with 9** = diag(—1,1,. 1) (3.3.22)

It is easy to check that for 42 < 0 there exist a matrix (V;*) Satisfying (3.3.22)
which has the form

W = ui/vV—ul, . (3.3.23)
Then in z-variables the Wheeler-DeWitt Eq. transforms to '
[0, — 2Aezp(2g2°)}¥ =0, (3.3.24)
where s 8
= (xu)' Ay, 20 = V=i, O, =g =, (3.3.25)

We search the solution of (3.3.24) as
¥(z) = exp(ipz)¢(2°) (3.3.26)

Here p = (p1, ..., Pn)y Z = (2%,..,2"Y), pZ= Y1) pid'.
Substituting (3.3.26) into (3.3.24) we get

—(%)2 — 2424 ea:p(2qz°)] ¢ = 2¢¢ (3.3.27)
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where ¢ = E:'_ll P

Its solution is
$(z°) = B,(V=24¢"'e*""),

v=1i2/q=1il|p|/¢; B, = I, K, are modified Bessel functions.
General solution of the WDW-equation has the form

W= / 1 pCp(p)e™ By, (vV—2Ag " e™) (3.3.28)

B=K.I

As in the previous case of A-term we also may single out solutions of the
quantum wormholes type:

Uyn = exp [—" 22 ¥ ch() — qzh )] (3.3.29)

where 71 € g"1

Note: In a classical case the corresponding solution has the form (see also

[39)): "\
g= —(H(a.(f))’”*-*')dr @ dr + Za r)g(=

i=1 =1

where

-
with . .
= A/ |A|=VE], B =2u'/u?

and parameters o satisfy relations:

i“ﬁ'a‘ = 0,

i=1
Z Gyafed = —=. (3.3.30)
i,3=1 '

Now we change from the multidimensional cosmological solutions to multi-
dimensional spherically symmetric ones.
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4 Classical and Quantum Spherically-Sym-
metrical Solutions in Multidimensional Gra-

vitation

In previous chapters we studied mainly cosmological solutions of multidi-
mensional models. Their basic feature was the prediction of variations of the
effective gravitational constant with time. Only in very particular cases it is
possible to have G = const.

Here we give extentions of some spherically-symmetric solutions of GR
to the multidimensional case and see that extra dimensions lead to cardi-
nal physical effects — to deviations from the Newton and Coulomb.laws, to
variations of the effective gravitational constant with range [72,73].

Scalar and electromagnetic fields and also their interaction will be studied
within these models. We analyse the stability properties of obtained exact
solutions and show that only multidimensional BH solutions are stable.,

Quantum analogues of these solutions are also obtained, wormhole solu-
tions are singled out. So, we shall see that there are sevgral manifestations
of extra dimensions properties which in principle may be tested in our 4-
dimensional space-time.

-

4.1 Generalized Schwarzschild Solution in Multidi-

mensional Gravitation

Similar methods used in the previous section may be used also to obtain
exact solutions in a spherically symmetrical case when all the internal spaces
are Ricci-flat.

So, the problem is to find solutions for the metric of the form

g= — Wit Rdt+*dR@dR +
+ e2ﬁg(n)dn2 + Z: ezﬂi(“)g{‘.} (411)

=1

on the manifold

M=RxRBRx8 xMx-xM, (4.1.2)
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satisfying vacuum Einstein Eqs., where M; are Ricci-flat manifolds of dimen-
sion N; with metrics g», ¢ = 1,...,n, dQ? is a canonical metric on $2, u is
a radial-type variable connected with r by the relation r = ¢®(*), Denote
y=pB_1, Noi=1, No=2. Let a =ap = }.__; BN, (u is a harmonic
radial variable). Then Einstein Eqs. Byn = 0 will be (A’ = £ A):

Z[ —B, + agB, — (BYIN, =0,

y==1
ﬂ: = 0} i = _1,1$"' +
By = P00, | (4.1.3)

Solving (4.1.3) in variables = §y — ap we get:
B = Ag+ D, i=-1,1,---,n.

Bo = —fn f- (AT+D,)N,, (4.1.4)
v#D
a = —2n f-Y (AF+D)N,
v#ED ] .
where
sh ]
f=f@B)= _"%?3’ B>0 . (4.1.5)
T, B=0.
In (4.1. 4) @ = e(u + up),e = *1,up, Ai, D; are arbitrary constants, : =
—-1,1,-+-,n. B is defined by
2
= (E A,,N,,) +> NA: (4.1.6)
v#0 v#0
(Z means summation over ¥ : ¥ = ~1,1,---,n). If we redenote constants
»#E0

Cs"'—ez ’ at\/_— A-u i=11"'1n1
ce=eP-1, a/B=—-A_,, | (4.1.7)

L=2VB (— > D,Np)

v#0
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and introduce a new variable R:

3y/B
R = = Dopo PeNo { fe_%m B>0 (4.1.8)

1/3, B=0

then (4.1.1) and (4.1.4) will give more familiar form of a spherically symmet-
ric metric:

L a L —n—z:?-la.'N.‘
— - = _ =
T S
L 1—0—2?-15.';\".' n L aj
2n2
+dQ*R (1 - E) + ;C"g‘(,‘) (1 - E) s (4.1.9)

R > L, where constants L > 0,¢, ¢, -,¢, > 0 are arbitrary and a,a,,-* -, a,
obey the relation:

n 3 n

(a + Z a.-N,-) + a? + Z GEN.' =2, (4.1.10)
i=1 =1

solution (4.1.10) for n = 1 was considered earlier in [74,75}, When L = 0

solution (4.1.10) is trivial: 4-section is flat and g(;) are constant. For L > 0

and

-

a—l=ay=---=a,=0 (4.1.11)

this solution is a sum of Schwarzschild solution with gravitational radius L
and tensor field 3., cigs). If L > 0 then @ > 0 corresponds to attraction
and a < 0 describes repulsion.

Now let us study the problem of a horizon in this solution considering the
4-section of the metric. For L > 0 the horizon exists at R = L only when
(4.1.11) holds.

