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ABSTRACT

Through a simple majority rule a statistical geometrical
d-dimensional model(d can even be a fractal dimensionality) is
formulated which presents a continuous phase transition as a
function of a certain independent occupancy probability p.Both
critical point p. and "correlation length" exponent v are ex-
actly calculated through real space renormalization group(with
linear scaling factor b). The well known finite size scaling
hypothesis v(b)-v= 1/fnb (in the limit b-«) is analytically ex
hibited on a non trivial example presumably for the first time.
A new and more rapidly convergent finite size extrapolation pro

cedure 1is suggested.



The simple majority rule (see [1]) has been frequently used
during recent years within real space renormalization group (RG)
approximate treatments of several thermal models (mainly Ising-
like). We shall use it herein as the basis for constructing a
geometrical model which presents a continuous phase transition.
Let us consider a macroscopic square checkerboard (yet uncolored)
which is going to be randomly and independently (quenched model)
occupied by black and white plaquettes (whose respective occupancy
probabilities are p and (l1-p)). We arbitrarily choose an elemen-
tary square (hereafter referred to as the center) and assume,for
convenience, that it is always black (this weak restriction in
the ensemble of possible macroscopic occupancy configurations
has clearly no relevance in the thermodynamic limit). For a giv-
en macroscopic configuration associated to p<l1/2 we proceed as
follows: by starting from the black center (which corresponds to

a degree of consultation n=0) we check if the inclusion of ‘its

immediate neighborhood(which corresponds to n=1; the sub-system
under consideration contains now N1 elementary squares; N1=9 in
Fig.l.a) preserves the black majority; if this is the case we ex
pand even more our subsystem (n=2; the new subsystem contains N2
elements; N2=25 in Fig. l.a); we keep on through this procedure
up to the point where the black majority is reversed (the rever-
sal point is characterized by a consultation degree n.; nr=2 in
Fig. l.a). When this change occurs (and necessarily occurs as we
have assumed p<l/2) we consider a new random configuration (still
associated to the same value of p) and go through the same oper-

ational sequence, thus obtaining a new value for n_; we note ¢&

the (arithmetic) mean value of the {nr} associated with a thermody



namically great number of configurations; clearly & diverges (presumablyas
(pC—p)-v with pc=1/2) when p approaches P.* If p>1/2 the procedure to be
followed is exactly the same excepting for the fact that only configura-
tions leading to finite nr enter into the calculation of &, which is now
expected to diverge as (p-pc)—v in the vicinity of p_.

Now that the majority model (MM) has been introduced we intend to
calculate v within a RG framework which renormalizes finite squares (with
side length b) into smaller ones (side length b'<b); both b and b’ are
odd numbers in order to avoid majority ambiguities. For analytical simplic
ity we shall work, in the RG framework, with no color restriction on the
center of the squares (if we impose the black color for the centers, the
final asymptotic results in the b+ region are exactly the same). Let us
first consider the simplest case, i.e. b=3 and b'=1, The RG recursion 1is

is given by
P'= Rg(p)=p’+9p°(1-p)+36p” (1-p)*+84p° (1-p)*+126p° (1-p)" (1)

which presents (besides the two trivial stable fixed points p=0
and p=1) an unstable fixed point at p=1/2 (exact answer) and
leads to A;= dRS(p)/dp&F1/2= 315/27, therefore to the approxi-
mate critical exponent v3:l=£n3MMA3:]q2199. For general values

of (b,b') and considering now a d-dimensional hypercubic checker-

board, Eq. (1) becomes

Ry (p')= R, (p) (b=3,5,7,...:b'=1,3,...,b-2) (2)
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This recursion admits, for all d and (b,b'), the unstable fixed



point p= 1/2 (exact answer) and leads to

Vp,pr = Lo/ )
a0/ 0]
with . 5 bd-l
%y __b -
e R - T pd_q (b=1,3,5,...) (5)
p=1/2 2 7

By using Stirling's approximation (£nN!= NZVLN—N+%KVL(2HI\D+112N+O(1/N3)

in the limit N»«) we straightforwardly obtain (in the limit b » «)

vy = 2/d + o‘(l/bdﬂnb) (6)
’ 1. Zn(n/2)
d Znb
and
v =2/ Lenlan®hean®] ()
b,b_z 1_ __l__
2p4
- _ : = 2
and finally v= %12 Yo,b'” Td
b'<b

This result deserves a few comments. First of all, how is it
we obtain a phase transition for any dimensionality, even for d=1%
this is clear once we realize that the majority rule implies long range

(as a matter of fact, infinite range) interactions as, at any

given degree of consultation n,even very distant elements enter
into consideration on equal standing as the neighboring ones.Our
second comment refers to standard site percolation to which the
MM might, at first sight, look isomorphic; this is clearlywrong
as the question '"'can our region be spanned through (let us say

