O PROBLEMA DO BATE-ESTACA VIA PONTO FIXO

MAURICIO VIEIRA KRITZ

- 1. IBGE Av. Beira-Mar 436 - 139 andar
- Laboratorio de Calculo/CBPF Av. Wenceslau Braz, 71-fundos Rio de Janeiro, RJ, Brasil

ABSTRACT

In this paper we study the existence of solutions of a variational inequality modelling the dynamics of a pile penetrating into the ground through the action of a pile hammer, via fixed point and subdifferential arguments. This line of reasoning reduces the variational inequality to a nonlinear evolution equation involving a monotone operator.

1. INTRODUÇÃO

Num trabalho recente [2], M.A. Raupp, R.A. Fei jõo e C.A. de Moura, propuseram um modelo para um problema de mecânica dos solos, qual seja o do comportamento dinâmico de uma estaca de fundação penetrando no solo sob a ação de um bate-estaca. Devido ao efeito do atrito, a forma matemática do modelo resultou numa inequação variacional envolvendo um funcional não diferenciável. No trabalho acima citado,

foi provada a existência e unicidade de soluções dessa inequação variacional por regularização do termo não-diferenciável. Em dois outros trabalhos, os mesmos autores apresentaram resultados numéricos usando regularização, Galerkin e predictor-corrector [3] e uma discretização da equação baseada num al goritmo de otimização [4].

O objetivo deste trabalho é apresentar uma demons tração da existência de soluções da inequação variacional aci ma referida que, usando argumentos de ponto fixo e subdiferen cial, reduz este problema ao da existência de soluções fracas de uma equação de evolução monótona.

Antes de apresentarmos a inequação, vamos definir alguma notação para 1he dar um significado preciso. Seja $\Omega = (0,L)$ um intervalo da reta e $V = H^1(\Omega)$ o espaço de Sobolev de ordem um sobre Ω . Para $1 \le p \le \infty$, D um espaço de Banach, e T um número real positivo fixado, representaremos por $L^p(D)$ o espaço de Banach de todas as funções mensuráveis

$$u : [0,T] \rightarrow D$$

tais que $\|u(t)\|_D$ ϵ $L^p[0,T]$. Sua norma $\hat{\epsilon}$ dada por

$$||u||_{L^{p}(D)}^{p} = \int_{0}^{T} ||u(t)||_{D}^{p} dt$$
,

se $1 \le p < \infty$, e

$$\|\mathbf{u}\|_{L^{\infty}(D)} = \underset{t \in [0,T]}{\text{ess sup}} \|\mathbf{u}(t)\|_{D}.$$

Se f e g são funções de H = $L^2(\Omega)$ então

$$(f,g) = \int_{\Omega} f(x)g(x)dx$$

é o produto interno usual nesse espaço e

$$|f|_{2}^{2} = (f,f),$$

 \tilde{e} a norma de f em H, resultante de $(\cdot\,,\cdot)$. Se $v \in V$ e f $\in V'$, dual de V, ent \tilde{a} o

$$\langle f, v \rangle = f(v)$$

visto como uma forma bilinear de $V' \times V$ em \mathbb{R} é o par de dual \underline{i} dade de (V,V').

Além disso, se ℓ é uma função de $L^\infty(\Omega)$, K, F e γ são constantes reais positivas e u e v são funções de H, definimos

(1.1)
$$J(u,v) = K\gamma F \int_{\Omega} \ell(x) H(x+u-L) (x+u-L) |v| dx ,$$

sendo H a função de Heaviside, isto é,

$$H(x) = \begin{cases} 1 & x \ge 0 \\ 0 & x < 0. \end{cases}$$

Usaremos, também, para a derivação no tempo, a notação comum em Física:

$$\dot{u} = \frac{du}{dt}$$

е

$$\ddot{u} = \frac{d^2 u}{dt^2}.$$

Para todo funcional f ϵ V' e toda função α ϵ C¹($\overline{\Omega}$), espaço das funções continuamente diferenciáveis em Ω , definiremos o funcional α f ϵ V' da seguinte forma

$$\langle \alpha f, v \rangle = \langle f, \alpha v \rangle$$
, $\forall v \in V$,

dado que $\alpha v \in V$ se $\alpha \in C^{1}(\overline{\Omega})$.