Really, for a light radial geodesic ds? = 0 we have:

R —o-k e ol
et —to) = / dz (1 - %) . (4.1.12)

R
Relation (4.1.10) is equivalent to the identity:

2 2
1 ¢ Lem , 1<
(a + -iza.-N.-) =1-29Y a?N; - Z'(Z a.-N.-) : (4.1.13)

=1 =l i=]
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If not all a; = 0(i = 1,---,n) then due to (4.1.13)

la+ %Z“‘N‘ <1, (4.1.14)
i=1

and so the integral (4.1.12) is convergent for R = L, i.e. radial light ray
reaches surface R = L at a finite time. If ¢; = -+ = a,, = 0 then due to
(4.1.10) @ = £1. When @ = 1,8y = -+ = a, metric g¢ coincides with the
Schwarzschild solution having a horizon at R = L. If a = —1,¢y = -+~ =
a, = 0 then integral (4.1.12) is also finite for R = L and so the horizon is
absent. So, R = L is a horizon only when scale factors of internal spaces are
constant and 4-section of the total metric coincides with the Schwarzschild
solution.

Solution (4.1.9) is easily generalized when a scalar field (minimaly cou-
pled) is taken into account.

Then the action of the model is

i R
S = Efd:c | g |% (-;i —-g* 6,,@3,9) . | (4.1.15)
which leads to equations of motion s
Run = & Ompdne (4.1.16)
Ap = 0, * (4117)

with A-Laplace operator for metric g.
Solution of Eq. (4.1.17} in u-coordinate is:

® = Qu+ D, (4.1.18)

where @ and D are constants. In r-coordinate we have

1 L
=5¢n (1 - 'E) +D, (4.1.19)

where ¢ is a constant scalar charge, metric ¢ is given by the same formula
(4.1.9) and instead of (4.1.10) we have the following relation between con-
stants a,a;,' "' a2,,9,K:

n 2 n
(a +y a;N.-) +a*+) alN;+x'¢ =2, (4.1.20)
i=1

i=1
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It is easy to prove that if the scalar field is present the horizon for R = L
exists only when
g=a1 = =a, =0, a=1 (4.1.21)

So, when a scalar field is present there is no BH solutions in multidimensional
gravitation.

One may get restrictions on constants, or properties of extra dimensions,
if we use the postnewtonian approximation and compare it with the known
data from experiments in the Solar system.

It is known that postnewtonian metric may be represented via PPN pa-
rameters as:

9o = 1-2U+428U%+0O(U?),
9oi = 0, (4.1.22)
gii = —8;(1+29U +0U?), i,j =1,2,3.
where 3 and « are taken from classical GR tests or Viking data analysis.
In order to compare our metric with (4.1.22) we make transformations to

isotropic coordinates in 4-section. Than the spacial part will'be conformally-

flat: R=r(1 4+ L/4r)2. R
dsl,y = A(r)dt? — B(r)(de* + r*d0?),

- r\ % _ £\ 3-20-2b
Alr) = G-—;E%) , B(r) = (1 + L/4r)* G—q_-%:‘:-;) (4.1.23)

b= Et—l a"
Expa.ndmg (4.1.23) into series over L/r at large r and comparing (4.1.22)
with (4.1.23) we get:

B=1 v=1+bfa, 2Gm = al. (4.1.24)
Using data of [13] on v we obtain:
bla=v—-1=(-0,74+1,7)-1073. (4.1.25)

It is seen that (4.1.23) is satisfed when a,,+- -, a, are rather small. For n = 1
we have:

aM =(=0,7+1,7)-10°3, a=m1- %alz\q. (4.1.26)
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Another generalization of the Schwarzschild solution may be obtained if one
introduces presures in internal dimensions (n = 1 for simplicity):

1
Ry — 56,{‘}}2 = —k*Tyy, (4.1.27)
Tﬁ = diag(p? 0,0,0,,—p,---— p)’
in the metric _
ds? = MM dy? — 2o dy? — 2PgO? — 253, (4.1.28)

As it was shown in [16] BH may exist in this case with changing internal

scale factors and nonull pressures. The horizon takes place for u — oo and
is characterized by:

B — const, p — const, e* ~ e €7 ~ e, (4.1.29)
and constants k,m and u, are connected by:
(=Gm + Np1/2)* + N(N + 2)pd/d = K. : (4.1.30)
m is a total mass. ‘
at infinity (u — 0): .
e’ ~1fu, e ~1/ul, um~mu, v~ —Gmu, u— 0. (4.1.31)

4.2 On Black Holes in Multidimensional Theory [76]

In a previous section the Schwarzschild solution was generalized for the case
of n internal Ricci-flat spaces [77]. It was shown that a horizon in the four-
dimensional section of the metric exists only when the internal space scale
factors are constant. Here we consider exact static, spherically symmetric
solutions of the Einstein equations in (2 + d + N; + --- + N,)-dimensional
gravity (d > 2) with a chain of n Ricci-flat internal spaces. We show that
as in the case d = 2 a horizon is absent in all nontrivial cases. Finally, we
consider a formal analog of the solution for the case of p-adic numbers [79].
We consider the Einstein equations

RBun=10 (4.2.1)
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on the D-dimensional manifold
M= Mo X Ml X oaes Mn, (4.2.2)

where "
dim M;=N;,, D=2+d+) Nj, i>0,
=1
M, is (2 + d)-dimensional space-time (d > 2) and M; are Ricci-flat manifolds
with the metrics gy, = 1, - - n. We seek solutions of (4.2.1) such that M, is
static, spherically symmetric (O{(d+ 1)-symmetric), while all the scale factors

exp (B:) of the internal spaces M; depend on the radial coordinate u, i.e., the
D-metric is

g= — ezp[2y(u)]dt® dt + exp[2a(u)ldu @ du

+ exp[28(u)]d +Zemp[2ﬂ;(u)19(.), (4.2.3)

=1

where dQ} = g(q) is the standard §¢ metric. :

If we denote v+ = B_y,N.; =1 and § = $y,Np = d ‘and choose the
harmonic radial coordinate u such that & = 3_7__, B;N; then the Einstein
equations {4.2.1) can be written in the form -

