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Abstract

The full set of equations governing the evolution of self–gravitating spherically

symmetric dissipative fluids with anisotropic stresses is deployed and used to carry

out a general study on the behaviour of such systems, in the context of general

relativity. Emphasis is given to the link between the Weyl tensor, the shear tensor,

the anisotropy of the pressure and the density inhomogeneity. In particular we

provide the general, necessary and sufficient, condition for the vanishing of the

spatial gradients of energy density, which in turn suggests a possible definition of

a gravitational arrow of time. Some solutions are also exhibited to illustrate the

discussion.
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1 Introduction

This work is devoted to the study of dissipative, locally anisotropic, spherically symmet-

ric self–gravitating fluids, with particular emphasis in a set of physical and geometrical

variables which appear to play a fundamental role in the evolution of such systems. These

variables are the Weyl tensor, the shear tensor, the local anisotropy of the presssure and

the density inhomogeneity.

The Weyl tensor [1] or some functions of it [2], have been proposed to provide a

gravitational arrow of time. The rationale behind this idea being that tidal forces tend

to make the gravitating fluid more inhomogeneous as the evolution proceeds, thereby

indicating the sense of time. However, some works have thrown doubts on this proposal

[3]. Further evidence about the relevance of the Weyl tensor in the evolution of self–

gravitating systems may be found in [4].

The role of density inhomogeneities in the collapse of dust [5] and in particular in the

formation of naked singularities [6], has been extensively discussed in the literature.

On the other hand, the assumption of local anisotropy of pressure, which seems to be

very sensible to describe matter distribution under a variety of circumstances, has been

proved to be very useful in the study of relativistic compact objects (see [7] and references

therein).

A hint pointing to the relevance of the above mentioned three factors in the fate of

spherical collapse is also provided by the expression of the active gravitational mass in

terms of those factors [8].

Finally, the relevance of the shear tensor in the evolution of self–gravitaing systems

has been brought out by many authors (see [9] and references therein).

Now, in the study of self–gravitating compact objects it is usually assumed that de-

viations from spherical symmetry are likely to be incidental rather than basic features of

the process involved (see however the discussion in [10]). Thus, since the seminal paper

by Oppenheimer and Snyder [11], most of the work dedicated to the problem of gen-

eral relativistic gravitational collapse, deal with spherically symmetric fluid distribution.

Accordingly we shall consider spherically symmetric fluid distributions.

Also, the fluid distribution under consideration will be assumed to be dissipative.

Indeed, dissipation due to the emission of massless particles (photons and/or neutrinos)

is a characteristic process in the evolution of massive stars. In fact, it seems that the only

plausible mechanism to carry away the bulk of the binding energy of the collapsing star,

leading to a neutron star or black hole is neutrino emission [12]. Consequently, in this

paper, the matter distribution forming the self–gravitating object will be described as a
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dissipative fluid.

In the diffusion approximation, it is assumed that the energy flux of radiation (as

that of thermal conduction) is proportional to the gradient of temperature. This assump-

tion is in general very sensible, since the mean free path of particles responsible for the

propagation of energy in stellar interiors is in general very small as compared with the

typical length of the object. Thus, for a main sequence star as the sun, the mean free

path of photons at the centre, is of the order of 2 cm. Also, the mean free path of trapped

neutrinos in compact cores of densities about 1012 g.cm.−3 becomes smaller than the size

of the stellar core [13, 14].

Furthermore, the observational data collected from supernova 1987A indicates that

the regime of radiation transport prevailing during the emission process, is closer to the

diffusion approximation than to the streaming out limit [15].

However in many other circumstances, the mean free path of particles transporting

energy may be large enough as to justify the free streaming approximation. Therefore

we shall include simultaneously both limiting cases of radiative transport (diffusion and

streaming out), allowing for describing a wide range situations.

It is also worth mentioning that although the most common method of solving Ein-

stein’s equations is to use commoving coordinates (e.g. [16]), we shall use noncomoving

coordinates, which implies that the velocity of any fluid element (defined with respect to

a conveniently chosen set of observers) has to be considered as a relevant physical variable

([17]).

The paper is organized as follows: In the next section we introduce the notation and

write all relevant equations. Section 3 is devoted to the analysis of different special cases.

Finally the results are discussed in the last section.

