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Abstract

The deep inelastic scattering of neutrinos on unpolarized nucleons is considered in a

generalized parton model which takes into account quark�clustering effects, modeled by

diquarks. The diquark contributions are expected to be signiÞcant at small Q2 values and

to vanish asymptotically, and describe phenomenologically higher-twist corrections. The

most general case is studied, which includes both scalar and pseudo�vector diquarks inside

the nucleons, as well as the contribution of scalar-vector and vector-scalar transitions. The

resulting scaling violations are brießy discussed.
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The role of possible spin-0 and spin-1 constituents of nucleons in deep inelastic scat-

tering (DIS) has been studied since the advent of the parton model [1, 2]. In the frame-

work of the pure quark model, such constituents can arise in a natural way as two-quark

bound states, the scalar and (pseudo�)vector diquarks. It is now becoming increasingly

clear that the concept of diquark is important for understanding baryon structure and

several intermediate�energy particle reactions [3]; the diquark approach is among the

few attempts to offer a systematic phenomenological description of non perturbative and

higher-twist corrections. It is then clear that it is of particular interest to improve our

knowledge about the role of diquarks in deep inelastic scattering induced both by electrons

and neutrinos.

In the early �80 diquark contributions to deep inelastic nucleon structure functions

were analysed and compared with the existing data [4, 5, 6, 7]. This led to a picture

of the nucleon containing almost pointlike scalar diquarks and heavier, more extended,

vector diquarks [6, 7]. Such analyses were carried out in the case of electromagnetic and

weak deep inelastic scattering on unpolarized nucleons, but within somehow simpliÞed

versions of the diquark model.

The diquark contributions to the electromagnetic unpolarized and polarized nucleon

structure functions, in the most general case of scalar and vector diquarks, allowing for

a vector anomalous magnetic moment and for scalar�vector and vector�scalar diquark

transitions, were studied in Ref. [8]. Based on those results, and considering also the

diquark inelastic contributions, the observed higher-twist effects in F2 have recently been

shown [9] to be well described by the diquark model with a set of parameters rather close

to those found in previous analyses; within the same model, higher twist corrections to

Bjorken sum rule were predicted in Ref. [10].

In the case of neutrino DIS, all the analyses performed so far in the framework of the

diquark model [5, 6, 7] have been quite incomplete. In fact, the spin of diquarks is usually

ignored for simplicity, or treated heuristically, and also, in some instance [5], the scalar�

vector and vector�scalar transitions are neglected. Thus a systematic and complete study

of diquark effects on weak deep inelastic scattering is called for.

This paper is aimed at calculating the most general elastic contributions of diquarks

to the unpolarized deep inelastic scattering induced by neutrinos, following the scheme of

Ref. [8].

To start with, let us recall the expression of the inclusive cross�section for both neutral
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current (NC) and charged current (CC) DIS reactions [11]:
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where mN , GF , MZ(W ) are, respectively, the nucleon mass, the Fermi weak coupling

constant, the intermediate boson Z0 (W±) mass. The leptonic tensor Lαβ and the hadronic

tensor Wαβ are given by

Lαβ(ν) = lαl
!
β + l

!
αlβ − gαβ(l · l!) + i$αβγδlγl!δ (2)

1

2mN

Wαβ = −gαβW1 +
pαpβ
m2
N

W2 − i$αβγδp
γqδ

2m2
N

W3 +
qαqβ
m2
N

W4

+
pαqβ + pβqα
2m2

N

W5 + i
pαqβ − pβqα
2m2

N

W6 (3)

where l, l! and p are, respectively, the four�momenta of the incoming neutrino, of the

outgoing lepton and of the nucleon; q is the momentum transfer. It is well known that

the terms involving W4,5,6 disappear as result of the contraction of these tensors and the

cross section then reads, in the laboratory frame
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where M =MW for CC reactions, and M =MZ for NC reactions.