By, = Z(—ﬂ: +a'B; — BA)N: =0,
t=—1
Reo = exp(26-1—2a)B; =0,
R = gomld—1—B,exp(28, - 2a)] = 0.
Rmmi = —G)min; ﬂ;'czp(zﬂi - 2&), 1= 11 R 5 (424)

This set of equations is easily solved, so that the metric g(3) after and appro-
priate redefinition of the radial coordinate (u =» R = R(u)) may be written
in the following way,

g = —cfl —e(L/R)*)*dt @ dt

+ [1 _ 6(L/R)J—I](a+5+d—2)](1-d]dR ® dR
+ [1 — S(L/R d—l](¢+5—1)f(1—d)R2dng
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+ i all — e(L/RY* g,

=1

e = =1, (4.2.5)
where L > 0,R > 0and R > L for ¢ = +1; L,c # 0 and ¢; # 0 are constants,

b= i aiNi, (4.2.6)

i=1

and the constants a,a,,- -, a, satisfy the relation

(a+b)P*+(d-1) (a2 + Z afN.-) =d. (4.2.7) |
=1 ’
In the case d = 2 and ¢ = +1 this solution coincides with that of ref. [77].

Let us consider the (2 + d)-dimensional section of the metric (4.2.5). In
the case L = 0 the metric is flat, while for L > 0 and

a-1l=a=-=a,=0

(4.2.8)

it coincides with the Tangherlini solution [80].

Now let us prove that a horizon at R = L(L > 0) takes place only in the
case (4.2.8) for ¢ = +1. Indeed, for the light propagating along a radius from
a place with R = Ry towards the center the coordinate time interval is

e Y ™ et — (LR
t—tp= . dzfl — (L/R)*'}", (4.2.9)
R
where,
l1/a+b+d-2 -
Relation (4.2.7) is equivalent to the identity
d—1¢ b
2 _ 1 - 2. (d—
(a+b/d)’ =1- — Ea,N. S(d-1). (4.2.11)

Let us ¢ = +1. I some g;(f = 1,---,n) are nonzero, then by (4.2.11)
a+b+/d <1 and from (4.2.10) A > —1, hence, the integral ((4.2.9) converges
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at R = L. This means that a radial light beam reaches the surface B = L
in a finite time interval, i.e. it is not a horizon. When ¢, = 0,1 =1,:-- n,
then a = 1. For the Tangherlini case ¢ = +1 we have a horizon (A = —1),
and for @ = —1 (A = 1/(d — 1)) the horizon at R = L is absent. Evidently,
for € = —1 the horizon at R = L is absent too. This completes the proof.
At present there is more interest in considering the physical models with
p-adic numbers [79] instead of real ones. This interest was stimulated mainly
by the pioneering works on p-adic strings [81,82]. Recently a p-adic gener-
alization of the classical and quantum gravitational theory was defined [83]
and some solutions of the Einstein equations were considered [83,84]. In this
section we consider the p-adic analog of the solution (4.2.5}). Let us briefly
recall the definition of p-adic numbers [79,85]. Let p be a prime number.
Any rational number a # 0 can be represented in the form a = p*m/n,
where the integer numbers m and n are not divisible by p. Then the p-adic
norm is defined as follows: | @ |,= p~*. This norm is non-Archimedean:
| a + b |,< maz(| a |5,| b |p). The completion of @ with this norm is the
p-adic number field ¢},. Any nonzero p-adic number a € @), can be uniquely
represented as the series ‘
,

{

a=p*(ao+ap+ap’+:), (4.2.12)

whereag=1,---,p—1,and a; =0, ---,p—1forz > 0. .

The definitions of derivatives, manifold and tensor analysis in the p-adic
case are similar to those of the real case. The power p-adic function is defined
as follows,

{1+ z); = ezpp{aflog,(1 + z}]}, (4.2.13)

where | z |,< 1 and | & |p| z |p< &,. Here §, = 1 for p # 2 and & = 3. The
definition is correct, for the functions exp, and log, are well defined on the
discs {| z |,< &,} and {| z — 1 |,< 1} respectively [79].

Let us consider the p-adic manifold

Qp X Qp X 5% x My X -+ M, (4.2.14)
where (S%, g()) is a space of constant curvature
Rl =9i0950 — 9097

and (M;, g;)) are Ricci-flat manifolds.
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For R # 0 and
|%Ip"<min(1,llla-—lp), i=-2-1,n, (4.2.15)
ith
b “ _a+b+d-2 “ = a _a+b-1
2= IGO0 T RET g

the metric (4.2.5) on the manifold (4.2.14) is well defined. Then the Ein-
stein equations for the metric (4.2.5), (4.2.15) on the manifold (4.2.14) are
satisfied identically, when the parameters a, a4, --,a, € @, obey the restric-
tion{4.2.7).

This can be easily checked using the identity

[(1+2)%) = a(1 + 2)*/(1 + =),

| z Ipy | @ lp| 2 |p< 1 (the verification of (4.2.1) in the p-adic case is just the
same as in the real one).

In the d = 2 case this solution was considered earlier in ref. [84]. It was
pointed out that there is an infinite number or rational solutions of (4.2.7)
in this case. For example, we may consider the set {84]

a = 4k a;=0,t>1 .
1 - _Nl(Nl+2)k2+l’ t — Y

- 2 _ R
. = 2Nk £+ [K2N(N + 2) l]’ keZ

BN(NM+2)+1

In the p-adic case there exist pseudo-constant functions C' = C(R) such that
C'(R) = 0 but C(R) is not identically constant [85]. Such functions may be
used in generalization of well-known solutions of differential equations. In our
case there is also a possibility for the constants ¢,¢y,---,¢, and a,ay,---,a,
to be replaced by the pseudo-constants (of course, the restriction (4.2.15)
should be preserved).

There is another possibility to generalize the solution (4.2.5). We may
suppose that the components of the metric gpn belong to some extension
of Q,. It may be the quadratic extension of @, or even §,, which is the
completion of the algebraic closure of @, {79]. In this case the constants in
(4.2.5) may belong to the extension of @,.