Assim, sendo aînda A e $\rho \in C^1(\overline{\Omega})$ e a,b,k₁, e k₂ constantes reais positivas, a inequação variacional a que nos referimos acima tem a seguinte forma:

$$\begin{split} &\langle \rho A\ddot{u}(t)\,, v - \dot{u}(t) \rangle \, + \, a (Au_{_{\scriptstyle X}}(t)\,, v_{_{\scriptstyle X}} - \dot{u}_{_{\scriptstyle X}}(t)) \, + \, b (A\dot{u}_{_{\scriptstyle X}}(t)\,, v_{_{\scriptstyle X}} - \dot{u}_{_{\scriptstyle X}}(t)) \, + \\ &\langle (k_{_{\scriptstyle 1}}u(1,t) + k_{_{\scriptstyle 2}}\dot{u}(1,t))\delta_{_{\scriptstyle 1}}\,, v - \dot{u}(t) \rangle \, + \, J(u(t)\,, v) - J(u(t)\,, \dot{u}(t)) \, \geq \\ &\langle Af(t) \, + \, F(t)\delta_{_{\scriptstyle 0}}\,, v - \dot{u}(t) \rangle \, , \, \, \forall \, \, v \, \epsilon \, V \,, \, \, q.t. \, \, t\epsilon \, \big[0 \,, T \big] \,, \end{split}$$

onde são dados f: $[0\,,T] \to V'$ e F: $[0\,,T] \to IR$, e δ_1 δ_0 ϵ V' são tais que

$$\langle \delta_1; v \rangle = v(1)$$
,

е

$$\langle \delta_0, v \rangle = v(0)$$
,

qualquer que seja νε V.

Precisamos assim, mostrar que existe u, de forma que u(t) e ů(t) tenham valores em V, satisfazendo (1.2) e as condições iniciais u(0) = u_0 , ů(0) = u_1 . De agora em diante, tomaremos $A = \rho = \ell \equiv 1$ e $K = \gamma = F = k_1 = k_2 = a = b = L = 1$, o que de forma alguma afetará o argumento no caso geral.

Em seguida, seja a forma bilinear

a :
$$V \times V \rightarrow \mathbb{R}$$

 $(u,v) \rightarrow a(u,v) = (u_x,v_x) + \delta_1(u)\delta_1(v)$.

Esta forma bilinear é contínua e é tal que existe uma constante real positiva ${\bf C}_{\bf a}$ com a propriedade abaixo:

$$(1.3) a(v,v) \ge C_a ||v||, \quad \forall v \in V,$$

onde $||\cdot||$ é a norma de V (ver [2,sec.3]). Podemos assim, resumir nosso problema da seguinte forma:

Mostrar que existe u ϵ L $^{\infty}$ (V) tal que \dot{u} ϵ L $^{\infty}$ (V) satisfazendo

(1.4)
$$\langle \ddot{u}(t), v - \dot{u}(t) \rangle + a(\dot{u}(t), v - \dot{u}(t)) + a(\dot{u}(t), v - \dot{u}(t)) + J(u(t), v) - J(u(t), \dot{u}(t)) \ge \langle F(t), v - \dot{u}(t) \rangle,$$
 $\forall v \in V, q.t. t \in [0,T],$

$$(1.5)$$
 $u(0) = u_0$,

$$(1.6)$$
 $u(0) = u_1$.

E agora, $F(t) = f(t) + F(t)\delta_0$ e

(1.7)
$$J(u,v) = \int_{0}^{1} H(x+u-1)(x+u-1)|v|dx.$$

Na Seção 2, demonstraremos o seguinte resultado:

Teorema 1.1. - Dados $u_0 \in V$, $u_1 \in H$ e $F \in L^2(V')$, ou seja, $f \in L^2(V')$ e $F \in L^2[0,T]$, existe uma única função u em $\Omega \times [0,T]$, satisfazendo:

- i) $u \in C(V)$,
- ii) $\dot{u} \in C(H) \cap L^2(V)$,
- iii) a inequação (1.4), e
- iv) as condições iniciais (1.5) e (1.6), onde C(E) é o conjunto das funções de $L^{\infty}(E)$ contínuas em t.

2. DEMONSTRAÇÃO DO TEOREMA 1.1.

De [2] sabemos que a solução de (1.4) é única.Sub dividiremos a demonstração da existência em duas partes:

- i) usando um esquema funcional adequado e o teorema do ponto fixo de Schauder, reduziremos o problema de existência de soluções de (1.4) a um problema mais simples, no qual a primeira variável do funcional J(•,•) é vista como um parâmetro (problema desacoplado);
- ii) usando técnicas de subdiferencial, mostraremos que as soluções fracas de uma equação de evolução monótona, são

também soluções do problema desacoplado. Por fim, usando regularização e um resultado de [5], mostramos a existência de soluções desta equação.

