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I. INTRODUCTION

The planar QED (QED3) has shown to be an appropriate theoretical framework for discussing issues of

contemporary physics, particularly in connection with Condensed Matter Physics. In the latest years, the

raising interest in applications of this theory to high-Tc superconductivity and quantum Hall effect [2] has

motivated an enormous production of works in this subject. The relation between QED3 and supercon-

ductivity, phenomenon discovered in 1986 [1], can be traced back to 1987, when Anderson [3] suggested

that in some copper oxide superconductors (based on La2CuO4) the hypothesized resonant-valence-bond

state or quantum-spin-liquid state of Mott (a kind of insulator) could migrate to a superconducting state

through a doping process. Soon after, in 1988, Laughlin [4] argued that the excitations of the Anderson

resonating-valence-bond model behaved like fractional quantum Hall states (anyons), presenting conse-

quently a fractional or anyonic statistics. Despite the initial success of this model, several difficulties

with this idea arose. The main problem concerns the necessity of a massless scalar mode in the spectrum

which occurs only when the bare Chern-Simons term cancels with the term generated by one-loop radia-

tive corrections. This cancellation occurs exactly at zero temperature, but does not take place at finite

temperature. In this way, one can assert that the anyonic model behaves like a superconductor only at

zero temperature [5].

At the same time that the anyonic model was developed, a new approach based upon the QED3

theoretical framework [6] began to be adopted to explain the formation of electron-electron bound states,

provided that the high-Tc superconductors had quasi-planar structure. In the domain of QED3, there

arises the necessity of providing the gauge field with a mass in order to circumvent the appearance of a

confining potential associated to the long-range Coulomb interaction. The Maxwell-Chern-Simons model

is then adopted so as to generate (topological) mass for the photon, leading to a finite range interaction,

to which a binding potential is associated instead of a confining one. In the framework of a Maxwell-

Chern-Simons theory, numerical evaluation of electron-electron bound states were first addressed to in

Ref. [8], but the assumptions and results of the latter induced some controversy [9,10]. Other authors [11],

working in this same context, have also obtained bound states, corresponding to the situation where the

magnetic-dipole interaction between the electrons is large enough to overcome the Coulombian repulsion.

In this case, however, the attractive interaction only appears when the topological mass of the gauge

field is larger than the electron mass (κ > m). This condition prevents the application of this model

to Condensed Matter systems, where one must have κ � m due to the order of magnitude (∼ meV) of

the usual relevant excitations. An attempt to bypass this difficulty consists in considering a Maxwell-

Chern-Simons model minimally coupled to fermions and bosons with spontaneous breaking of a local

U(1)-symmetry as a generating mechanism for the photon mass [12], whose results show the possibility

of obtaining bound states whenever the attractive Higgs interaction dominates over the gauge boson

interchange. This issue is now under investigation [13], which would be suitable to apply such a model

to the cases where there is an evidence of a parity-breaking superconductivity quasi-planar phenomenon

[14]. Very recently, has been proposed in Ref. [15], an anisotropic U(1) × U(1) QED3 model coupled to

both the “Berry” and “Doppler” gauge fields, by arguing that the pseudogap regime in cuprates could

be modeled as a phase disordered d-wave superconductor.

In the present work we consider a parity-preserving QED3 model with spontaneous breaking of the lo-
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cal U(1)-symmetry accomplished by a sixth-power potential [17]. Our aim here is to carry out numerical

calculations in searching for electron-electron bound states, in such a theoretical framework. The break-

ing mechanism of U(1)-symmetry gives rise to a Higgs-type boson and a massive photon avoiding the

appearance of a confining logarithmic potential (characteristic of massless interactions in three space-time

dimensions). Hence, the Higgs mechanism has the relevant role of contributing to the electron-electron

binding while yielding a non-confining potential.

Thereafter, the consideration of the Møller scattering mediated by both the vector and scalar bosons

results in the establishment of an attractive electron-electron potential, independent of the spin polariza-

tion state. The potential stemming from the Møller scattering corresponds to a modified Bessel function

of zeroth order, −CsK0(Mr), that besides being non-confining, assures the semi-boundedness of the sys-

tem (the so-called weak Kato condition). Once we have proven that the K0-type potential satisfies the

necessary conditions to allow the existence of bound states, a numerical calculation of the ground state

energy of the Schrödinger equation is carried out. Incidentally, by virtue of the radial symmetry of the

potential, we are bound to only consider the s-wave solutions. An application of these numerical calcula-

tions to high-Tc superconductivity is then implemented by fitting some phenomenological data available

for the following cuprate superconducting materials: YBa2Cu3O7, Tl2Ba2CaCu2O10, Bi2Sr2CaCu2O8

and HgBa2Ca2Cu3O8. Our procedure reveals to be successful in the sense that it is always possible to

fit the energy gap energy and the correlation length of the samples through the indication of a specific

scalar vacuum expectation value (v.e.v.).