The solution (4.2.5) can be also generalized on scalar-vacuum and electro-
vacuum cases. The last generalization for d = 2 is considered in the next
section.
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4.3 On Charged Black Hole in Multidimensional The-
ory [86]

Let us consider the action

S= / &2/=5 [%;R - iFMNFMN] , (4.3.1)

where Fayyn = OuAn — OnvAns is the strength of the electromagnetic field
A, R is a scalar curvature of the metric gprndz™ ® dz and k is gravitational
constant. The field equations, corresponding to Eq. (4.3.1), are

VMmFMY =0, (4.3.2)

Run —(1/2)gunR = B [FunFy — (1/9)gunFr FP9. (4.3.3)

Let us consider the D-dimensional manifold
M=M®xM x-- xM,, (4.3.4)

where Mé“ is 4-dimensional space-time manifold, M; are Ricci-flat manifolds
with the metrics g(;y and

-

dmM; =N;, D=4+)» N;, i=1,--,n.

=1

We are interested in static, spherically symmetric (O(3)-symmetric) solutions
of Egs. (4.3.2) and (4.3.3) on the manifold (4.3.4), and so we consider the
following ansatz for the metric

g= — P10t @ dt + Mgy @ dy
+ e*Pgn? 4 Z #ilg, (4.3.5)
=1
and for A,
Ag=p(u), Ai=0, :=1,2,3. (4.3.6)

In Eq. (4.3.5), dQ? is the standard metricon S, N_; =1,Np=2and uis a
radial variable.
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From Egs. (4.3.2), (4.3.5) and (4.3.6) we have
¢ = Qe (4.3.7)

where @ is a constant. Using Eqs. (4.3.5) and (4.3.7) we find that Eq. (4.3.3)
is equivalent to the following system of equations

B, = k’Q’D : 5€0 (4.3.8)
n D 3
D | =Bo+ B = (B | N, = —FQe - —, (4.3.9)
=-1
202 ,
1 — Ho-20g" k 6_22 ¢30o+26-1-a (4.3.10)
ﬁ k22QD 2.8-1! i=l;'°°an; (4.3.11)
where o= ) =~ _ . Solving Egs. (4.3.7)-(4.3.11), we obtain
hy ey B, Sol E 7 btai
9= — @)t @d+ ()P )TN Py @ dy
+ (fi(w))/CD) fy(u)e? Lima MilAintDi) g2 (4.3.12)
+ Y R ) herDig,,
=]
and

1 D=2 1/2 D-3 172
PT7hQ (C‘D—s) cth [(019_2) (6—w)| + o (4.313)

In Eq. (4.3.12)

1/2
fl(u) = C1/k2Q23h2 [(G;g g) (ﬂ - 1.11)] N
f1(s) = Cafsh*[/Calu ~ ua)),
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where D;,¢,,u;,u; and ¢ # 0 are arbitrary constants and the constants
Ci1,C3 and A; obey the following relation

n 2 I
20, =C1 + (E N.'A;) + EN,A? (4.3.14)

i=1
For N; — 0, D — 4 we have the well-known Reissner-Nordstrom solution

g= — (1-L/r+KQ*/2r)dt Q dt
+ (1—L/r+EQ*2r*Y Ydr ® dr + r*dQ?, (4.3.15)

@ = Q/r + Const. (4.3.16)

In our case (D > 4) the Coulomb law (4.3.16) is modified by the presence of
internal dimensions. The dependence of the potential ¢ on the radial variable

r, where .
2= fllf(S—D)(u)fz(u)e—z pIN Ni(Aiu+Di) g0)2 (4_3.1 7)

(see Eq. (4.3.12)), may be found by substitution of v = u(r) from Eq.
(4.3.13). ;

<

Note that the solution (4.3.12)-(4.3.13) may be generalized also on p-adic
and D =d+ 3., N; (0(d — 1)-symmetric} cases.

=1
)
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4.4 Scalar-Electrovacuum Multidimensional Solutions

Multidimensional gravity as an approach to field unification can be traced
back to the famous works of Kaluza and Klein [90,91). Today’s increased in-
terest to this field is largely stimulated by studies in superstring theories [92]
whose field-theoretical limit typically contains more than four dimensions; in
such theories gravity is described with reasonable accuracy by multidimen-
sional Einstein equations. Studies of their solutions can lead to predictions of
direct observational manifestations of extra dimensions. Thus, cosmological
models predict variations of the gravitational constant GG, so that observa-
tional constants imply certain limits on model parameters. Another possible
window to the multidimensional world is opened by analysis of local effects
which could be sensitive to spatial variations of extra-dimension parameters.
This section discusses some effects of this sort, in particular, those connected
with electric charges of isolated bodies.

We consider exact, static, spherically symmetric solutions of the Einstein-
Maxwell-scalar equations in (4 + N; 4 --- + N, )-dimensional gravity with
a chain of n Ricci-flat interal spaces [89]. Our approach differs from that
adopted in some papers on multidimensional black holes in that any solutions,
not only black-hole ones, are sought. Consequently, the plabe of black holes
(if any) in the whole set of solutions, as well as the properties of all spherical
configurations, become clearer. .

Basic equations. We consider the Einstein equations
RY, = —x2[TH — 65, T/{(D —2)] (4.4.1)
with the energy-momentum tensor (EMT) TH(M,N =1,---,D}; T = T¥)
in the D-dimensional manifold
n
M=M"xMx--xMy; dimM;=N; D=4+Y N, (442
=1

where M¥ is the ordinary space-time and M; are Ricci-flat manifolds with
the intervals dsf‘-), i =1, -.,n. We seek solutions of (4.4.1) such that M(®

is static, spherically symmetric, while all the scale factors e® of the internal
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spaces M; depend on the radial coordinates u, i.e., the D-metric is

dsf) = dsi - Z em‘(“)dsﬁ-);
=1

ds? = e di? — 22 dy? — 2P 402 (4.4.3)

where d2? = d6? + sin? 0dy? is the standard S? metric.
If we denote v = 8_1,N_y = 1,8 = By, Ny = 2 and choose the harmonic
radial coordinate u such that

= i ﬁ,‘N.‘ (444)

i=—1

the Ricci tensor components R}y can be written in the form

}ﬁ = —e'z"‘r”;
Bl = - ) NG + 675 Y Nibjk
i=-1 j==1 {
Rg = @ =2 c-!aﬂ"; " (4.4.5)
RY = O(N>3 p=0,---,3);
Rg; = _6;6:: e—?aﬂ;" -

where the indices a;(b;) refer to the internal subspace M;{M;).