first neighboring) black plaquettes?'" is very different from"in



our region, are the black plaquettes majority?" (e.g. in 'the sub
system n=2 of Fig. l.a, the answer to the first question is yes,
where it is no to the second one; the opposite answers are pos-
sible as well). The MM might also look like similar to the Ising
one: although both binary, these models are quite different as,
at any finite temperature, neighboring plaquettes are likely of
the same (different) 'color" in the ferromagnetic (antiferromag-
netic) Ising model whereas there is no such correlation in the
MM. We might also think about more sophisticated models, like the
triangular lattice quenched bond-mixed Ising one with a distrib
ution law for the coupling constant J given by P(J)=(1—x)6(J—JO)
+x6(J+JO) with J0>0; if we consider an elementary triangular plaquette
and associate "black" to "frustated" we obtain p= x3+3(1-x)*x (x= 0,
1/2,1 respectively imply p= 0,1/2,1), but we can easily verify
that the probability for two first-neighboring plaquettes being
"frustrated" does not equal p? as in the MM. Our last comment con-
cerns a possible generalization of the present results. There is
clearly no reason for the consultation sequence N, to grow(while
the consultation degree n runs over all natural numbers) as that
of an hypercubic lattice (i.e. Nn= (2n+1)d) and any regular lat-
tice can be used as well (see Fig. 1.b); furthermore Nn has not
to be related to any regular (or even irregular) lattice: it can
be an arbitrary one. In that case we can define a fractal dimension
ality (see [2]) de= lim —ETEL—— (it is clear that all d-dimen-
n>w  fn (2n+])

sional regular lattices lead to df=d); for this MM we expect P.=
=1/2 and v= Z/df.

Let us now turn back to Eqs. (4) and (5) (and the asympto-

tic behaviors (6) and (7)) in order to discuss the well known



finite size scaling hypothesis[}] frequently used in purel}]’:l and
RGES] Monte Carlo treatments of statistical models, and herein
analytically exhibited (as far as we know for the first time on
a non trivial, at least non one-dimensional, model). The criti-
cal value pc=1/2 is exactly obtained within the present RG for
all (b,b'), therefore we confine our discussion onto the behavior
of vb,b' for large values of b. We shall make three remarks:

i) It is systematically assumed in the RG Monte Carlo treat-
ments of statistical models that (vb,fv) (therefore
(1/vb,1-1/v)) is proportional to 1/&nb in the limit b-ow:
Eq. (6) confirms this assumption which presumably for most
models is still true for (vb,b,—v) with any fixed val
ue of b'(or values of b growing, with b, in a suffi-
ciently slow manner);

ii) As seen from Eq.(6) the asymptotic regime 1is more rap-

idly attained by 1/v than by Vi 15 consequently,for

b,1
practical purposes, extrapolations 1/Vb,1 vs. 1/&nbare
expected to provide higher numerical precision than that ob-
tained in extrapolations vb,l vs. 1/4nb; no such a priori expec-
tation exists related to Eq.(7), therefore a vb,b—Z Vs. 1/bd ex-
trapolation can lead to results practically as good as those ob-
tained through a l/vb,b—z vs. l/bdextrapolaticn (the MM d=2
case 1is illustrated in Fig.2).

iii) As seen from Eqs.(6) and (7) the asymptotic regime is more rapid-
ly attained if the sequence (b,b-2), rather than the (b,1) one,
is used (the MM d=2 case is illustrated in Fig.2); in more gener-

al tems, sequences (b,b') such that b/b'»1 are, for a possibly

very large class of extrapolations, to be a priori preferred to



those which inply b/b' > =,

To synthetize let us say that the present work suggests,
for the numerical calculation of the ''correlation length ' crit-
ical exponent v associated to a possibly large variety of sta-
tistical systems, the use of extrapolations 1/Vb,b’ Vs, 1/bd
with b' running as close to b as possible, rather thanthe stan-
dard ones (namely Vb,l vs. 1/&nb or 1/\)b,1 vs. 1/&nb). If we
focuse the majority model (which admits, in fact, several nat-
ural extension on which we are presently working ) introduced here
in, let us recall that its exact critical point and 'correla-
tion lenght'" exponent respectively are p. = 1/2 and v=2/d for
the d-dimensional hypercubic lattice (for an arbitrary sequence

ZnN
Nn we expect v = Z/df where dfz%;& —~———— 1is a fractal dimen-

£nn
sionality). A straightforward application of the present major-
ity model could clearly be within mathematical models for po-
litical sciences (see also page 432 of [1]); it should be in-
teresting to search for physical applications within the stan-

dard thermal and /or geometrical statistical problems (see,

for example, [6] and references therein).

I am very greatful to E.V.,Anda, E,M.F.Curado, R.Lobo, and

A.C.N. de Magalhaes for relevant remarks.
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CAPTION FOR FIGURES

Fig.l - Examples of occupancy configurations. (a) Nn=(2n+1)zand

nr=2; (b) Nn= 3n(ntl)+ 1 and nr=1.

Fig.2 - Critical exponent v finite size scaling exhibited for
the d=2 MM. Full lines represent the b»x asymptotic
behaviours; dashed lines are guides to the eye and run
over the actual approximate values of v (represented by
dots). The ordinate scale for the v-lines (v -'-lines) is
the outside (inside)one; the abcissa scalée for the Vb,l_
and ijl— lines (Vp p-p~ and W;L—Z -lines) is
the bottom (top) one. Concerning numerical procedures re

mark that: (a) the standard vi', vs. 1/4£nb one is superi

b,1
or to the standard vb,l vs. 1/4nb one; (b) both Vb,b-Z VS.
b_d and VBIb-Z vs. b " (numerically slightly better) proce

dures are superior to the standard ones (using 1/Znb). A

numerical illustration: v13,1= 1.09583, vlS,l

v13’11= 1.00353 and v15,13= 1.00258;the two points linear

extrapolation of these values provide the following errors

= 1.09047,

for v: -0.56% in the case Vy q Vs. 1/£&nb, 0.26% in the case

- 9 3 2
1/Vb,1 vs. 1/4&nb, -0.027% in the case Yy pop VS- 1/b and

9

- 2 3 2
0.026% in the case 1/\)b,b_2 vs. 1/b”.
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