In the parton model the virtual boson interaction with the nucleon is replaced by the

incoherent sum of the virtual boson interactions with all nucleon constituents, supposed

to be free. Neglecting the Fermi motion of the constituents inside the nucleon we have,

in the unpolarized case [11]

W µν(N) =
1

4mNνx

%
j,s,S

nj(x, s;S)W
µν(j, j!), (5)

where ν = E − E! and nj(x, s;S) is the number density of partons of type j, covariant
spin s and four�momentum k = xp, inside a nucleon of four�momentum p and spin S.

W µν(j, j!) is the partonic tensor which describes the elastic interaction between the virtual

boson and the parton j (W ∗j → j!).

Let us now compute explicitly the tensor Wµν(j, j!) in the case of scalar diquarks

(j = j! = S), vector diquarks (j = j! = V ), scalar�vector (j = S, j! = V ) and vector�

scalar (j = V, j! = S) transitions.
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First we focus on scalar diquarks (whose ßavor content is ud). When a scalar diquark

interacts with a charged vector boson it undergoes a transition to a vector diquark, with

ßavor uu or dd 1. We shall study later on the scalar�vector transitions. For the moment

we consider a purely scalar interaction which can only occur in neutral current scattering.

The most general coupling of a scalar diquark to the Z0 is of a vector�like nature, as

in the electromagnetic case, and reads

Sµ = b0(2k + q)
µ , (6)

where k is the diquark momentum and b0 is the weak scalar form factor of the diquark,

revealing its composite nature. From the partonic tensor

W µν(S, S) = Sµ∗Sν , (7)

one can extract the two nucleon structure functions

F
(S)
1 ≡ mNW

(S)
1 = 0 (8)

F
(S)
2 ≡ νW (S)

2 = xS(x)b20 (9)

where S(x) is the number density of scalar diquarks with momentum k = xp. One

obviously has also F
(S)
3 = −νW (S)

3 = 0 since there is no axial term in the scalar-diquark�

vector-boson coupling.

Let us consider the case of vector diquarks. Both the charged current and the neutral

current contribute to W µν(V, V ). However in the two cases diquarks with different ßavor

contents are selected. The W+ boson couples only to a vector diquark of the type V (ud)

in the proton, the W− boson couples to V (ud) and V (uu) in the proton, the Z0 boson

can obviously couple to any diquark.

We start from the most general parity non�conserving coupling of a virtual interme-

diate boson with a spin-1 massive particle [12, 13]

V µ(λ1,λ2) =

#
V ηµρ + Aηµρ

$
$∗ρ (λ1) $η (λ2) (10)

where the vector coupling is given by

V ηµρ = b1(2k + q)
µgρη − b2

#
(k + q)ηgρµ + kρgηµ

$
+b3(2k + q)

µ(k + q)ηkρ (11)

1We neglect possible transitions to scalar diquarks in excited orbital states.
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and the axial one by

Aηµρ = a1(2k + q)σ$
σηµρ + a2qσ(2k + q)δ$

ηρσδ(2k + q)µ . (12)

Here k is the diquark momentum, q the momentum transfer and the $(λ)�s are the polar-

ization vectors of vector diquarks with helicity λ. The form factors ai(Q
2) and bi(Q

2) are

real functions due to time reversal invariance [12].

From eq. (10) we construct the partonic tensor

W µν(V, V ) =
%
λ1,λ2

V µ∗(λ1,λ2)V
ν(λ1,λ2) (13)

or

W µν(V, V ) = [V ηµρ + Aηµρ][V ανβ + Aανβ ]
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'&%
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'
. (14)

By resorting to the quark�diquark wave function of the nucleon [2] one easily Þnds [8](
S

nV (x, s;S) = 2/3 V (x) for any value of s, where V (x) is the density number of vector

diquarks with momentum k = xp. Making use of the relation (mD is the diquark mass)%
λ

$∗µ(k,λ)$ν(k,λ)→ −gµν + 1

m2
D
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in Eq. (14) and contracting all Lorentz indices, we obtain the explicit expression of

W µν(V, V ), which, inserted into Eq. (5), yields, by comparing with Eq. (3), the vector

diquark contribution to the nucleon structure functions
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F
(V )
3 = 0 , (18)

where V (x) = Vud(x) for W
+ mediated (i.e. neutrino induced) DIS off protons, and

V (x) = Vud(x)+Vuu(x) for Z
0 andW− mediated DIS. The diquark densities S(x), Vuu(x),

Vud(x) are normalized in such a way that
+ 1

0
[S(x) + Vuu(x) + Vud(x)] dx = 1.
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Note that vector diquarks do not contribute to F3 because the antisymmetric terms

that originate from the contractions of the V A and AV currents in eq. (14) cancel out

when we sum over all polarization states.