The electromagnetic field Fary = Oms ANOn Apg with the Lagrangian L., =
—(1/4) FM¥N Frpen is assumed to be Coulomb-like: Ay = 83,Ao(u). Then the
D-dimensional Maxwell equations Ay FNM = ( give:

F% = q/\/3 = q¢™**, ¢ = const(charge) (4.4.6)

g = |detgpn| = ezp(2c + 2 Z N;f3;) = e*. (4.4.7)

=1
The corresponding EMT is

1
Totemy = — FYFFup+ Zﬁf,FPRFpR =

%qzez"'“zadiag(l, 1,-1,---,~1). (4.4.8)

i
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Its trace is proportional to (D — 4).

Besides, we admit existence of a minimally coupled scalar field ¢ (or
even a multiplet of such fields which would not make our task more difficult)
with the Lagrangian L, = ¢ V¥pix/2. The field equation VNV = 0 with
¢ = p(u) due to (4.4.4) gives

@ =0, ¢ =c=const (scalar charge). (4.4.9)
The scalar field EMT is

Tt = omp " — 56% pip = e diag(l,~1,1,-++,1a).  (4.4.10)

2°
The general solution. With (4.4.5), (4.4.8) and (4.4.10) some combinations
of the Einstein equations with the EMT TJf = TM(M) + TM( ;) are easily
solvable, namely

RO+ RTS8 — T/(D - 2)] = %[y — Q%*] = 0; (4.4.11)
B+ (D-3)RE =N +(D-3)F]=0, i=1,"n (4412
B+ =eP —f - ¥)=0, (4.4.13)

Gl+#T = —e e - E NG+

t——l

D-2

Nﬂ) ~C+ Q%™ =0 (4.4.14)
where

C = xe/V2; Q= xq(D-3)"?}(D - 2)"/? (4.4.15)

and GY; = —Ré6};/2 + R} is the Einstein tensor; in (4.4.12) there is no
summation over a;. Equations (4.4.11)-(4.4.13) form a set of (n+2) equations
for (n -+ 2) variables 8., = 4,60 = 8,51, -, Bn while (4.4.14) is their first
integral leading to a relation among the emerging integration constants. We
obtain:

(44.11) — 7" =Qs(h,u+u1); h,u; = const; (4.4.16)
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(44.12) — Bi=-—4/(D—-3)+hu+1;; kil =const; (4.4.17)

(4.4.13) — € = s(k,u+uy); k,uz = const; (4.4.18)
(4.4.14) — Ksignk = D-2 h sign h +
2D —
+C? + (B’ + E N; h’) (4.4.19)
=1
where N
B =) N (4.4.20)
=1

and we have introduced the function

a~'sinh ax for a>0; :
s(a,z}=¢ for a=0; (4.4.21)

-1

alsin az  for a<O.

The constants u; and 1; are inessential; one can make them equal zero shifting
the origin of the coordinate u and rescaling the coordinates in the subspace
M;. The resulting form of the D-metric is ’

dsh = evdtt — 109 0 [ ool
b s3(k,u) | s3(%, u)

— e~ M/(D-3) Z: et dsly; (4.4.22)
=1
e T = Qs(h, u+ ul)-

Combined with (4.4.6) and (4.4.9), (4.4.22) completely describes the static,
spherically symmetric, multidimensional scalar-electrovacuum configuration.
The solution contains (r + 3) essential integration constants: the charges ¢

and ¢ (or their “geometrized” versions @ and C), the extra-dimension factors
h; and the mass m which can be related to k and Q-

Gm? = M? = Q* 4+ h? sign h. (4.4.23)

where G is Newton’s gravitational constant. The constant k is determined
by (4.4.19) while u; is found from the requirement that the time ¢ should be
the proper time for an observer at rest at spatial infinity u = 0:

e~ = Qs(h,u) = 1. (4.4.24)
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The factors ¢?* = 1 at u = 0, so that the real physical scale of the extra
dimensions is hidden in ds
Special cases. Let us pomt out some spacial cases of our solution.

a) To “switch of” the scalar field and get a purely electrovacuum solution
it is sufficient just to remove the term C? in the constraint (4.4.19) for
the constants.

b) If, instead of ¢, we “switch off” the electric field, i.e., put Q — 0, we
obtain:

e =Q s(h,u+tw)—e™ (h>0) (4.4.25)

leading to the generallzed Schwarzschild solution described in {77). To restore
its specific form given in [77] one should re-denote

ho—-A_;; h/(D-3)+hi— A (i=1,---,n). (4.4.26)

As in [77], after the further substitution
1 9% L
u=-—zr —In (1 - TR—) . Ay =—ka, A;j=—ka (=1 ,n) (44.27)

the metric is brought to the following convenient form:

ds?, = (1 —2k/R)*dt? — (1 - 2k/R)"’"’[dR2 + {1 — 2k/R)R*dY?)

