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We present a slightly modified approach to the application
of the principle of minimal sensitivity (PMS) used to  improve
results in perturbation theory. Calculations are shown to be

easier and essentially give the same results.



Since the important work by Stevenson [l],following the
pioneering work of Grunberg and of Celmaster and coworkers [2],
the analysis of perturbative results improved by the applica-
tion of the renormalization group (RG) [3] received a lot of
attention. Stevenson adapted a criterion known as Principle of
Minimal Sensitivity (PMS) to require that results at a given
order of perturbation theory be calculated for a renormalization
scheme (RS) such that the change at next order will be mini-
mal, that is, the difference between the exact result (RG in-
variant) of a physical quantity and its perturbative approxi—
mation is chosen to be the smallest and least sensible to RS
changes.

In this note, we want to advocate the principle of minimal
sensitivity in to what we believe to be its most "economical"
form, which we shall call PMS. The economy is related to the
somehow easier way results can be obtained as compared to
Stevenson's original work:l:l] and several other developments
made a posteriori [4_].

In short, PMS uses the expansion up to a given order of
the interesting quantities, imposes the automatic vanishing
of terms up to the same order and from the remainder extracts
information on the optimal values of the couplant and the
parameters characterizing the optimal RS (up to that order).
The equations are compatible with the consistency conditions
for the problem. To be precise, consider (as Stevenson [:l]) a
physical gquantity R. The consistency conditions are
dR

T

d

(%la + Bla) )R = 0 (1a)



3R _ (3 d \y _
dcj ~ <acj ' + Bj(a)ﬁg)R =0 (1b)

a

where 1, a, cj,é,‘gjand the following Wf are the same as in

Stevenson [17].

Now, assume that R has a perturbative expansion

R = aV(1 + ria+ rya’ +...) (2)

as well as

B = -a?(l + ca + c2a2 + c2a3 +...) (3)
and

g =02 _ 1 _j+1 - 3 iz - s

HJ = acj = 3o7 a 1+ Wia + Wza + oo (3=2,3,..0(4)
with
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The consistency conditions, order by order in powers of

4
the couplant' are:
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+Notlce that here the powers a are related to the powers

aN+1—1 of the physical quantity R.
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From them we see, for instance, that the first term must
vanish identically at lowest order for R and B. The condition

PMS uses to go a little further is
Nc + (N+l)r; + (N+l)r,ca = 0 (7)

which is just a mixture of the terms appearing at orders

aN+2 N+3

and a involving only ¢ and r the quantities being used

1’
at lowest orders of R and 8. Notice that one must solve for El
as well as for a. PMS in this sense goes beyond perturbative
expansions. If, on the other hand we want to mantain ourselves
within the perturbative framework we can start the improvement
by imposing that only the terms belonging to order aN+zshmﬂd

vanish
Nc + (N+1)r1 =0 (8)

This is equivalent to say that the corrections to R due

to RS changes begin at order aN+3, that is %% . = O(aN+3)
T=T



(T being the particular value obtained below, see egs. (10) and
(15)) . The extension of this procedure yields, at any order,

characterized by the variation of the parameters T,C,,...,Cp*

) (N+m)r c, =0 (9a)
m=0
k+1-] .
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- 307 I (N+m)x Weeloiem = © (J = 2,...,k) (9b)
m=0

To supplement these equations we have the relations for the

renormalization group invariants|:1,2,4j, pl,...,pk. Solving
the equations we end with the special values 'T',‘c—:z, "'Ek , ]::-2,. "Ek
needed. Next we solve for a using:

- - -1 ca a ((-32+...+C-kak_2)

T=(a) + cZn( : _) + J — ax (10)

l+4ca o) (l+cx)(l+cx4u..+ckx )

obtaining:

RFL) =GN 4rF 4.l +T, 3% (11)

PMS

The difference with the standard PMS prescription is that

while in it relations involving implicitly fi%5and a are to be
solved, here, in PMS, one obtains values for fi‘s that can be
used for the T and Ei's. This makes PMS look rather similar

to the Grunberg FAC criterion.|:2](fl==...==fk==0). With FAC,

aet) = a (12)

RFAC



2 .
To illustrate this point, let us take the case of R( )vuth

r, as given by eq. (8),

r. = N o (13)

T

‘°1=¥'"1\'1L (14)
giving
RN =

With this value of ?, one solves for a (eq.(10)) and substitutes
in R; the pertinent values for N = 1 are listed in table 1. It
is evident, as Stevenson.l:l] himself pointed, that the dif-
ference between expressions. for PMS and PMS is of order
aN+k+2(for R(k+l)) since the start, and this fact appears in
the numbers quoted (see table 1), but it is precisely our point
here that handling egs. (9) and (10) is simpler than the original
PMS prescription. It is worth to emphasize here that the pro-
cedure we have just described is different from Stevenson's ]:l]

improvement formula for we do not need to use any particular

scheme to obtain the results.
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Table 1

values of R(?? for the e'e” annihilation ratio (5] 1 Q§ [1+~R(2)] with
three flavors ( c = lé) and p, = 10 (~9—

1 AMS
various shemes. We also quote the respective values of oouplant

= 35.287586) within the

a and of rl.

R(z) = a(l + rla)

(2)
R a rl
FAC 0.072118 0.072118 0
PMS 0.072396 0.077035 -0.781818

PMS 0.072391 0.077767 -8/9