The outline of this paper is the following. In Section II, we present the model. Next, in Section

III, we address the relevant Schrödinger equation taking into account the properties of the condensate

wave-function. Some aspects of the trial function are discussed so that it turns to be suitable to the

variational method. In Section IV, we digress on some aspects of copper oxide superconductors, as the

order parameter, the pairing mechanism and the effective coupling constant. Section V is devoted to the

identification of free pure theoretical parameters with phenomenological ones, and finally, in Section VI,

we perform a numerical calculation of the energy gap and correlation length for four cuprate high-Tc

superconducting samples.

II. BRIEF SURVEY ON THE PARITY-PRESERVING QED3

The action for the parity-preserving QED3
∗∗ with spontaneous symmetry breaking of a local U(1)-

symmetry is given by [16–18]:

SQED =
∫

d3x

{
−1

4
FµνFµν + iψ+ /Dψ+ + iψ− /Dψ− −me(ψ+ψ+ − ψ−ψ−) − y(ψ+ψ+ − ψ−ψ−)ϕ∗ϕ+

+ Dµϕ∗Dµϕ− V (ϕ∗ϕ)
}

, (1)

with the potential V (ϕ∗ϕ) taken as

∗∗The metric is given by ηµν = (+,−,−); µ,ν=(0,1,2) and the γ-matrices are taken as γµ = (σx, iσy,−iσz).
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V (ϕ∗ϕ) = µ2ϕ∗ϕ +
ζ

2
(ϕ∗ϕ)2 +

λ

3
(ϕ∗ϕ)3 , (2)

where the mass dimensions of the parameters µ, ζ, λ and y are respectively 1, 1, 0 and 0. The sixth-power

potential, V (ϕ∗ϕ), is the responsible for breaking the electromagnetic U(1)-symmetry.

The covariant derivatives are defined as follows:

/Dψ± ≡ (∂ + ie /A)ψ± and Dµϕ ≡ (∂µ + ieAµ)ϕ , (3)

where e is a coupling constant with dimension of (mass)
1
2 . In the action (1), Fµν is the usual field strength

for Aµ, ψ+ and ψ− are two kinds of fermions (the ± subscripts refer to their spin sign [16,17,20]) and ϕ

is a complex scalar. The U(1)-symmetry gauged by Aµ is interpreted as the electromagnetic one, so that

Aµ is meant to describe the photon.

The action given by Eq.(1) is invariant under the discrete symmetry, P , whose action is fixed below:

xµ
P−→ xP

µ = (x0,−x1, x2),

ψ±
P−→ ψP

± = −iγ1ψ∓ , ψ±
P−→ ψ

P

± = iψ∓γ
1 ,

Aµ
P−→ AP

µ = (A0,−A1, A2) ,

ϕ
P−→ ϕP = ϕ . (4)

Analyzing the potential (2), and imposing that it is bounded from below and yields only stable vacua

(metastability is ruled out), the following conditions on the parameters µ, ζ, λ must be set:

λ > 0 , ζ < 0 and µ2 ≤ 3
16

ζ2

λ
. (5)

We denote 〈ϕ〉 = v and the v.e.v. for the ϕ∗ϕ-product, v2, is chosen as

〈ϕ∗ϕ〉 = v2 = − ζ

2λ
+

[(
ζ

2λ

)2

− µ2

λ

] 1
2

, (6)

the condition for minimum being read as

µ2 + ζv2 + λv4 = 0 . (7)

The complex scalar, ϕ, is parametrized by

ϕ = v + H + iθ , (8)

where θ is the would-be Goldstone boson and H is the Higgs scalar, both with vanishing v.e.v.’s.