2 The Basic equations

In this section we shall deploy the relevant equations for describing a dissipative self–

gravitating locally anisotropic fluid. In spite of the fact that not all these equations

are independent (for example the field equations and the conservation equations (Bianchi

identities)) we shall present them all, since depending on the problem under consideration,

it may be more advantageous using one set instead of the other.
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2.1 Einstein equations

We consider spherically symmetric distributions of collapsing fluid, which for sake of

completeness we assume to be locally anisotropic, undergoing dissipation in the form of

heat flow and/or free streaming radiation, bounded by a spherical surface Σ.

The line element is given in Schwarzschild–like coordinates by

ds2 = eνdt2 − eλdr2 − r2
(
dθ2 + sin2θdφ2

)
, (1)

where ν(t, r) and λ(t, r) are functions of their arguments. We number the coordinates:

x0 = t; x1 = r; x2 = θ; x3 = φ.

The metric (1) has to satisfy Einstein field equations

Gν
µ = 8πT

ν
µ , (2)

which in our case read [18]:

−8πT 0
0 = − 1

r2
+ e−λ(

1

r2
− λ

′

r
) (3)

−8πT 1
1 = − 1

r2
+ e−λ(

1

r2
+
ν ′

r
) (4)

−8πT 2
2 = −8πT 3

3 = −e
−ν

4
(2λ̈+ λ̇(λ̇− ν̇))

+
e−λ

4
(2ν ′′ + ν ′2 − λ′ν ′ + 2ν

′ − λ′
r

) (5)

−8πT10 = − λ̇
r
, (6)

where dots and primes stand for partial differentiation with respect to t and r, respectively.

In order to give physical significance to the T µ
ν components we apply the Bondi approach

[18].

Thus, following Bondi, let us introduce purely locally Minkowski coordinates (τ, x, y, z)

dτ = eν/2dt ; dx = eλ/2dr ; dy = rdθ ; dz = rsinθdφ.

Then, denoting the Minkowski components of the energy tensor by a bar, we have

T̄ 0
0 = T

0
0 ; T̄ 1

1 = T
1
1 ; T̄ 2

2 = T
2
2 ; T̄ 3

3 = T
3
3 ; T̄01 = e

−(ν+λ)/2T01.

Next, we suppose that when viewed by an observer moving relative to these coordinates

with proper velocity ω in the radial direction, the physical content of space consists of
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an anisotropic fluid of energy density ρ, radial pressure Pr, tangential pressure P⊥, radial

heat flux q and unpolarized radiation of energy density ε traveling in the radial direction.

Thus, when viewed by this moving observer the covariant tensor in Minkowski coordinates

is 


ρ+ ε −q − ε 0 0

−q − ε Pr + ε 0 0

0 0 P⊥ 0

0 0 0 P⊥



.

Then a Lorentz transformation readily shows that

T 0
0 = T̄

0
0 =

ρ+ Prω
2

1− ω2
+

2ωq

1− ω2
+
ε(1 + ω)

1− ω (7)

T 1
1 = T̄

1
1 = −Pr + ρω

2

1− ω2
− 2ωq

1− ω2
− ε(1 + ω)

1− ω (8)

T 2
2 = T

3
3 = T̄

2
2 = T̄

3
3 = −P⊥ (9)

T01 = e
ν+λ

2 T̄01 = −(ρ+ Pr)ωe
ν+λ

2

1− ω2
− qe

λ+ν
2

1− ω2
(1 + ω2)− e

λ+ν
2 ε(1 + ω)

1− ω (10)

Note that the coordinate velocity in the (t, r, θ, φ) system, dr/dt, is related to ω by

ω =
dr

dt
e(λ−ν)/2. (11)

Feeding back (7–10) into (3–6), we get the field equations in the form

ρ+ Prω
2

1− ω2
+

2ωq

1− ω2
+
ε(1 + ω)

1− ω = − 1

8π

{
− 1
r2
+ e−λ

(
1

r2
− λ

′

r

)}
, (12)

Pr + ρω
2

1− ω2
+

2ωq

1− ω2
+
ε(1 + ω)

1− ω = − 1

8π

{
1

r2
− e−λ

(
1

r2
+
ν ′

r

)}
, (13)

P⊥ = − 1

8π

{
e−ν

4

(
2λ̈+ λ̇(λ̇− ν̇)

)

−e
−λ

4

(
2ν ′′ + ν ′2 − λ′ν ′ + 2ν

′ − λ′
r

)}
, (14)

(ρ+ Pr)ωe
λ+ν

2

1− ω2
+
qe

λ+ν
2

1− ω2
(1 + ω2) +

e
λ+ν

2 ε(1 + ω)

1− ω = − λ̇

8πr
. (15)