The contribution of the transition between scalar and vector diquarks is computed

along the same lines followed for vector diquarks, starting from the most general three�

particle coupling involving a vector boson, a spin-0 and a spin-1 diquark [12]:

T (S→V )
ν =

#
c1gγν + c2kγkν + c3$αβγνq

αkβ
$
$∗γ (19)

T (V→S)
ν =

#
c1gγν + c2(k + q)γ(k + q)ν + c3$αβγνq

αkβ
$
$γ (20)

The transition form factors c1,2,3 must also be real. The contribution of the transition

processes to the structure functions is
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F
(T )
3 = 0 . (23)

In the above equations, if T = S → V , D(T )(x) = S(x) for W± and Z0 scattering; if

T = V → S, D(T )(x) = (1/3)Vud(x) for Z
0 scattering, D(T )(x) = (1/3)Vuu(x) for W

−

scattering off protons, and there is no contribution from W+ scattering off protons. The

functions F
(S→V )
3 and F

(V→S)
3 vanish for the same reason as in the vector case.

It is straightforward to see that the results of the diquark model for the electromagnetic

deep inelastic scattering (Eqs. (1.19) of ref. [8]) are recovered by setting a1 = a2 = c1 =

c2 = 0 in Eqs. (9, 16, 17, 21, 22).

A glance at our results for the structure functions shows that, as in the electromagnetic

case [8], pointlike diquarks would give rise to very strong scaling violations, not observed

in the data. Of course, since diquarks are bound states of two quarks and not pointlike

objects, any realistic comparison with experimental data should take into account their

form factors.

If we assume, as it is natural, that all form factors which appear in the vector current

have the same large-Q2 behavior as in the electromagnetic case [9], namely that they
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decrease, at least, as

b0 ∼ 1

Q2

b1,2 ∼ 1

Q4

b3 ∼ 1

Q6

c3 ∼ 1

Q3
(24)

it follows that the dominant diquark contribution due to vector couplings is only propor-

tional to 1/Q4. However, depending on the large-Q2 behaviour of the form factors a1 and

a3 which appear in the axial current, we might have more sizeable contributions. If we

set, generically

a1 ∼ 1

Qn
, a2 ∼ 1

Qk
, c1 ∼ 1

Ql
, c2 ∼ 1

Qm
, (25)

then we would get powerlike scaling violation of the type 1/Q2 if n = 2 or k = 3, in

vector�vector reactions, or m = 3 in vector�scalar and scalar�vector transitions.

It is well known that, in the framework of the usual parton model, neutrino�initiated

deep inelastic scattering experiments are a fundamental tool to determine the momentum

distributions of quarks with different ßavous and to distinguish between quark and anti-

quark contributions. Within the extended parton model used here it is straightforward

to isolate the contribution of the scalar�vector diquark transition, which cannot be done

with only electromagnetic interactions. Indeed, the difference between the neutral and

charged current structure functions, F1,NC − F1,CC , given by (for ν̄�proton or ν�neutron

DIS)

F1,NC − F1,CC =
1

3
[Vud(x)− Vuu(x)]
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can, at least in principle, be used to impose constraints on the Q2 dependence of the

transition form factors. Since the distributions Vud(x) and Vuu(x) were already Þxed by

Þtting the higher twist effects in the unpolarized electromagnetic structure function F2

[9], this expression can also be used to test the x dependence predicted by the diquark

model.

A detailed study of these higher-twist terms and their possible evaluation are at present

impossible, due to lack of experimental data. In this paper we have developed a general

and physically motivated phenomenological framework, within which it is possible to

interpret and understand higher-twist effects in neutrino-initiated deep inelastic processes.
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