By replacing the parametrization (8) for the complex scalar, ϕ, into the action (1), the following free

action comes out:

Sfree
QED =

∫
d3x

{
−1

4
FµνFµν +

1
2
M2

AA
µAµ + ψ+(i∂ − meff)ψ+ + ψ−(i∂ + meff)ψ− +

+ ∂µH∂µH −M2
HH2 + ∂µθ∂µθ + 2veAµ∂µθ

}
, (9)

where the parameters M2
A, meff and M2

H are given by
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M2
A = 2v2e2 , meff = me + yv2 and M2

H = 2v2(ζ + 2λv2) . (10)

The conditions (5) and (7) imply the following lower-bound (see Eq.(10)) for the Higgs mass:

M2
H ≥ 3

4
ζ2

λ
. (11)

Therefore, a massless Higgs is out of the model we consider here, it would be present in the spectrum if

µ2 > 3ζ2/16λ. However, in such a situation, the minima realizing the spontaneous symmetry breaking

would not be absolute ones, corresponding therefore to metastable ground states, that we avoid here.

One-particle states would decay with a short decay-rate if compared to an absolute minimum ground

state.

In order to preserve the manifest renormalizability of the model, the ’t Hooft gauge [21] is adopted:

Ŝgf
Rξ

=
∫

d3x

{
− 1

2ξ

(
∂µAµ −√

2ξMAθ
)2

}
, (12)

where ξ is a dimensionless gauge parameter.

By replacing the parametrization (8) into the action (1), and adding up the ’t Hooft gauge (12), it can

be directly found the following complete parity-preserving action:

SSSB
QED =

∫
d3x

{
−1

4
FµνFµν +

1
2
M2

AA
µAµ + ψ+(i∂ − meff)ψ+ + ψ−(i∂ + meff)ψ− +

+ ∂µH∂µH −M2
HH2 + ∂µθ∂µθ −M2

θ θ
2 − 1

2ξ
(∂µAµ)2 +

− eψ+ /Aψ+ − eψ− /Aψ− − y(ψ+ψ+ − ψ−ψ−)(2vH + H2 + θ2) +

+ e2AµAµ(2vH + H2 + θ2) + 2eAµ(H∂µθ − θ∂µH) +

− c3H
3 − c4H

4 − c5H
5 − c6H

6 − c7θ
4 − c8θ

6 − c9Hθ2 − c10H
2θ2 +

− c11H
3θ2 − c12H

4θ2 − c13Hθ4 − c14H
2θ4

}
, (13)

where the constants M2
θ , c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13 and c14 are defined by

M2
θ = ξM2

A , c3 = 2v(ζ +
10
3
λv2) , c4 =

ζ

2
+ 5λv2 , c5 = 2λv ,

c6 =
λ

3
, c7 =

ζ

2
+ λv2 , c8 =

λ

3
, c9 = 2v(ζ + 2λv2) ,

c10 = ζ + 6λv2 , c11 = 4λv , c12 = λ , c13 = 2λv and c14 = λ . (14)

Working in the ’t Hooft gauge, one evaluates, in the non-relativistic limit, the Møller scattering po-

tential mediated by the Higgs quasi-particle and the photon in the center-of-mass frame. In the Born

approximation the potential is nothing but the Fourier transform of the total Møller scattering amplitude,

yielding, therefore, to the following the electron-electron scattering potential:

V (r) = − 1
2π

[
2y2v2K0(MHr) − e2K0(MAr)

]
. (15)

However, the potential thus obtained is attractive provided the attraction caused by the Higgs quasi-

particle mediation overcomes the repulsion resulted from the photon mediation. In fact, as one shall

present later, the quantity, Cs = 2y2v2 − e2, varies from 3, 01 to 7, 22meV for the copper oxides super-

conductors analyzed here.



CBPF-NF-049/01 5

III. THE COMPOSITE WAVE-FUNCTION AND THE SCHRÖDINGER EQUATION

Before studying the Schrödinger equation, it is instructive to analyze the behavior of the total wave-

function (Ψ) of a two-electron system in light of the Pauli exclusion principle. By exchanging both

fermions, one knows that Ψ must be antisymmetric with respect to a permutation between them

Ψ(ρ1, s1,ρ2, s2) = −Ψ(ρ2, s2,ρ1, s1). (16)

Assuming that no significant spin-orbit interaction takes place, this function can be written in terms

of the following three independent functions:

Ψ(ρ1, s1,ρ2, s2) = ψ(R)ϕ(r1, r2)χ (s1, s2) , (17)

which represent, respectively, the center-of-mass wave function, the relative one, and the spin wave

function (R and s being the center of mass and spin coordinates respectively, while r1 and r2 are the

electrons coordinates relative to R).

Each of these functions contain information on the mechanism underlying superconductivity. Flux

quantization results from the boundary conditions on ψ, and from this it can be deduced that the charge

carriers are pairs of particles [19]. The other two functions tell us about other features of the condensates.