- 2(1 — 2k/R)%dsly; b= Z Nia;. (4.4.28)
=1 i=1
New constants @, a;,- - ,6y and C satisfy the relation
(@a+b*+a’+) Nal +2C%/k* =2 (4.4.29)
=1

If k = 0, then the 4-dimensional section of M, M@ (described by the first
line in (4.4.28)) is flat while for k > 0 and

g—~l=a=--=a,=0 (4.4.30)

it coincides with the Schwarzschild solution.
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c) In the general solution with @ # 0 one cannot “freeze” the extra dimen-
sions, i.e., make B;(u} = const(i = 1, -+, n) by a choice of integration
constants. Hence the Reissner-Nordstrém (RN) solution and its scalar
generalization [93,94] are obtained from (4.4.22) only when all the ex-
tra dimensions are eliminated (n = 0, D = 4). To get the familiar form
of the RN solution corresponding to

k=h, hisign h = M? — Q2 (4.4.31)
one should just transform (4.4.22) to the curvature coordinates putting
r=|Q | s(h,u+wu)/s(h,u). (4.4.32)

Properties of the Solution. Charged black holes. Qur solution is
defined in the region from u = 0 to either u = 0o (if A > 0), or % = Upyr =
x/ | B | ~uy (if A < 0). The value u = 0 corresponds to spatial infinity or
the physical space-time where the metric ds2, is asymptotically flat since

"= 1; €’ = oo; |ﬁ‘|eﬁ-'“—>l '

(4.4.33)

1

(the latter condition provides the proper radius-circumference relation for
remote coordinate circles). -

In the case h < 0 the value u = t,,,, corresponds to a central repulsive
singularity of RN type (e — 0, ¢” — o0), with an infinite electromagnetic
field and a finite scalar field. The extra dimensions are also singular, unless
h; are chosen specially to avoid this,

For h > 0 the limiting value of u,u = o0, corresponds to an attractive
apparent singularity (€” - 0) which can occur either at the centre (if €® — 0),
or at a certain sphere {if ¢/ — r* < 00}, or in a “cavity” beyond a neck (if
e’ = 0o at u — o), depending on the values of the integration constants.
Indeed, near u = oo, e’ behaves like

exp{[h/(D — 3) — k — Blu} (4.4.34)

and can tend to any nonnegative value including infinity since B = 3 N;h;
can have any value and either sign.

Let us find out whether the apparent singularity at 4 = oo can be an
event horizon for the physical metric ds?. Recall that event horizons are
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invisible for external static observers, hence we seek such configurations that
the integral

= / e* Vdu (4.4.35)
expressing a light signal travel time, diverges at u = oo.

It is helpful to pass from k; to A; by (4.4.26), so that the relation (4.4.19)
among the constants takes the form

2% =20+ (B-hP? + 8+ ) NA}, B=) N, (4.4.36)
=1 =
or, equivalently,
/972 v 2R/ - 2 .
(h-B/2) =K ~-C*'-FB /4-(1/2) > N:AL (4.4.37)
=1

On the other hand, when u — oo,

e*™7 ~ exp[2u(h — B2 - k)], ,"-‘ (4.4.38)
so that the integral (4.4.36) diverges if A — B/2 > k. By (4.4.38) this is
possible only if -

C=Ai=B=0=h;=—h{(D-3); k=h. (4.4.39)

Thus the scalar field is excluded while the extra dimensions do not become
trivial.

By (4.4.40) the condition that e has a finite limit at u = co (see (4.4.35))
is fulfilled antomatically.

With (4.4.40) and (4.4.23), using again the substitution (4.4.27) for u,
one obtains the following expression for our metric (4.4.22):

2__(1-%):::1&2_( M-k\™{arz _, . &
“herEme TR ) [T R L

(4.4.40)
This expression generalizes the RN black-hole metric to space-times with
an arbitrary set of additional Ricci-flat spaces.
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In case @ = 0, {4.4.41) turns into the Schwarzschild metric with trivial
extra dimensional since M = k. This confirms the conclusion [77] that
Schwarzschild black holes have no nontrivial multidimensional generalization
(within our choice of ds?,).

For D = 4 (4.4.41) is just the RN metric; it is brought to the usual
curvature coordinates by a mere shift R =r — M + k.

The extra-dimension scale factor in (4.4.41) is nonsingular and smoothley

grows from 1 at R = oo to (1 + 4= M £)/(0=3) 44 the horizon R = 2k.
Concluding Remarks

It is of interest that the 2-parameter family of black holes was selected
from the (n + 3)-parameter family of solutions (4.4.6), (4.4.19), (4.4.22) by
the single requirement that the boundary u = oo should be invisible. The
other essential features of the resulting metric, namely, that the beundary
is a sphere of finite radius and that the extra dimensions are nontrivial but
nonsingular, are obtained automatically.

The black-hole solution (4.4.41) is a very special case of (4.4.22) (2 versus
(n + 3) parameters); the same is valid for black holes obtained under other
assumptions. Thus, very strong arguments should be drawn in order to show
that real collapsing bodies can form black holes if a mult:thmensmna.l theory
of gravity holds.

Among the observable local effects of extra dimensions there are stan-
dard post-Newtonian relativistic effects whose values can differ from those in
general relativity.

Charged multidimensional solutions lead in general to the modification

of the Coulomb law. Really,

E =|E |= (F'Fo)"* = Lal q I ( E N; ﬂ,) (4.4.41)
i=1
which for large r may be written as
L[, _1(b=ty ¥ '
E=— 1 2 b M+§Nh +0 rz | (4.4.42)

For the BH case:
E= M 1~ S22 M 4 T Q) +0-(-};) - (4a3)
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So, we see that deviations from the Coulomb law depend on the number of
dimensions, total mass and charge of the system and also on the range.

4.5 Multidimensional Model with Interaction of Scalar
and Electromagnetic Fields. Stability of Solu-
tions [95]

Now we pass to a more complicated system of interacting fields which arise in
a field limit of superstring theories. We consider D-dimensional space-time
Vb with a chain of Ricci-flat spaces M;(i = 1,--+,n).