Parte (i) - Dado $w \in L^{\infty}(H)$, consideremos o problema abaixo, o qual chamaremos de inequação variacional desacopl<u>a</u> da:

Mostrar que existe uma função u $\epsilon\,L^\infty(V)$ tal que que $\dot{u}\,\epsilon\,L^\infty(V)$ satisfazendo:

$$\begin{aligned} \langle \ddot{\mathbf{u}}(t), \mathbf{v} - \dot{\mathbf{u}}(t) \rangle &+ \mathbf{a}(\mathbf{u}(t), \mathbf{v} - \dot{\mathbf{u}}(t)) + \mathbf{a}(\dot{\mathbf{u}}(t), \mathbf{v} - \dot{\mathbf{u}}(t)) + \\ &+ \mathbf{J}(\mathbf{w}(t), \mathbf{v}) - \mathbf{J}(\mathbf{w}(t), \dot{\mathbf{u}}(t)) \geq \langle F(t), \mathbf{v} - \dot{\mathbf{u}}(t) \rangle , \\ &\quad \forall \ \mathbf{v} \in \mathbf{V}, \ \mathbf{q}.t. \ t \in \left[0, T\right], \end{aligned}$$

onde J é como em (1.7), e as condições iniciais (1.5) e (1.6). Na parte (ii), mostraremos que a inequação variacional acima tem solução única qualquer que seja w ϵ L $^{\infty}$ (H), para dados tais que u $_{0}$ ϵ V, u $_{1}$ ϵ H e F ϵ L 2 (V'). Chamemos de u $_{W}$ esta solução, enfatizando sua dependência em w.

Temos então que, para todo w, u_w e \dot{u}_w pertencem a $L^\infty(V)$. Além do mais, tomando v=0 em (2.1), concluímos que

$$(2.2) - \langle \ddot{u}_{W}(t), \dot{u}_{W}(t) \rangle - a(u_{W}(t), \dot{u}_{W}(t)) - a(\dot{u}_{W}(t), \dot{u}_{W}(t))$$

$$- J(w(t), \dot{u}_{W}(t)) \ge - \langle F(t), \dot{u}_{W}(t) \rangle, \quad q.t. \quad t \in [0, T],$$

e posto que $H(x+w-1)(x+w-1) \ge 0$ qualquer que seja $x \in [0,1]$ segue que

$$J(w(t), \dot{u}_w(t)) \ge 0$$
, q.t. $t\epsilon[0,T]$,

para todo w, e consequentemente

$$-\frac{1}{2}\frac{d}{dt}(|u_{W}(t)|_{2}^{2}+a(u_{W}(t),u_{W}(t))-a(\dot{u}_{W}(t),\dot{u}_{W}(t)) \geq$$

$$-\langle F(t),\dot{u}_{W}(t)\rangle,$$

em quase todo t. Integrando a desigualdade acima de 0 a t, mu $\underline{1}$ tiplicada por -1, e usando a desigualdade (1.3), temos que u_{W} satisfaz

$$|\dot{\mathbf{u}}_{W}(t)|_{2}^{2} + ||\mathbf{u}_{W}(t)||^{2} + \int_{0}^{t} ||\mathbf{u}_{W}(\tau)||^{2} d\tau \leq K |\mathbf{u}_{1}|_{2}^{2} + K a(\mathbf{u}_{0}, \mathbf{u}_{0}) + K \int_{0}^{t} |\langle F(\tau), \dot{\mathbf{u}}_{W}(\tau) \rangle| d\tau,$$

onde $K = \max \{2, 2/C_a, 1/C_a\}$, ou seja,

$$\begin{aligned} \left|\dot{u}_{W}(t)\right|_{2}^{2} + \left|\left|u_{W}(t)\right|\right|^{2} + \int_{0}^{t} \left|\left|\dot{u}_{W}(\tau)\right|\right|^{2} d\tau &\leq K \left|u_{1}\right|_{2}^{2} + K a(u_{0}, u_{0}) + \frac{K}{4\epsilon} \int_{0}^{t} \left|\left|F(\tau)\right|\right|_{V}^{2} d\tau + \epsilon K \int_{0}^{t} \left|\left|\dot{u}_{W}(\tau)\right|\right|^{2} d\tau. \end{aligned}$$

Donde, para ϵ suficientemente pequeno, temos que

$$|\dot{\mathbf{u}}_{W}(t)|_{2}^{2} + ||\mathbf{u}_{W}(t)||^{2} + (1-\varepsilon K) \int_{0}^{T} ||\dot{\mathbf{u}}_{W}(\tau)||^{2} d\tau \leq K(|\mathbf{u}_{1}|_{2}^{2} + a(\mathbf{u}_{0}, \mathbf{u}_{0})) + \frac{K}{4\varepsilon} \int_{0}^{T} ||F(\tau)||_{V}^{2} d\tau = K_{0}.$$

Em particular, se W é o subconjunto convexo, fe chado e limitado de L $^{\infty}$ (H), definido como sendo o fecho em L $^{\infty}$ (H) de

$$W_0 = \{u \in L^{\infty}(H) \mid u \in L^{\infty}(V) \in ||u||^2 \leq K_0 \},$$

então, dada a função

$$g : L^{\infty}(H) \rightarrow L^{\infty}(H)$$

$$w \rightarrow g(w) = u_{w},$$

a designaldade (2.3) nos diz que $g(L^{\infty}(H)) \subset W_{o} \subset W$.