The four–velocity vector is defined as

uα = (
e−

ν
2

(1− ω2)
1
2

,
ωe−

λ
2

(1− ω2)
1
2

, 0, 0). (16)
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From which we can calculate the four acceleration aα = uα
;βu

β to obtain

ωa1 = −a0eλ−ν
2 = − ω

1− ω2
[(
ωω′

1− ω2
+
ν ′

2
) + e

λ−ν
2 (
ωλ̇

2
+

ω̇

1− ω2
)]. (17)

For the exterior of the fluid distribution, the spacetime is that of Vaidya, given by

ds2 =

(
1− 2M(u)

R

)
du2 + 2dudR−R2

(
dθ2 + sin2θdφ2

)
, (18)

where u is a coordinate related to the retarded time, such that u = constant is (asymp-

totically) a null cone open to the future and R is a null coordinate (gRR = 0).

The two coordinate systems (t, r, θ, φ) and (u,R, θ, φ) are related at the boundary

surface and outside it by

u = t− r − 2M ln
(
r

2M
− 1

)
, (19)

R = r. (20)

In order to match smoothly the two metrics above on the boundary surface r = rΣ(t), we

require the continuity of the first and the second fundamental forms across that surface,

yielding (see [19] for details)

eνΣ = 1− 2M
RΣ
, (21)

e−λΣ = 1− 2M
RΣ
, (22)

[Pr]Σ = [q]Σ . (23)

Where, from now on, subscript Σ indicates that the quantity is evaluated on the boundary

surface Σ, and (23) expresses the discontinuity of the radial pressure in the presence of

heat flow, which is a well known result [20].

Eqs. (21), (22), and (23) are the necessary and sufficient conditions for a smooth

matching of the two metrics (1) and (18) on Σ.

2.2 Conservation laws (T µ
ν;µ = 0)

The energy–momentum tensor (7)-(10) may be written as :

T µ
ν = ρ̃u

µuν − P̂hµ
ν +Π

µ
ν + q̃(s

µuν + sνu
µ), (24)
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with

hµ
ν = δ

µ
ν − uµuν ,

Πµ
ν = Π(s

µsν +
1

3
hµ

ν ),

P̂ =
P̃r + 2P⊥

3
,

ρ̃ = ρ+ ε,

P̃r = Pr + ε,

q̃ = q + ε,

Π = P̃r − P⊥
and sµ is defined as

sµ = (
ωe−

ν
2

(1− ω2)
1
2

,
e−

λ
2

(1− ω2)
1
2

, 0, 0) (25)

with the properties sµuµ = 0, s
µsµ = −1, and q̃µ = q̃sµ.

We may write for the shear tensor

σαβ =
1

2
σ(sαsβ +

1

3
hαβ
) (26)

with

σ = − 1

(1− ω2)
1
2

[e−
ν
2 (λ̇+

2ωω̇

1− ω2
) + e−

λ
2 (ων ′ +

2ω′

1− ω2
− 2ω
r
)]. (27)

Then from T µ
ν;µ = 0, using (24), we find:

ρ̃;αu
α + (ρ̃+ P̂ )θ + q̃α;α = Παβσ

αβ + q̃aνsν (28)

and

(ρ̃+ P̂ )aα + h
β
α(q̃;νu

νsβ + q̃sβ;νu
ν − P̂,β +Π

µ
β;µ) + σαβ q̃s

β +
4

3
θq̃sα = 0. (29)

Or, contracting (29) with sα:

P̃r;µs
µ + (P̃r − P⊥)sµ;µ − (ρ̃+ P⊥)aµsµ + 4

3
θq̃ + q̃;νu

ν − q̃sµsνσµν = 0.
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2.3 Ricci identities

Ricci identitites for the vector uα read:

uα;β;ν − uα;ν;β = R
µ
αβνuµ, (30)

or using

uα;β = aαuβ + σαβ +
1

3
θhαβ , (31)

we have
1

2
Rρ

αβµuρ = aα;[µuβ] + aαu[β;µ] + σα[β;µ] +
1

3
θ,[µhβ]α +

1

3
θhα[β;µ]. (32)

2.3.1 Raychaudhuri equation

Contracting (32) with uβ and then the indices α and µ, we find the Raychaudhuri equation

for the evolution of the expansion:

θ;αu
α +
θ2

3
+ σαβσ

αβ − aα;α = −uρu
βRρ

β = −4π(ρ̃+ 3P̂ ), (33)

where

σαβσ
αβ =

1

6
σ2.