The Lagrangian of the system is:

L=RP 4 MVonpn — eX°FMN B (4.5.1)

and metric .
dsp =g, dz*dz” + ) _ e*¢)ds], (4.5.2)

=1
N
where ) is a coupling constant and §,, is a 4-metric Lagrangian (4.5.1) may
be transformed to 4-dimensional form from D-dimensional metric gapn to
4-dimensional metric g,,. Then scale factors a;(z) become scalar fields in
V4. But it is more convenient to use conformal transformations

G = ezg“"a Z = Z:Niai(x)a (4'5'3)

after which in the anzatz:
¢ = @), Fu = Fu(z); Fyyn =0 npu M,N >3

Lagrangian (4.5.1) is becoming as

~ 1_.
L= R"% ¢ EZ Yo + Z Neag o™ + @@, — el +2°’”F°ﬁFag, (4.5.4)
k

where R corresponds to metric g,,. Metric g,, will be represented in a
standard spherically symmetric form:

ds = g, dx*dz’ = e¥'dt? — e¥*du® — e dQ?. (4.5.5)
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We point out that static solutions is better to seek in a D-dimensional metric
with Lagrangian (4.5.1). Metric (4.5.4) is more adapted to stability studies.
Field Eqs. corresponding to Lagrangian (4.5.4) are:

200, + 0 ) +eltMFIE =, (4.5.6)
Oy + cel tlavpelFg =0, (4.5.7)
Vo (2120 Fof) =, (4.5.8)

b 1 1 ¥ ¥ L ] L
G" + -2-3,,(2) + ) NiSi(aw) + Si(@) + eL*UEL =0,  (45.9)
k
where G, is 4-dimensional Einstein tensor,
. ' 1 1's 4]
Sule) = vhpu— 3 WP Pas
E, = —2F"F,, + 8F*FF /2.
Here we also suppose that ¢ = p(u), A, = 6} Ag(u), Du =0 and
a(u) = 28(u) + y(u). (4.5.10)

We remark that u is also harmonic in D-dimensional metric’®? Ou = Q due to
(4.5.3), (4.5.4) but not in the metric g,,. Solution of (4.5.8) with coordinate
condition (4.5.10) gives

FO = g ezp(~2a — E —2ap),q = const, (4.5.11)
and (4.5.9) leads to
Gi+Gi=F"+4 - =0,
k~lshku (k> 0),

e = s(k,u) = { u (k=0), (4.5.12)
k~lsinku (k> 0),

where k = const. From (4.5.6), (4.5.7) and (4.5.9) one gets:

1
o; = hiu— m(w + /\Cﬂ), (4513)
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0= %—" — 2AN,w, (4.5.14)
2y = 2N (w + ACu) + Bu, (4.5.15)
with function w(u) defined by
e = Qs(h,u+ u3); h,uy = const; Qs(h,u;) =1 (4.5.16)

and h, k; and C are constants of integration; other constants are defined by:

N=D-3=1+4)Y N; B=) Nk, (4.5.17)

A+1+4 XN +1)/N, @ = ¢*/N,, N, = (N +1)/(2AN).
The final form of D-dimensional metric is:
eIN=2Bu [ 7,2

2 _ W2
dsp = et — G |

+ dﬂz] — e~ TN E eMuds?, (4.5.18)

where

¥ = (w+ ACu)/A. ; (4.5.19)

;.
Constants of integration are related due to (})-component of (4.5.9) by the
following equality:

2 -
2k2signk = 2N, hlsignh + % + B+ 3 Nl (4.5.20)

This general static spherically-symmetric solution has (n + 3) essential in-
tegration constants: scalar charge C, electric charge ¢ (or @), “charges” of
extra dimensions h; and mass m which is defined by the expansion ©v — 0
(r — o0) and is connected with C,Q,k:

AGm + AC = (Q* + h?signh)"?, (4.5.21)

Coordinate u is defined in the region [0,00) if A 2> 0,1; > 0 or up to Uy > 0
in other cases. Scale factors e* =1 foru = 0.
Here are some properties of the solution:

a) when A = 0 we obtain the solution for linear scalar and electromagnetic
fields, discussed in a previous section,



-81 - CBPF-NF-051/93

b) scalar field is “switched of” when A = C = (;

c) elimination of an electromagnetic field is done for Q = 0. Then we get
the generalized Schwarzschild solution after transformation

1 2k -h+2C a
u= —ﬁln (1 — E) g =ke; hi=k (—ai + j_V-) »  (4.5.22)

d) when extra dimensions are absent we obtain the solution [96]

e) in a general case there is no any choice of integration constants when
extra dimensions are frozen out, i.e. a; = const for @ (or ¢)# 0. The
behaviour of metric coefficients for u — oo is: '

- ~h+ AC _ =h4AC —h 4+ AC
,3~[T—B—k U, J~ " u, o [ N +h,]u,
(4.5.23)

so they may be finite or infinite. Calculations show that the solution has a
naked singularity at ¥ = U,z Or ¥ = 00 in all cases Except:

hi = —k[N; h=k; C=—Xe(N +1)/N, . (4.5.24)

when the sphere u = oo is a horizon and the integral [ ezp(a — v)du for the
light travel time is divergent. Then,, only two independent integration
constants remain: m and @; r = ¢® and e* are finite. Using (4.5.22)
we get more familiar form of the solution:

(1 — 2k/R)ds? dR? - \

p = AGm—k)=+/Q*+k —F. (4.5.25

dsp = — (1 + p/R)*4V

It is a generalized Reissner-Nordstrom solution and is reduced to it when
D=4)=0.
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We point out that (4.5.25) is a special case of general metric (4.5.8) (2 pa-
rameters instead of (n+3)). So, there must be strong arguments that within
the frames of multidimensional theory real collapse may lead to formation of
BH. And such situation really arrises when we investigate stability of static
solutions.