Uma outra informação que extraímos da desigualda de (2.3) é que \dot{u}_w pertence a um subconjunto limitado de $L^\infty(H)$ e então, pelo critério de compacidade de Lions-Aubin $[5, \sec. 1.5, \, \text{Teor.2}]$, sabemos que g(W) é uma parte relativamente compacta de $L^\infty(H)$.

Em seguida, vejamos que g é uma função contínua de W em L $^{\infty}$ (H), para podermos usar o teorema do ponto fixo. Com este fim, consideremos (w_n) uma sequência em W tal que

$$W_n \rightarrow W \in W$$

em $L^{\infty}(H)$ e seja $u_n = g(w_n)$ e u = g(w). Estas funções são tais que

(2.4)
$$\langle \ddot{\mathbf{u}}_{n}, \mathbf{v} - \dot{\mathbf{u}}_{n} \rangle + a(\mathbf{u}_{n}, \mathbf{v} - \dot{\mathbf{u}}_{n}) + a(\dot{\mathbf{u}}_{n}, \mathbf{v} - \dot{\mathbf{u}}_{n}) + J(\mathbf{w}_{n}, \mathbf{v})$$

$$- J(\mathbf{w}_{n}, \dot{\mathbf{u}}_{n}) \geq \langle F, \mathbf{v} - \dot{\mathbf{u}}_{n} \rangle , \forall \mathbf{v} \in V.$$

е

(2.5)
$$\langle \ddot{u}, v - \dot{u} \rangle + a(u, v - \dot{u}) + a(\dot{u}, v - \dot{u}) + J(w, v)$$

- $J(w, \dot{u}) \rangle \langle F, v - \dot{u} \rangle$, $\forall v \in V$

para quase todo t.

Tomando, a cada instante t, $v = \dot{u}(t)$ em (2.4) e $v = \dot{u}_n(t)$ em (2.5) e somando, obtemos

$$- \langle \ddot{\mathbf{u}} - \ddot{\mathbf{u}}_{n}, \dot{\mathbf{u}} - \dot{\mathbf{u}}_{n} \rangle - a(\mathbf{u} - \mathbf{u}_{n}, \dot{\mathbf{u}} - \dot{\mathbf{u}}_{n}) - a(\dot{\mathbf{u}} - \dot{\mathbf{u}}_{n}, \dot{\mathbf{u}} - \dot{\mathbf{u}}_{n}) \ge$$

$$J(\mathbf{w}, \dot{\mathbf{u}}) + J(\mathbf{w}_{n}, \dot{\mathbf{u}}_{n}) - J(\mathbf{w}_{n}, \dot{\mathbf{u}}) - J(\mathbf{w}, \dot{\mathbf{u}}_{n})$$

e isto implica que

$$(2.6) \qquad \frac{1}{2} \frac{d}{dt} (|\dot{u} - \dot{u}_n|_2^2 + a(u - u_n, u - u_n)) + a(\dot{u} - \dot{u}_n, \dot{u} - \dot{u}_n) \leq$$

$$J(w_n, \dot{u}) - J(w, \dot{u}) | + |J(w_n, \dot{u}_n) - J(w, \dot{u}_n)|.$$

Porém, como

$$J(w_n, \dot{u}) - J(w, \dot{u}) = \int_0^1 [H(x+w_n-1)(x+w_n-1) - H(x-w-1)(x-w-1)] |\dot{u}| dx$$

temos que

$$|J(w_n, \dot{u}) - J(w, \dot{u})| \le \int_0^1 |w_n - w| |\dot{u}| dx \le |w_n - w|^2 |\dot{u}|^2.$$

E analogamente,

$$|J(w_n, \dot{u}_n) - J(w, \dot{u}_n)| \le |w_n - w|^2 |\dot{u}_n|^2$$

Assim, integrando (2.6) de 0 a t, observando que os dados iniciais u_0 e u_1 não dependem de n, que $|\dot{u}(t)|_2^2 \leq K_0$ e $|\dot{u}_n(t)|_2^2 \leq K_0$ para todo n, e usando (1.3), segue que

$$|\dot{\mathbf{u}}(t) - \dot{\mathbf{u}}_{\mathbf{n}}(t)|_{2}^{2} + C_{\mathbf{a}}||\mathbf{u}(t) - \mathbf{u}_{\mathbf{n}}(t)||^{2} \le 2K_{0} \int_{0}^{T} |\mathbf{w}(t) - \mathbf{w}_{\mathbf{n}}(t)|_{2}^{2} dt.$$

Consequentemente, como $w_n \to w$ em $L^{\infty}(H)$ temos que $u_n \to u$ em $L^{\infty}(V)$, donde em $L^{\infty}(H)$, mostrando assim a continuidade de g.