For instance, the radial component of ϕ has information on the spatial extent of the pairs, and the rest

of the factors determine whether they are in an s, p or d state, or even whether the system is in a singlet

or triplet spin-state.

For the spin singlet (S = 0), the spin-function, χ, is antisymmetric, while for the spin triplet (S = 1)

it is symmetric. Consequently, the space-function ϕ(r) associated with a spin triplet must be even, and

the one associated with a spin singlet must be odd:

ΨS=1 = ϕodd(r1, r2)χS=1
even(s1, s2) ,

ΨS=0 = ϕeven(r1, r2)χS=0
odd (s1, s2) . (18)

Thus, by only considering the Pauli exclusion principle, one concludes that the total wave-function

will be composed by an even angular momentum state (s-wave, d-wave) and a s-spin state, or by an odd

angular momentum state (p-wave, f -wave) and a p-spin state.

Consider now the planar Schrödinger equation for the relative wave-function, ϕ(r), representing an

electron-electron system, with relative radial coordinate r:

∂2ϕ(r)
∂r2

+
1
r

∂ϕ(r)
∂r

− l2

r2
ϕ(r) + 2µeff [E − v(r)]ϕ(r) = 0 , (19)

where V (r) represents the interaction potential between the two electrons, Eq.(15), and µeff the effective

reduced mass of the system

µeff =
1
2
(me + yv2) . (20)

By means of the following transformation:

ϕ(r) =
1√
r
g(r) , (21)
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one has

∂2g(r)
∂r2

− l2 − 1
4

r2
g(r) + 2µeff [E − V (r)]g(r) = 0 . (22)

Looking at this equation, it is easy to identify the effective potential for the electron-electron system as:

Veff(r) =
l2 − 1

4

2µeffr2
− CsK0(MHr) , Cs =

1
2π

(2y2v2 − e2) , (23)

where, for the sake of simplicity, we considered equal masses for the scalar and vector excitations in order

to check the possibility of bound states in the model. However, we should stress that the assumption of

equal masses might lead to conflicts with phenomenological data. Later, as we shall discuss, this will not

be the case; in any case, it is a sensible attitude to reassess our results by taking MH = MA.

A. The choice of the trial function

The variational method is used for the approximate determination of the ground state energy level,

and consists in determining the wave-function ϕ(r) that provides the largest (absolute) binding energy

value. This method is applied mainly in situations where the wave function for the system is unknown,

depending on the choice of a trial function. The closer the trial function is to the true solution of the

system, the better the energy value numerically obtained will be. The definition of a trial function must

observe some conditions, such as the asymptotic behavior at infinity, the analysis of its free version and

its behavior at the origin. For a zero angular momentum (l = 0) state, Eq.(22) becomes{
∂2

∂r2
+

1
4r2

+ 2µeff [E + CsK0(MHr)]
}
g(r) = 0 . (24)

The free version, V (r) = 0, of the last equation is given merely by[
∂2

∂r2
+

1
4r2

+ k2

]
u(r) = 0 , (25)

whose solution is

u(r) = B1

√
rJ0(kr) + B2

√
rY0(kr) , (26)

where B1 and B2 are arbitrary constants and k =
√

2µeffE. In the limit r → 0, Eq.(26) goes simply as

u(r) −→ √
r + λ

√
r ln(r) . (27)

Since the second term in Eq.(25) behaves like an attractive potential, −1/4r2, this implies the possibility

of obtaining a bound state (E < 0) even for V (r) = 0 [22,23]. This is not physically acceptable, leading to

a restriction on the needed self-adjoint extension of the differential operator −d2/dr2−1/4r2. Among the

infinite number of self-adjoint extensions of this symmetric operator, the only physical choice corresponds

to the Friedrichs extension (B2 = 0), which behaves like
√
r at the origin. The choice of the Friedrich

extension thus circumvents the non-physical possibility of a bound state solution for a free potential

equation, and for this reason, it is the only acceptable one. For the complete equation, V (r) = 0, one

must start from this particular extension of the free Hamiltonian and then add a potential. This does not
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alter the self-adjointness, provided the potential is “weak” in the sense of Kato. The reason is that as the

system is in the eminence of a bound state, adding any attractive potential to the Friedrich extension,

no matter independently how weak it could be, provides at least one bound state [23]. The potential to

be considered, must therefore preserve the self-adjointness of the differential operator, according with the

following Kato condition: ∫ ∞

0

r(1 + | ln(r)|)|V (r)|dr < ∞ . (28)

Provided the interaction potential, V (r) = −CsK0(MHr), satisfies the Kato condition, the self-

adjointness of the total Hamiltonian is assured. The Kato condition is also decisive to establish a finite

number of bound states (discrete spectrum) and the semi-boundness of the complete Hamiltonian. In

conclusion, the physical asymptotic solution of Eq.(24) is given only by
√
r. In this way the behavior of

the trial function at the origin is completely determined.