Here we shall again demonstrate one of the specific for multidimensional
systems potentially observable effect-violation of the Coulomb law. Due to
(4.5.11) E = (F® F14)'/? and for our solution:

E=(q]/r")exp(-)_—2)p), (4.5.26)

So, it is seen that the deviations from the Coulomb law are due to extra
dimensions and also because of a scalar-electromagnetic interaction.
For the BH case (r — o0) we have:

E- 'le {1 -1 [(G —k)—-1-+2,\=(G +k)w +o( )}
(4.5.27)
Stability Problem. Let us investigate small perturbatlom from static con-
figurations: K

Sp(u,t), dai(u,t), 8g,.(u,t), 6F.(u,t), (4.5.28)

which preserve spherical symmetry, i.e. monopole ones. “Then dynamical
degrees of freedom are restricted by the scalar field and scale factors o; which
in 4-dimensional representation behave as effective scalar fields. We take for
simplicity only one internal space:

N=D-4=N-1>0 Ny=Ng=---=0. (4.5.29)
Perturbed metric functions 7 (u,2) and & (u,t) are taken in the form;
:; (u,t) = y(u) + §v(u,t); a (v,t) = a(u) + ba(u, ), (4.5.30)

Similar relations are written for @ (u,t),a& (u,t) =& (u,2) and F,, (u,t).
Perturbed Maxwell field is defined by :io (1,1).
Integrating (4.5.8) we get

uaﬂ ~

F Fag= —2gte¥¥-AN-1ik 14 (4.5.31)
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where ¢ and r are not perturbed (we analyse only dynamical perturbations
but not changes of constants). From (4.5.6) and (4.5.7) we obtain Eqgs. for
éu and b¢:

22w
dgn "o ' ' " — 5.
rép—bp —p(by —6a)+2u b NT1¥ (4.5.32)
8¢ — 8¢ — @ (64 — 6a) + 2(,0”_601 =2)g’e*w,  (4.5.33)
w = 2XM¢ + (N — 1)éy, (4.5.34)

where u', 4", and " are static functions. &4’ and Sa are defined from
(4.5.9). (g)-component of Einstein Eqs. is easily integrated over #:

2

28 6a = N - lp’a,u + ¢ 8¢ + F(u), (4.5.35)

and difference of ( g) and (:) componenis gives:

28'(8’ + 84"y = (N? = )p'dp + 20’60 (4.5.36)
Taking éa and &y’ from (4.5.35), (4.5.36) and putting them into (4.5.32),
(4.5.33) we get coupled wave Eqgs. for 6u and §yp: '

r

2 _ L !2
65 — b + > ! (Wr,‘“ ) Su+ (’-"-“:,—) bp = 2g%e™w,  (4.5.37)

N -1 fru ' ro'u 2q%e?
40 " J— = — . O,
riop — by + 2 (H)J +( )6«,0 T (4.5.38)

Our static system is unstable if there exist growing at ¢ — oo physically
allowed solutions of Eqs. {4.5.37), (4.5.38). We define solutions as physically
allowed if

Sp—0, dp—o0 if u—0 (4.5.39)

at space infinity r — oo and

| éu/pl< o0, |bpfp|< oo (4.5.40)

at singularities and horizons. We also eliminate energy fluxes from outside
but it only limits constants of integration.

We study the stability of solution when system (4.5.37)-(4.5.38) reduces
to wave Eqs. with one unknown function:
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1. dilaton field is absent: A =0, = §p = 0,
2. extra dimensions are absent: y =y =0,N =1,

3. some combinations of (4.537)-(4.5.38) lead to equation with one un-
known function.

One may show that case 3) is realized for

1 2

#=K¢ K=
that is the case of a BH solution. Let us consider each of these variants.

1. Separating variables in (4.5.38) and transforming s and u to normal
Liouville form according to:

Su = e®y(z)fr, z = —/rz(u)du, (4.5.42)

we get Schrodinger-type Eq. ,

i

Yoz + [~ V(z)ly =0 (4.5.43)

with effective potential

V(z) = L (r’) + -1 (ﬁ) + g—c;'-)-zﬁez“" (4.5.44)

r3 \ r2 r? r ri

Our static system is unstable if there exist physically allowed solutions
of (4.5.43) with O? < 0 (negative energy levels in Schrodinger Eq.). It is
shown in [95] that asymptotic form of the potential V(z) for « — tmas

18
N+1)(3N +1)
42N + 1)iz2

i.e. have negative values. So, the system is unstable and this instability
is of a catastrophic character as | 2 | is not limited from above.

V(z) = !

(L+ o(1)). (4.5.45)
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2. The same result is obtained also for N = 1, 4 = fu = 0 [95): also
catastrophic instability. Let us now consider perturbations of multi-
dimensional BH described by the system (4.5.37), (4.5.38) under the
condition (4.5.24). Introducing linear combinations of perturbations of
w in (4.5.24) and

v= AN +1)bu - ép, (4.5.46)
it is seen that (4.5.37)-(4.5.38) leads to two independent wave Egs.
s —v" =0, O -+ H(z)u=0, (4.5.47)
N+1 [ru?\  2¢%
— (N — 2
H(z)=[N—-1+2X (N+1)][ 3 ( " ) + il (4.5.48)

Now we pass to normal form similar to (4.5.42):
v = Miy(z)/r; w=eM(z)/r, = —/rz(u)du. (4.5.49)

For y(z) and z(z) Schrodinger-type Egs. are obtained:

1

Yoz + [ — Vi(@)]ly = 0; zop + [ — Va(2)]2 = 0. (4.5.50)

with effective potentials .
i= Lz " V. =W 1 H 4.5.51
1=3\a) Ve = 1+r_4 (z). (4.5.51)

They may be written in explicit form via R (4.5.22):

Vi= ﬁi%{pmﬁ(fz-zk) +(R+pN.)l(2k +pN.)R -+ 2kpN_]},
(R — 2k) p* (2R +p+ pN_)(2k +(4}3'5)2 )
R(R- , p+pN_ pN_
H(..":)Nm pN_+2kp+AN (R+pN_)? ( )s
4553

where nonessential constant coefficient is ommited. A, p, N, are defined
in (4.5.17), {4.5.25) and N_ = 1 + N, so that

r = R(1+ p/R)™ = RN-(R+ p)™. (4.5.54)
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1t follows from (4.5.52) and (4.5.53) that ¥4 > 0 and V; > 0 when R > 2k.
Boundary conditions (4.5.39)-(4.5.40) are fulfilled so positivness of V) and V,
means that solutions of (4.5.50) with 2 < 0 and 02 < 0 are absent. So, mul-
tidimensional BH s are stable against monopole perturbations. Other types
of multidimensional spherically symmetric solutions are strongly unstable.
This means that a lot of BHs may be present at the Early Universe if it is
described by some multidimensional model.
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