Resumindo, g é uma função contínua que leva o conjunto convexo e fechado W em uma parte relativamente compacta de $L^{\infty}(H)$, contida em $W_0 \subseteq W$. Portanto, o teorema do ponto fixo de Schauder nos garante a existência de um ponto $u \in W \subseteq L^{\infty}(H)$ tal que g(u)=u. Esta u é assim uma solução de (1.4) e, como ressaltamos previamente, é a única $[2, \sec.3]$. Chamamos ainda a atenção para o fato de que $u \in g(W) \subseteq W$ e dessa forma possui as características das soluções de (2.1), as mais relevantes das quais fazem parte do enunciado do teorema 1.1.

Parte (ii) - Vamos agora mostrar que o problema de sacoplado tem solução única. Primeiramente, vejamos que dado w ϵ L $^{\infty}$ (H), u solução de (2.1) é única. Sejam portanto, u e u duas soluções de (2.1) associadas a uma mesma função w. Estas funções satisfazem

(2.7)
$$\langle \ddot{u}_{1}, v - \dot{u}_{1} \rangle + a(u_{1}, v - \dot{u}_{1}) + a(\dot{u}_{1}, v - \dot{u}_{1}) + J(w, v) - J(w, \dot{u}_{1}) \ge \langle F, v - \dot{u}_{1} \rangle, \forall v \in V,$$

(2.8)
$$\langle \ddot{u}_{2}, v - \dot{u}_{2} \rangle + a(u_{2}, v - \dot{u}_{2}) + a(\dot{u}_{1}, v - \dot{u}_{2}) + J(w, v) - J(w, \dot{u}_{2}) \ge \langle F, v - \dot{u}_{2} \rangle$$
, $\forall v \in V$,

para quase todo t, sendo $u_1(0) = u_2(0) e \dot{u}_1(0) = \dot{u}_2(0)$.

Assim, se no instante t escolhermos $v=u_2(t)$ em (2.7) e $v=u_1(t)$ em (2.8) e somarmos, obtemos que $u=u_1-u_2$ satisfaz a desigualdade

$$- \langle \ddot{u}(t), \dot{u}(t) \rangle - a(u(t), \dot{u}(t)) - a(\dot{u}(t), \dot{u}(t)) \ge 0$$
,

para quase todo t, sendo $u(0) = \dot{u}(0) = 0$. Esta desigualdade implica que

$$\frac{1}{2} \frac{d}{dt} \left(\left| \dot{u}(t) \right|_2^2 + a(u(t), u(t)) \right) + a(\dot{u}(t), \dot{u}(t)) \le 0$$
 para quase todo t.

Integrando de 0 a t, temos que

$$|\dot{u}(t)|_{2}^{2} + a(u(t), u(t)) + \int_{0}^{t} a(\dot{u}(\tau), \dot{u}(\tau)) d\tau \le |\dot{u}(0)|_{2}^{2} + a(u(0), u(0)) = 0$$

e como todos os termos do primeiro membro da desigualdade ac<u>i</u> ma são não negativos, a fortiori

$$C_a || u(t) ||^2 \le a(u(t), u(t)) = 0$$

para quase todo t, ou seja, u=0 como função de $L^{\infty}(V)$.

Tendo estabelecido a unicidade de $u_w^{}$, observemos que J(y,.) é uma função contínua, convexa própria de H em $\mathbb R$,

para todo y ϵ H. E como consequência imediata deste fato, temos que J(y,.) tem subdiferencial não vazio [1,cap. 1], qualquer que seja y, em todos os pontos de H.

Seja agora G: R → R definida por

$$G(x) = \begin{cases} 1 & x > 0 \\ 0 & x = 0 \\ -1 & x < 0 \end{cases},$$

e $\Phi(y,v_0)$ o funcional linear em H tal que

$$(\Phi(y,v_0),v) = \int_0^1 g(x,y(x)) G(v_0(x))v(x) dx$$
,

onde g(x,y) = H(x+y-1)(x+y-1) e y, $v_0 \in H$. Este funcional possui as seguintes propriedades:

- i) $(\Phi(y,v_0),v_0) = J(y,v_0)$,
- ii) $J(y,v) \ge (\Phi(y,v_0),v)$, pois $|v| \ge |G(v_0)v|$,
- iii) $\Phi(y,v_0)$ é contínuo quaisquer que sejam y e v_0 em H pois

$$|(\Phi(y,v_0),v)| \le |g(.,y(.))G(v_0(.))|_2^2 |v|_2^2 \le |y|_2^2 |v|_2^2.$$

Notemos que (ii) é equivalente a

$$J(y,v) - J(y,v_0) \ge (\Phi(y,v_0),v-v_0)$$
,

e assim sendo, $\Phi(y,v_0)$ é um subgradiente de $J(y,\cdot)$ no ponto v_0 [1,cap.1]. Consequentemente, como $\Phi(y,v_0)$ é também um funcional linear contínuo em V, pois V está continuamente imerso em H, decorre que se $u \in L^\infty(V)$ e $w \in L^\infty(H)$,

$$J(w(t),v) - J(w(t),u(t)) \ge \langle \Phi(w(t),u(t)),v-u(t) \rangle$$

para todo v ϵ V e quase todo t ϵ [0,T].