On the other hand, at infinity, the trial function must vanish asymptotically in order to fulfill square

integrability. Therefore, a good and suitable trial function choice (for zero angular momentum) can then

be given by

ϕ(r) =
√
r exp(−βr) , (29)

where β is a free parameter whose variation approximately determines an energy minimum.

An analogous procedure can be undertaken to determine the behavior of a trial function when the

angular momentum is different from zero (l = 0). In this case, and in the limit r → 0, Eq.(22) reduces to

[
∂2

∂r2
− l2 − 1

4

r2
+ k2

]
u(r) = 0 , (30)

whose general solution reads

u(r) = B1r
(l+1/2) + B2r

(−l+1/2) . (31)

For l > 0, the choice r(l+1/2) assures a trial function well-behaved at the origin. Since the Schrödinger

equation depends only on l2, any of the choices, l > 0 or l < 0, is enough for providing the energy values

of the physical states and one gets

ϕ(r) = r1/2+l exp(−βr) , (32)

where β again is a spanning parameter to be numerically fixed in order to maximize the binding energy.

Though this last result is mathematically correct, we should point out that the discussion regarding

non-zero angular momentum states here is merely for the sake of completeness. The true wave-function

in this case should actually stem from the complete differential equation, for which one should include

the angular components which remain precluded in this approach. We shall further comment about this

question at the end of Section IV.
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IV. DIGRESSION ON THE HIGH-TC ORDER PARAMETER, PAIRING MECHANISM AND

EFFECTIVE COUPLING CONSTANT

Experimental results have revealed that high-Tc superconductivity, as well as the BCS theory, are

related to the existence of electron-electron bound states. Indeed, there are strong evidences that the

charge carriers are pairs of electrons, for instance in the experiments of quantization of magnetic flux

by Gough et al. [24] and the observation of voltage steps (Shapiro steps) in the current-voltage curves

inside Josephson junctions by Niemeyer et al. [24]. These facts, among others, indicate that the order

parameter of a reliable theory for high-Tc superconductivity must consist of a wave-function representing

an electron pair. Now, there arise two fundamental questions: i) the determination of the type of wave-

function-pairing (s-wave, as in the case of the usual BCS superconductors; p-wave, as it is observed in

the superfluid state of 3He; or d-wave, as in the case of the heavy-fermion superconductors); ii) the

investigation of the physical mechanism underlying the electron-electron attraction, and its contribution

to the effective coupling constant.

Regarding to the first question, i), we should emphasize that the type of order parameter constitutes

a key question for the understanding of high-Tc superconductivity. In the latest 80’s, consensus about

the s-wave pairing was nearly established due to some pioneer experiments, e.g. Josephson tunneling

in YBaCuO samples, the temperature dependence of the penetration depth, λ(T ), and observation of

persistent supercurrents in rings [25]. The early Josephson experiments [26] were based on the conviction

that the Josephson tunneling was not feasible between paired electrons in two different angular momentum

states, unless dissipation occurred in the junction. Experiments with Y123 linked to Pb or Sn point

contacts (ordinary BCS superconductors) reported no dissipation, so that Y123 was declared to be in

s-pairing state. Despite the observations of λ(T ) indicating an s-wave order parameter for some planar

superconductors [27], experimental verification of a linear behavior for λ(T ) was afterwards obtained by

Hardy et al. [29], and theoretically predicted by Annet et al. [28]. Making use of the ARPES (angle

resolved photoemission spectroscopy) technique, Shen et al. [30] reported on the observation of points of

very small gap energy along the diagonal direction (|Kx| = |Ky|) for the BSCCO and YBCO samples,

consistent with a d-wave-function pattern. Other experiments sensitive to phase changes of the order

parameter, composed by DC SQUIDs [31], reiterated the dx2−y2-wave-function model.