2.3.2 Constraint equation

If in (32) we contract first α and µ and then contract with hαβ , we obtain the constraint

equation expressing a direct relation between expansion θ, shear σαβ and the heat flux q:

Rρ
βuρh

αβ = hα
β(σ

βµ
;µ − 2

3
θ;β) + σαβaβ = 8πq̃s

α. (34)

2.3.3 Propagation equation of the shear

Contracting (32) with uβhα
γh

µ
ν we have

uρu
βRρ

αβµh
α
γh

µ
ν = h

α
γh

µ
ν (aα;µ − σαµ;βu

β)− aγaν − uβ
;µh

µ
ν (σγβ +

θ

3
hγβ)− θ;αu

α

3
hγν . (35)

On the other hand we know that the Riemann tensor may be expressed through the Weyl

tensor Cρ
αβµ, the Ricci tensor Rαβ and the scalar curvature R, as:

Rρ
αβµ = C

ρ
αβµ +

1

2
Rρ

βgαµ − 1
2
Rαβδ

ρ
µ +

1

2
Rαµδ

ρ
β

−1
2
Rρ

µgαβ − 1
6
R(δρβgαµ − gαβδ

ρ
µ). (36)
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Contracting (36) withuρu
βhα

γh
µ
ν and using Einstein equation (2), we find:

Rρ
αβµuρu

βhα
γh

µ
ν = Eγν + 4πΠγν +

4π

3
hγν(ρ̃+ 3P̂ ), (37)

where Eγν denotes the “electric” part of the Weyl tensor defined by the equation (42)

below.

From (35) and (37) taking into account (33) it follows:

Eγν + 4πΠγν = h
α
γh

µ
ν (aα;µ − σαµ;βu

β)− aγaν − σβ
νσγβ − 2

3
θσγν − 1

3
(aα;α − 1

6
σ2)hγν (38)

2.4 Evolution equations for the Weyl tensor

According to Kundt and Trümper [21], Bianchi identitites

Rµνκδ;λ +Rµνλκ;δ +Rµνδλ;κ = 0, (39)

may be written as:

C λ
µνκ ;λ = Rκ[µ;ν] − 1

6
gκ[µR,ν]. (40)

Then taking into account Einstein equations (2), (40) reads:

C λ
µνκ ;λ = 8πTκ[µ;ν] − 8π

3
gκ[µT,ν]. (41)

In the spherically symmetric case the “magnetic” part of theWeyl tensor vanishes(Hαβ =

0), then we have:

Cµνκλ = (gµναβgκλγδ − εµναβεκλγδ)u
αuγEβδ, (42)

with gµναβ = gµαgνβ − gµβgνα, εµναβ is the Levi-Civita symbol multiplied by
√−g and

Eβγ, the “electric” part of Weyl tensor, may be written as:

Eαβ = E(sαsβ +
1

3
hαβ) (43)

with

E =
e−ν

4
(λ̈+

λ̇(λ̇− ν̇)
2

) (44)

−e
−λ

4
(ν ′′ +

ν ′2 − λ′ν ′
2

− ν
′ − λ′
r

+
2(1− eλ)
r2

)

Contracting (42) with uν we obtain:

uνCµνkλ = Eµkuλ −Eµλuk, (45)
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from where it follows that:

uνC λ
µνκ ;λ + u

ν
;λC

λ
µνκ = θEµκ + u

αEµκ;α − uκ;λE
λ
µ − uκE

λ
µ;λ. (46)

Also, from (31) and (42), we obtain:

uν
;λC

λ
µνκ = uµuκσδβE

δβ − aβuµE
β
κ − hµκσ

αβEαβ + σκαE
α
µ + σµαE

α
κ − θ

3
Eµκ. (47)

Replacing (47) into (46), it results:

uνC λ
µνκ ;λ =

4θ

3
Eµκ + u

αEµκ;α − uκ;λE
λ
µ − uκE

λ
µ;λ − uµuκσδβE

δβ +

+ aβuµE
β
κ + hµκσ

αβ Eαβ − σκαE
α
µ − σµαE

α
κ . (48)

Contracting (48) with hµ
α h

κ
β we have:

hµ
α h

κ
β u

νC λ
µνκ ;λ =

4θ

3
Eαβ − uβ;λE

λ
α + u

νEµκ;νh
µ
α h

κ
β +

+ hαβσ
κν Eκν − σκαE

κ
β − σκβE

κ
α. (49)