Concluindo, se u $\epsilon\,L^\infty(V)$ é uma função tal que $\dot{u}\,\epsilon\,L^\infty(V) \,\,e\,\,que\,\,satisfaça$

(2.9)
$$\langle \ddot{u}(t), v - \dot{u}(t) \rangle + a(\dot{u}(t), v - \dot{u}(t)) + a(\dot{u}(t), v - \dot{u}(t))$$

 $+ \langle \Phi(w(t), \dot{u}(t)), v - \dot{u}(t) \rangle \geq \langle F(t), v - \dot{u}(t) \rangle$,

$$\forall$$
 $v \in V$, $q.t.$ $t \in [0,T]$,

sendo $\mathbf{u}(0) = \mathbf{u}_0 \, \mathbf{e} \, \dot{\mathbf{u}}(0) = \mathbf{u}_1$, então necessariamente $\mathbf{u} \, \mathbf{e} \, \mathbf{t}$ também solução de (2.1).

Notamos que a escolha do subgradiente $\Phi(y,.)$, que aparece em (2.9) é arbitrária, pois a função G poderia assumir qualquer valor entre 0 e 1 no ponto 0 e ainda assim Φ conservaria as propriedades (i), (ii) e (iii). Assim, mesmo substituin do o subgradiente $\Phi(y,.)$ escolhido por um outro, uma função que satisfaça (2.9) satisfaz também (2.1). Consequentemente, ve mos que, devido à unicidade da solução de (2.1), a solução de (2.9) independe do subgradiente que aparece nessa inequação.

Devido a isso, nosso problema se resume em mostrar a existência de soluções de (2.9). Mas observemos que em (2.9) podemos tomar, a cada instante $t,v = \pm z - \dot{u}(t)$, $z \in V$, e assim a inequação (2.9) é equivalente à equação variacional

$$(2.10) \qquad \langle \ddot{\mathbf{u}}(t), z \rangle + a(\dot{\mathbf{u}}(t), z) + a(\mathbf{u}(t), z) + \langle \Phi(\mathbf{w}(t), \dot{\mathbf{u}}(t)), z \rangle$$

$$= \langle F(t), z \rangle , \forall z \in V, q.t. t \in [0, T],$$

com as condições iniciais (1.5), (1.6).

Porem, a forma bilinear $a(\cdot, \cdot)$ define um operador $A: V \to V$ tal que para todo $y \in V$, $A(y) = a(y, \cdot)$. Assim se defirnirmos, para cada $w \in L^{\infty}(H)$, o operador

$$B(y) = A(y) + \Phi(w,y) ,$$

onde y E V resulta que (2.10) é uma forma fraca da equação

(2.11)
$$\begin{cases} \ddot{u}(t) + A(u(t)) + B(\dot{u}(t)) = F(t), \\ u(0) = u_0, \\ \dot{u}(0) = u_1, \end{cases}$$

que é uma equação de evolução não-linear monótona. Em [5,sec. 3.6], Strauss demonstrou que: se A é um operador linear, coercivo, simétrico e contínuo de V em V' e B um operador de $L^2(V)$ em $L^2(V')$ com as seguintes propriedades:

- i) B é limitado e demicontínuo,
- ii) para algum λ real, $e^{-\lambda t}(\lambda/2 + B)$ \tilde{e} coercivo em $L^2(V)$,
- iii) $e^{-\lambda t}(\lambda/2 + B)$ é semimonótono em conjuntos limitados de um subespaço de $L^2(V)$;

então, para todo $u_0 \in V$, $u_1 \in H$ e $F \in L^2(V')$, existe uma função u, tal que $u \in C(V)$ e $\dot{u} \in C(H) \cap L^2(V)$, solução de

$$(2.12) \langle \ddot{u}(t), v \rangle + \langle A(u(t)), v \rangle + \langle B(\dot{u}(t)), v \rangle = \langle F(t), v \rangle,$$

$$\forall$$
 veV , q.t. te $[0,T]$.

e satisfazendo as condições iniciais (1.5) e (1.6).