Nowadays, the status of the situation moved to a position midway between the two opposing results

above discussed. Recently, a modern interpretation of a peculiar Josephson tunneling experiment [32],

that measures the tunneling current along the c-axis, has shed light on a new reality concerning the

structure of the order parameter. As a matter of fact, the outcomes obtained by Kouznetsov et al. [32]

in 1997 showed up compatibility only with a mixed wave, composed by a d plus an s-wave component,

as first noticed by Sun et al. [32]. Indeed, several very recent publications [33] have claimed on a s-wave

pattern with admixture of d-wave, coming across as a new area of investigation. According to some of

these studies, it is verified that the dx2−y2 order parameter is dominant just for the higher temperatures

while at lower ones the order parameter becomes more and more s-like, showing up a mixed symmetry.

Actually, the above discussion concerns mainly the order parameter of the usual high-Tc compounds

(hole-doped ones). In the case of the electron-doped cuprates, there are strong experimental evidences

[34] supporting the conventional s-wave order parameter and suggesting a BCS-like behavior.



CBPF-NF-049/01 9

Now, regarding to the second question, ii), in the usual superconductors, the isotope effect (Tc ∼
M−α, α = 0, 5) was decisive for the establishment of the BCS-theory, which successfully proposed the

lattice vibrations (phonons) to explain the electron-electron attraction and a symmetric s-wave-function

representing the electron-pair. Beyond the scope of the conventional superconductors, the manifestation

of the isotope effect is a rather complex phenomenon dependent on other factors besides the lattice

vibrations, as the presence of magnetic impurities. In this regard, the deviations from the BCS reference

value (α ∼ 0, 5) observed in many materials, including the high-Tc oxides, cannot be used unequivocally

to rule out the phononic mechanisms from the set of the likely excitations that contribute effectively to the

pairing [35]. Indeed, there exists the general assumption that the isotope effect and the phonon interaction

should be ubiquitous in the cuprates, but not as the only mechanism yielding the pair condensation, which

leads to the certainty that other mechanisms must coexist with the phonon one in order to assure the

high values of the coupling constant and the large critical temperatures measured. The nature of these

mechanisms has been an issue of intensive research, and despite the exhaustive efforts undertaken in this

area, no consensus has yet been reached. Among the variety of approaches to this issue, one can mention

some exotic attempts (non-phonon ones) [36] pointing to a non-symmetric solution, as the plasmon-wave

excitations [37], the magnon interchange model [38], the spin fluctuation interchange model [39], the

excitonic pairing model [40], the polarons and bipolarons mechanisms [41].

The fact that the ubiquitous electron-phonon interaction is disguised among other non-phonon mech-

anisms, creates an identification problem for the corresponding coupling constants. In Condensed Mat-

ter terminology, the electron-phonon coupling constant λep reflects the effect of collective vibrations

(phonons) of the whole lattice on each charge carrier. Besides the phononic interaction, one considers the

existence of other mechanism, but up to now nobody knows to determine to which extent the electron-

phonon contribution (and the non-phonon ones) participates in the effective electron-electron interaction.

The quantification of the contributions of each interaction mechanism to the effective attraction (through

the stipulation of values for the coupling constants) is a question that could be answered only if all the

mechanisms were well-understood. While the answer is not clear, the option is to work with effective

interactions and coupling constants. In this sense, the coupling constant of interest must be an effective

one, able to account for the contributions of several similar interactions that, in the case of the present

field-theoretic model, will have a scalar character.

According to the phenomenological picture above described, one should accept the evidences pointing to

a mixed order parameter composed both by s- and d-waves in the case of hole-doped cuprates and probably

pure s in the case of electron-doped materials. The present work will deal with the s-component in view

of the microscopic field-theoretic scenario we set up. Our model relies on a mechanism of one-particle

exchange (photon and Higgs quasi-particle) in the non-relativistic limit, to account for the attractive

electron-electron potential. Should we relax the Born approximation and add up loop corrections to the

tree-level amplitudes considered here, an anisotropic potential would come out, so that it could account

also for the d-wave contribution as a result of 1-loop effects (this will be analyzed in a separate paper

[42]). In any case, the present radial (isotropic) potential is entirely suitable for addressing pure s-wave

type systems, as it is the case for the electron-doped high-Tc superconductors.
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V. INTERPLAY BETWEEN HIGH-TC PHENOMENOLOGY AND PLANAR QED

The evidence of a quasi-planar structure in high-Tc superconductivity is a suitable reason for adopting

a planar QED model as a theoretical starting point. However, there arises the necessity of establishing

a relationship between the parameters of the model and the experimental data for cuprate high-Tc

superconductors. In the present parity-preserving action, there are some free parameters that could be

identified with phenomenological observables which are of crucial importance to describe these materials.