On the other hand

hµ
α h

κ
β u

ν Tκµ;ν = −uνP̂;νhαβ + u
νΠκµ;νh

µ
αh

κ
β + q̃αaβ + q̃βaα

hµ
α h

κ
βu

νTκν;µ = (ρ̃+ P̂ )(σαβ +
θ
3
hαβ)− Πβν(σ

ν
α +

θ
3
hν

α) + q̃κ;µ h
µ
αh

κ
β

hµ
α h

κ
β u

ν gκ[µT,ν] =
1
2
uν(ρ̃;ν − 3P̂;ν)hαβ




(50)

Feeding back (49) and (50) into (41) we find:

θEαβ + (u
νEµκ;ν − 4πuνΠµκ;ν + 4πq̃κ;µ)h

µ
αh

κ
β +

4π

3
uν ρ̃;νhαβ + Eσαβ = (51)

−4π(ρ̃+ P̂ )(σαβ +
θ

3
hαβ) + 4π(q̃αaβ + q̃βaα) + 4πΠνβ(σ

ν
α +
θ

3
hν

α)

Next, contracting (48) with uk we have:

uκuνC λ
µνk ;λ = −Eλ

µ;λ − aλEµλ − σν
λE

λ
νuµ. (52)

The following expressions can also be easily calculated:

uk uνTkµ;ν = u
νρ̃;νuµ + (ρ̃+ P̂ )aµ − ak(q̃kuµ +Πµk) + u

ν q̃µ;ν

uk uνTkν;µ = ρ̃;µ − 2q̃k(akuµ + σ
k
µ +

θ
3
hk

µ)

gk[µT;ν]u
νuk = −1

2
T,νh

ν
µ = −1

2
(ρ̃− 3P̃ ),νhν

µ




(53)
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Finally, feeding back (52) and (53) into (41) and contracting with hµ
α we have:

Eλ
µ;λh

µ
α + a

λEαλ = −8πq̃κ(σκ
α +
θ

3
hκ

α) +
4π

3
(2ρ̃+ 3P̂ );νh

ν
α (54)

−4π(ρ̃+ P̂ )aα + 4πaκΠακ − 4πuν q̃µ;νh
µ
α

2.5 Weyl tensor, mass function and anisotropy

For the line element (1) we have:

R3
232 = 1− e−λ =

2m

r
(55)

Where the mass function m(r, t) is defined as

m = 4π
∫ r

0
r2T 0

0 dr, (56)

Then from (36), (43) and Einstein equations (2) it follows:

3m

r3
= 4πρ̃+ 4π(P⊥ − P̃r) + E (57)

which in tensorial form reads

Eαβ − 4πΠαβ = (
3m

r3
− 4πρ̃)(sαsβ + 1

3
hαβ) (58)

2.6 Summary

Equations (28), (29), (33), (34), (38), (52), (55) and (58) are

ρ̃;αu
α + (ρ̃+ P̂ )θ + q̃α;α = Παβσ

αβ + q̃aνsν (59)

(ρ̃+ P̂ )aα + h
β
α(q̃;νu

νsβ + q̃sβ;νu
ν − P̂,β +Π

µ
β;µ) + σαβ q̃s

β +
4

3
θq̃sα = 0 (60)

θ;αu
α +
θ2

3
+ σαβσ

αβ − aα;α = −uρu
βRρ

β = −4π(ρ̃+ 3P̂ ) (61)

Rρ
βuρh

αβ = hα
β(σ

βµ
;µ − 2

3
θ;β) + σαβaβ = 8πq̃s

α (62)
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Eγν + 4πΠγν = h
α
γh

µ
ν (aα;µ − σαµ;βu

β)− aγaν − σβ
νσγβ − 2

3
θσγν − 1

3
(aα;α − 1

6
σ2)hγν (63)

θEαβ + (u
νEµκ;ν − 4πuνΠµκ;ν + 4πq̃κ;µ)h

µ
αh

κ
β +

4π

3
uν ρ̃;νhαβ + Eσαβ = (64)

−4π(ρ̃+ P̂ )(σαβ +
θ

3
hαβ) + 4π(q̃αaβ + q̃βaα) + 4πΠνβ(σ

ν
α +
θ

3
hν

α)

Eλ
µ;λh

µ
α + a

λEαλ = −8πq̃κ(σκ
α +
θ

3
hκ

α) +
4π

3
(2ρ̃+ 3P̂ );νh

ν
α (65)

−4π(ρ̃+ P̂ )aα + 4πaκΠακ − 4πuν q̃µ;νh
µ
α

Eαβ − 4πΠαβ = (
3m

r3
− 4πρ̃)(sαsβ + 1

3
hαβ) (66)