Usaremos agora este resultado para mostrar que (2.10) tem solução. Seja então $\, \epsilon > 0 \,$ e

$$G_{\varepsilon}(s) = \begin{cases} \frac{1}{s} & s > \varepsilon \\ \frac{s}{\varepsilon} & |s| < \varepsilon \\ -1 & s < -\varepsilon \end{cases},$$

e consideremos o operador $B_{\varepsilon}: L^{2}(V) \rightarrow L^{2}(V')$ definido por

(2.13)
$$B_{\varepsilon}(v_0) = A(v_0) + \Phi_{\varepsilon}(w, v_0)$$
,

onde $w \in L^{\infty}(H)$ e

$$(2.14) \qquad \langle \Phi_{\varepsilon}(w, v_0), v \rangle = \int_0^1 g(x, w(x)) G_{\varepsilon}(v_0(x)) v(x) dx.$$

O operador A, devido à forma como foi definido, é um operador linear simétrico, coercivo e contínuo de V em V', e assim possui as mesmas características que o operador A de (2.12). Além disso, temos que A, se visto como um operador de $L^2(V)$ em $L^2(V')$, também é linear, coercivo e contínuo.

Vejamos agora que B_{ϵ} possui propriedades que implicam as condições (i), (ii) e (iii), a serem satisfeitas pelo operador B da demonstração de Strauss. Com efeito, de (2.14) segue que qualquer que seja $v_0 \in L^2(V)$,

$$|\Phi_{\varepsilon}(w,v_0)|_{L^2(V')} \leq C |w|_{L^{\infty}(H)},$$

e como

$$\left| \Phi_{\varepsilon}(w, v_0) - \Phi_{\varepsilon}(w, v_n) \right|_{L^2(V')} \leq K |w|_{L^{\infty}(H)} \int_{0}^{T} |G_{\varepsilon}(v_0) - G_{\varepsilon}(v_n)|_{\infty}^{2} dt,$$

sendo $|\cdot|_{\infty}$ a norma de $L^{\infty}(\Omega)$, temos que $\Phi_{\epsilon}(w,\cdot)$ é um operador contínuo e limitado de $L^{2}(V)$ em $L^{2}(V')$. Desta forma, vemos que B_{ϵ} definido em (2.13) satisfaz a condição (i) para todo $\epsilon > 0$. Em seguida, notemos que

$$G_{\varepsilon}(s)s = |s|_{\varepsilon} = \begin{cases} |s|, |s| \geq \varepsilon \\ \frac{|s|^2}{\varepsilon}, |s| \leq \varepsilon \end{cases}$$

e portanto,

$$\langle \Phi_{\varepsilon}(w,v), v \rangle = \int_{0}^{1} g(x,w(x)) |v(x)|_{\varepsilon} dx \geq 0.$$

Donde concluímos que B_{ε} é coercivo, pois

$$\int_{0}^{T} \langle B_{\varepsilon}(v(t)), v(t) \rangle dt \ge \int_{0}^{T} \langle A(v(t)), v(t) \rangle dt = \int_{0}^{T} a(v(t), v(t)) dt \ge C_{a} \int_{0}^{T} ||v(t)||^{2} dt,$$

qualquer que seja $v \in L^2(V)$. Finalmente, para todo $y \in H$ e $v \in V$, $\Phi_{\varepsilon}(y,v)$ é um subgradiente do funcional convexo

$$\int_0^1 g(x,w(x)) |v(x)|_{\varepsilon} dx ,$$

e portanto B_{ϵ} , como soma de um operador linear coercivo e um subgradiente, é monótono. Porisso, B_{ϵ} também satisfaz as condições (ii) e (iii) para todo $\epsilon > 0$.

Assim, podemos concluir que, qualquer que seja $\epsilon > 0$, existe uma função $u^{\epsilon} \epsilon C(V)$ tal que $\dot{u}^{\epsilon} \epsilon C(H) \cap L^{2}(V)$, sa tisfazendo as condições iniciais (1.5) e (1.6) e à seguinte regularização da equação (2.10):

$$(2.15) \quad \langle \ddot{u}^{\varepsilon}(t), v \rangle + \langle A(u^{\varepsilon}(t)), v \rangle + \langle B_{\varepsilon}(\dot{u}^{\varepsilon}(t)), v \rangle = \langle F(t), v \rangle,$$

$$\forall v \in V, q.t. \quad t \in [0, T].$$

Tomando em (2.15) $v = u^{\varepsilon}(t)$, obtemos que

$$\frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left(\left| \dot{\mathbf{u}}^{\varepsilon}(t) \right|_{2}^{2} + a(\mathbf{u}^{\varepsilon}(t), \mathbf{u}^{\varepsilon}(t)) \right) + a(\dot{\mathbf{u}}^{\varepsilon}(t), \dot{\mathbf{u}}^{\varepsilon}(t)) = \langle F(t), \dot{\mathbf{u}}^{\varepsilon}(t) \rangle,$$

e seguindo o mesmo raciocínio de (2.3), esta equação implica que

$$|u^{\varepsilon}(t)|_{2}^{2} + ||u^{\varepsilon}(t)||^{2} + (1-\alpha K) \int_{0}^{\infty} ||u^{\varepsilon}(t)||^{2} dt \leq K_{0},$$