In Eq. (1), the electron-Higgs coupling, y, is an effective constant that embodies all possible mechanisms

of interaction between electrons via Higgs-type excitations. As a result of the scalar character of this

mediation, one encloses a large diversity of spinless bosonic interaction mechanisms; namely, the phonons,

the plasmons [37], and other collective excitations. This theoretical similarity suggests an identification

of the field theory parameter with an effective electron-scalar coupling (instead of an electron-phonon

one): y → λes. It is expected that the values of λes must be larger than the values of λep, in view of the

effective character of this new coupling constant, that comprises other interactions besides the phononic

case. It must be said that the magnetic models based on antiferromagnetic spin-fluctuations (magnons,

spin-polarons, excitons, etc.) support just a d-wave order parameter and suppose an intermediation by

1-spin gauge particles which, if indeed real, obviously does not contribute to λes.

Another well-known and well-measured high-Tc superconducting parameter is related to the magnetic

field penetration depth orthogonally to the Cu-O planes, λc. The observation of an orthogonal parameter

in a quasi-planar system is an indicative inheritance of a third lost (spatial) dimension. Specifically, in

QED3, the electromagnetic coupling constant squared, e2, has dimension of mass, rather than the dimen-

sionless character of the usual four-dimensional QED4 coupling constant. This fact might be understood

as a memory (or reminiscence) of the third dimension that appears (into the coupling constant) when

one tries to work with a theory intrinsically defined in three space-time dimensions. This dimensional

peculiarity could be better implemented through the definition of a new coupling constant in three space-

time dimensions [6,7]: e → e3 = e/
√
l, where l represents a distance orthogonal to the planar dimension.

This parameter shall be identified with the c-axis magnetic penetration depth (λc), whose values will be

taken from the phenomenological data set available for the high-Tc cuprate superconductors analyzed

here. In this way, one writes, e3 = e/
√
λc, where from now on the electromagnetic coupling constant, e,

is the actual electron charge. The phenomenological identification of these two parameters will make the

planar Schrödinger equation entirely known and, consequently, will allow the application of a numerical

method (such as the variational one) for computing its energy bound states.
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VI. NUMERICAL EVALUATION

In this Section, examples of quasi-planar copper oxide superconductors are displayed, each one asso-

ciated to a corresponding energy gap, (2∆(0)), c-axis magnetic penetration depth (λc), electron-scalar

coupling (λes) and the corresponding scalar vacuum expectation value squared (v2) that provides the

gap energy; β is for the value of the parameter that minimizes the energy and Cs the coefficient of the

electron-electron scattering potential given by Eq.(15). The numerical procedure is linear; namely, the

choice of input data (v2, λc, λes) determines the coefficient Cs = 1/2π(2λ2
esv

2 − e2/λc) and the Higgs

quasi-particle mass MH =
√

2ve/
√
λc which is the argument of the Bessel function K0. All this allows

the Schrödinger equation (22) to become totally known. Thereafter, the application of the variational

method allows one to find a value of β which provides, up to an uncertainty of ±0, 5meV, the expected

gap energy. The quantity ξab represents the average size of the wave-function associated to the computed

bound state, which might be tantamount to the planar correlation length of the cuprate materials. As a

matter of fact, it can be taken as a suitable measure of the correlation length.

It was already explained that the constant λes constant comprises not only the phonon contribution, but

all the scalar ones. There arises the issue of how one may estimates the value of this constant. Regarding

λep, one knows that the experimental techniques brings to light a great variation of values from a sample

to another, and even for the same sample. For example, in YBa2Cu3O7 samples, the measurements of

λep vary from 0, 2 to 2, 5 [43], such an indefinite picture occurs also for other superconductors. In the

case of λes, larger values are expected due to its effective nature, so that in the following Tables I-IV this

constant will be spanned from 0, 5 to 4, 0. The Tables I-IV contain data for the zero angular momentum

(l = 0) and singlet-spin state, in order to account for the s-wave pairing structure of superconductors,

where the input data have been collected from the works of Ref. [44] for the following high-Tc cuprate

superconductors: YBa2Cu3O7, Tl2Ba2CaCu2O10, Bi2Sr2CaCu2O8 and HgBa2Ca2Cu3O8.

v2(meV) λc(Å) λes Cs(meV) β Egap ± 0, 5(meV) ξab(Å)

