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Abstract

Superfield formulation of S. Weinberg's tadpole method to
compute effective potential in supersymmetric theories is illus
trated by considering the general renormalizable action involving
only chiral scalar superfields. Unconstrained superfield poten-
tials are introduced to simplify the "effective" superfield prop

agator which is derived in a compact form.
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SUPERFIEILD TADPOLE METHOD FOR SUSY EFFECTIVE POTENTIAL

Prem P. Srivastava
CBPF, Rio de Janeiro

The methods of Coleman and Weinberg(l), S. Weinberg

(3)

(2)

and

Jackiw are usually employed for effective potential computa-

tion in conventional field theory. They may also be used for SUSY

(4)

theories written in component form. However, the ngﬁfiehd(s)

formulation has now been developed(G) sufficiently and it is more
efficient to exploit the supersymmetry and work with -supergraphs
especially for a manageable calculations in higher loops. The

tadpole method first noticed by Weinberg(z)

(7)

requires simply the
evaluation of one-point functions of the "shifted theory" to
the desired number of loops. It gives directly the first partial
derivatives of the effective potential needed to discuss the svpon
taneous -symmetry breaking or imposing renormalization constraints.

We present here a superfield formulation of the tadpole
method for the general supersymmetric renormalizable action in-
volving only chiral scalar superfields. It can be extended to
theories with gauge superfields. However, the usual complication
of non-diagonal propagators is present even for SUSY theo
ries, The superfield formulation allows us further simplifica-
tions. We may introduce unconstrained "agerfhﬂd.po&xmialyF“” for
chiral superfields. The corresponding effective superpropagators
can be put in a compact form (Eq. (6)) which results in a sim- -
pler computation.

(9)

The action involving n chiral scalar superfields is
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where W(®)=A, 0. + ;mi.j¢i®j+§gijk®i®j®k is the superpotential. The
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shifted theory is obtained by ®i+®i+ci(e), ®i+®i+ci(€) where

Ci=ai+fi62, Ei=31+?i§2 are constant chiral superfields with van

ishing spinor components. The free action determing the effec-

tive superpropagators of the shifted theory is found to be
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where S,Sf are superfield potentials(s) defined by ®i=-l D’s.,
4
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A is given by

and an external source term is added. The operator
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where C(8)=M+f 62, C(0)=M+F 02 are given in terms of matrices M

3
2
and f defined by Mi.=3ﬂ‘—) and £, = (—2¥ ) £,529; 5, - Taking
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into account of

P. 0 P, 0

2 A=A . 1 A =0 (4)
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and Euler-Lagrange equations we conclude that the superpropaga-

tors may be defined by++

5 In gauge theories the real scalar superfield is likewise shifted by a con

stant real superfield with vanishing vector and spinor components.

tf

The causal boundry conditions are understood. An analogous discussion may
also be made for photon propagator.



.{-
ASS ASS P2 0
. 8 ,
= - 5
A oty ot i § (z-2") (5)
A A 0 Pl
SS SS+
The identities P1D2=D2P2=D2 etc. permit us to assume A”", A
.I..
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to be antichiral while AS , A chiral superfields with re-

spect to the supercoordinate z. It follows then from Eg. (5)
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with analogous expressions for other elementét A compact form
expliciting the pole structure is easily derived
sst . —100.98 -10'0.00" ,mope =2 4
=ie e OV IAB2%08'2 + B+CH? +EB'?] S (x-x")
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where (Bzf+ik£)

A = 4 [k2eFM] Lo (k24 MM-F (k2mM) LEy 7T
k2B = M(k2+MF) LEcC
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only the last term in Eq. (7) survives for fi=0 giving(s) es-

sentially the simplified chiral superfield propagators found by
(6)

Grisaru, Rocek and Siegel making use of the generating func

We note that the method of Ref.9 is not applicable in the present case.
Eq. (6), of course, agrees with the special case treated in Ref. 6.



tional represented by a functional integral over constrained su
perfields & with chiral external sources.

The interaction part of the shifted theory is

6 : 8 -
Jd s[AiQi-rmijCi®j + gljkClCJQk] + Jd z Ci®i
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In the zero loop approximation the one-point function (tadpole)

is obtained to be

ro(l) - sze{x +m; C5(0) +g; 4, CiCy + sz'SEi(@)}éi(O,e,@) +h.c.
(10)

where a tilde denotes Fourier transform and <1~>i(0,6 ,0)= [ii(()) +/20 LT)i(O):+ 62§‘i(0)]..

We obtain on evaluating the integral

(1) F
% = (fi+ 8a) F, (0)-+MljfjAl(0) + h.c. (11)
i

The tadpole contributions of component fields may be read off

as the coefficients of ﬁi(O), Ai(O) etc. Hence we obtain(z)(7)
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plus their complex conjugate equations. Here Vo(a,f;é,f) is the
zero loop effective potential with spinor components set to zero
and a+A, f+F is understood. Integration of partial . differential

equations in Eg. (12) gives the tree level result
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2 on using the auxiliary field equations

which reduces to V0=[Fi[

of motion, avo/afi=o. Eq. (12) implies that if det M#0 supersym
metry is not broken at the tree level.

The computation of one loop effective potential reguires the
evaluation of one tadpole supergraph, say, for ¥. We may read it

from Eq. (9)

: tot
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where (gﬂ)ij=g£ij' The explicit expression in Eq. (7) makes the

f-integration very simple and we obtain
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plus their complex conjugates and where trEJ g Tr. For super
(2m) -

symmetric minima (tree level) they vanish. We may integrate Eq.

(15) using the nice properties of "Trfn" operation to obtain

tr fn[I-(k2+0M)" T F(k2+Mi) T £] (16)
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which agrees with the result obtained by other methods(lo). For
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Wess—-Zumino model Eg. (15) and (16) take simple ﬁmms(ll). Having

at hand the explicit form of effective superpropagators Egs. (6)
and (7) higher loop calculationsT may be done in the same straight
forward manner. We remark also that the extension of the wusual
theory of effective action in terms of classical superfields is
easily made. However, the procedure adopted in our context 1is

more transparent.

Appendix: Collected here are some relations used often in de-

riving Egs. (7) and (15)

1 1

=(I-AB) A ; A_l(I—AB)— 1

1

1
4

A(I-BA) =A "+ B(I-AB)

. ® n-1
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1 n
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(T+M) to] (-1 M
Q

Tr #n (I +AB) = Tr £n (I + BA)

3Tr fn(I + AB) = Tr[(3A) (I +BA) ™" B+ (3B) (I +AB) T A]
D?(8-9")? 64(x—x') = -4 eiec°a(§_§w) §% (x-x")

52 o~180-98 4y yry i a620 8% (x-x")
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DZ(0-07)7 6% (x-x') = —4 e T(8-0")0.38 o4 )

D2 100-90 sh o vy - _4B208% (x-x")

DPZGS(Z—Z') . o~1160.30+6'0.37" -290.35']64(X_x.)

Calculations for Wess-Zumino model in 2-loops and in gauge theories will
be reported elsewhere.
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