posto que as condições iniciais e F não dependem de ε . Por ou tro lado, como $A(u^{\varepsilon})$ e $B_{\varepsilon}(\mathring{u}^{\varepsilon})$ pertencem a $L^{2}(V')$ para todo ε , temos que \ddot{u}^{ε} ε $L^{2}(V')$ e

$$|\ddot{\mathbf{u}}^{\varepsilon}|_{L^{2}(V')} \leq |A(\mathbf{u}^{\varepsilon})|_{L^{2}(V')} + |B_{\varepsilon}(\dot{\mathbf{u}}^{\varepsilon})|_{L^{2}(V')} + |F|_{L^{2}(V')}.$$

Porém, dado que

$$(2.17) \qquad |A(u^{\varepsilon})|_{L^{2}(V')} \leq C|u^{\varepsilon}|_{L^{2}(V)} \leq K_{1},$$

$$|A(\dot{u}^{\varepsilon})|_{L^{2}(V')} \leq C|\dot{u}^{\varepsilon}|_{L^{2}(V)} \leq K_{2},$$

е

$$|B_{\varepsilon}(\mathring{u}^{\varepsilon})|_{L^{2}(V')} \leq K_{1} + C|w|_{L^{\infty}(H)} \leq K_{3}$$
,

decorre que

$$|\ddot{\mathbf{u}}^{\varepsilon}|_{L^{2}(V')} \leq K.$$

Como consequência das limitações (2.16) - (2.19) da compaticidade fraca e fraca estrela dos conjuntos dos dos respectivos espaços, podemos, extraindo sucessivas sub sequências e \mathbf{u}^{ε} , obter uma subsequência, ainda chamada tal que:

- i) $u^{\varepsilon} \rightarrow u$ fraco estrela em C(V),
- ii) $\dot{u}^{\varepsilon} \rightarrow \dot{u}$ fraco estrela em C(V), iii) $\ddot{u}^{\varepsilon} \rightarrow \dot{u}$ fraco em L²(V'), iii) $\ddot{u}^{\varepsilon} \rightarrow \dot{u}$ fraco em L²(V'),
- iv) $A(u^{\varepsilon}) \rightarrow \psi$ fraco em $L^{2}(V')$,
- v) $A(\hat{u}^{\epsilon}) \rightarrow \phi$ fraco em $L^{2}(V')$.

Usando o critério de compaticidade de Lions-Aubin, [5,sec.1.5, Teor.2] , podemos ainda escolher a subsequência u^{ε} de forma que $u^{\varepsilon} \rightarrow u$ forte em $L^{2}(Q)$, $Q = [0,1] \times [0,T]$, também quase toda parte em Q, o que implica que

$$\Phi_{\varepsilon}(w, u^{\varepsilon}) \rightarrow \Phi(w, u) \text{ em } L^{2}(V').$$

Além disso, é fácil ver que ψ = A(u) e ϕ = A(u) devido às convergências (i), (ii) e à simetria do operador A.

Portanto, concluimos que existe u $\epsilon\,C(V)$ tal que $\dot{u}\,\epsilon\,C(H)\,\,\cap\,\,L^2(V)\,\,\text{satisfazendo}$

$$\int_{0}^{T} \ddot{u}(t), v(t) > dt + \int_{0}^{T} \langle A(u(t)), v(t) > dt +$$

$$\int_{0}^{T} \langle B(\dot{u}(t)), v(t) \rangle dt = \int_{0}^{T} \langle F(t), v(t) \rangle dt,$$

para todo $v \in L^2(V)$. Esta igualdade, por sua vez, implica que u é solução de (2.10). Finalizando, ressaltamos que um cál culo usual mostra que u satisfaz (1.5) e (1.6).

REFERÊNCIAS

- [1] Ekeland, I., Teman, R., Analyse Convexe et Problèmes Variationnels. Etudes Mathématiques, Dunod, Paris, (1974).
- [2] Raupp, M.A., Feijóo, R.A., e Moura, C.A. de, A Nonlinear Problem in Dynamic Visco-Elasticity with Friction. Relatório A0023/77, Lab.Calculo, CBPF, 1977. A ser publicado no Bol. Soc. Bras. Mat.
- [3] -----, Soluciones Numéricas de um Problema Dinámico Viscoelástico No Lineal. Anais do IV Congresso Bras.Eng. Mecânica, Florianópolis, (1977).
- [4] An Optimization Algorithm for the Pile Driver Problem. A ser publicado nos Relatórios Série A, Lab. de Cálculo, CBPF, (1977).
- [5] Strauss, W.A., The Energy Method in Nonlinear Partial Differential Equations. Notas de Matemática Nº 47, IMPA, Rio de Janeiro, (1969).