71,33 1800 0,5 4,40 33,52 29,9 29,43

16,65 1800 1,0 4,03 32,07 30,1 30,76

7,10 1800 1,5 3,82 31,21 30,0 31,61

3,90 1800 2,0 3,69 30,71 30,1 32,13

2,44 1800 2,5 3,58 30,23 30,0 32,64

1,67 1800 3,0 3,51 29,97 30,0 32,92

1,22 1800 3,5 3,48 29,84 30,3 33,06

0,92 1800 4,0 3,41 29,52 30,2 33,42

TABLE I. Input (from Hasegawa et al. and Gallagher et al. [44]) and output data for YBa2Cu3O7 (Tc = 87K

and 2∆(0) = 30, 0meV).
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v2(meV) λc(Å) λes Cs(meV) β Egap ± 0, 5(meV) ξab(Å)

54,00 4800 0,5 3,82 31,23 28,1 31.59

12,50 4800 1,0 3,50 29,94 28,1 32,95

5,30 4800 1,5 3,31 29,12 28,0 33,88

3,10 4800 2,0 3,29 29,03 28,1 33,99

1,92 4800 2,5 3,17 28,42 27,7 34,72

1,32 4800 3,0 3,13 28,28 28,0 34,89

0,95 4800 3,5 3,05 27,92 27,7 35.34

0,72 4800 4,0 3,01 27,73 27.8 35,58

TABLE II. Input (from Hasegawa et al. and Thompson et al. [44]) and output data for Tl2Ba2CaCu2O10

(Tc = 105K and 2∆(0) = 28, 0meV).

v2(meV) λc(Å) λes Cs(meV) β Egap ± 0, 5(meV) ξab(Å)

96,5 5000 0,5 7,22 43,02 53,4 22,93

22,2 5000 1,0 6,61 41,11 53,4 23,99

9,42 5000 1,5 6,29 40,11 53,4 24,59

5,14 5000 2,0 6,09 39,41 53,4 25,04

3,21 5000 2,5 5,93 38,95 53,3 25,33

2,19 5000 3,0 5,82 38,59 53,4 25,57

1,59 5000 3,5 5,72 38,22 53,4 25,81

1,20 5000 4,0 5,65 38,06 53,5 25,92

TABLE III. Input (from Maeda [44]) and output data for Bi2Sr2CaCu2O8 (Tc = 109K and 2∆(0) = 53, 4meV).

v2(meV) λc(Å) λes Cs(meV) β Egap ± 0, 5(meV) ξab(Å)

92,00 3500 0,5 6,67 41,28 48,0 23,90

21,20 3500 1,0 6,09 39,48 48,1 24,99

9,00 3500 1,5 5,79 38,49 48,0 25,63

4,90 3500 2,0 5,58 37,78 47,9 26,12

3,07 3500 2,5 5,45 37,31 48,0 26,44

2,10 3500 3,0 5,36 37,03 48,2 26,64

1,51 3500 3,5 5,25 36,61 47,9 26,95

1,15 3500 4,0 5,19 36,41 48,1 27,09

TABLE IV. Input (from Schilling et al. [44]) and output data for HgBa2Ca2Cu3O8 (Tc = 131K and

2∆(0) = 48, 0meV).
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VII. FINAL REMARKS

Starting off from a parity-preserving planar QED model [16–18], this paper sets out to mainly evaluate

the energy of the ground state of electron-pairs that interact via photon and Higgs quasi-particle exchange.

The numerical results, obtained throughout a variational method, succeeded in fitting some well-known

parameters, such as energy gap, for the high-Tc copper oxide superconductors analyzed here, namely,

YBa2Cu3O7, Tl2Ba2CaCu2O10, Bi2Sr2CaCu2O8 and HgBa2Ca2Cu3O8. One has therefore a theoretical

model which, supplemented by some experimental data on high-Tc superconductors, may reveal itself

suitable for treating quasi-planar superconductivity. An important outcome is that the phenomenological

data fix the scale for the breaking of the U(1)-symmetry in the superconductors: v2 ∼ 1-10meV, in much

the same way as ∼ 102GeV is the scale for the breaking of the electroweak symmetry in the Standard

Model. In the described picture, the Higgs mechanism plays an essential role in providing mass for the

photons and to ensure a net attractive electron-electron scattering potential through the exchange of

photons and Higgs quasi-particles.

The potential resulting from the Møller scattering in the non-relativistic limit, −CsK0(MHr), provides

just a symmetric wave-function solution to the order parameter. The search for an anisotropic wave-

function (p-wave or d-wave) must pass through the attainment of a potential dependent on the angle

variable, in such a way that it may account for the angular variations observed in these non-symmetric

states. We will hopefully arrive at the angular dependence by including loop corrections into the scattering

potential [42].
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