In each of equations (59)–(66) there is only one scalar independent component, thus

contracting with sα we may write the equivalent set:

ρ̃∗ + (ρ̃+ P̃r)θ =
2

3
(θ +

σ

2
)Π− q̃† − 2q̃a− 2s

1

r
q̃ (67)

P̃ †
r + (ρ̃+ P̃r)a+

2s1

r
Π =

σ

3
q̃ − q̃∗ − 4θ

3
q̃ (68)

θ∗ +
θ2

3
+
σ2

6
− a† − a2 − 2as

1

r
= −4π(ρ̃+ 3P̃r) + 8πΠ (69)

(
σ

2
+ θ)† = −3σs

1

2r
+ 12πq̃ (70)

E + 4πΠ = −a† − a2 − σ
∗

2
− θσ
3
+
as1

r
+
σ2

12
(71)

(4πP̃r +
3m

r3
)(θ +

σ

2
) + (E − 4πΠ+ 4πρ̃)∗ = −12πs

1

r
q̃ (72)

(E + 4πρ̃− 4πΠ)† = 3s
1

r
(4πΠ− E) + 4πq̃(σ

2
+ θ) (73)
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3m

r3
= 4πρ̃+ 4π(P⊥ − P̃r) + E (74)

with f † = f,αsα, f ∗ = f,αuα and aα = asα, and where the expansion is given by

θ = uµ
;µ =

1

2(1− ω2)
1
2

[e−
ν
2 (λ̇+

2ωω̇

1− ω2
) + e−

λ
2 (ων ′ +

2ω′

1− ω2
+
4ω

r
)] (75)

Then from (27) and (75) it follows at once that:

σ

2
+ θ =

3ωs1

r
(76)

3 Special cases

We shall now apply equations (67)–(74) to analyze different particular cases.

3.1 Geodesic fluids

If the fluid is geodesic, non–dissipative and locally isotropic, then for bounded configu-

rations, it follows at once from (68) and the vanishing of the pressure at the boundary,

that it should be dust. In this case the vanishing of the Weyl tensor implies the shear

free condition as it follows from (72). On the other hand the shear free condition implies

conformally flat as it follows from (71). Thus in this special case both conditions are

equivalent. For non–geodesic fluids this equivalence is not generally true (see below).

3.2 Locally isotropic perfect fluids

Let us now consider locally isotropic and non–dissipative fluids (Π = q = ε = 0) and

find the relations linking the Weyl tensor, the shear and the local density inhomogeneity.

Although almost all results in this case are known, we think that it is worth while to

present them, in order to illustrate the general method that will be used later to study

more complicated situations.

From (73), we obtain after some rearrengements (with Π = q̃ = 0)

[r3E]† + r34πρ† = 0. (77)

Next, it is convenient to write (72), with the help of (11), (67), (74), and (76), as

[r3E]. +
dr

dt
[r3E]′ = −2πσr3(ρ+ Pr)

√
1− ω2eν/2. (78)
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Implying that the vanishing of the Weyl tensor results in the vanishing of spatial

gradients of energy density and the shear tensor.

Let us now assume ρ† = 0,then we obtain from (77)

[r3E]† = 0. (79)

Implying, since the Weyl tensor should be regular inside the fluid distribution, E = 0.

Thus E = 0 and ρ† = 0 are equivalent, and either one of them implies σ = 0. These

results were already known (see [22] and references therein)

Next, if σ = 0 it follows from (70) that

θ† = 0. (80)

Observe that from the above it follows, using equation (29), that if the fluid is con-

formally flat and satisfies a barotropic equation of state of the form Pr = Pr(ρ), then the

fluid is geodesic (aα = 0).

Also, assuming the shear–free condition alone (σ = 0) it follows from (78) that the

convective derivative of Er3 vanishes, which in turn means that such quantity remains

constant for any fluid element along the fluid lines.

3.3 Locally anisotropic non–dissipative fluids

We shall now relax the condition of local isotropy of the pressure, and shall assume Π �= 0.
Then from (76) and (73), it follows that

[r3(E − 4πΠ)]† + r34πρ† = 0. (81)

Implying that the vanishing of E − 4πΠ results in the vanishing of spatial gradients
of energy density.

On the other hand if we assume the vanishing of ρ†, then assuming that all physical

variables are regular within the fluid distribution it follows at once that

E − 4πΠ = 0. (82)

Thus E − 4πΠ = 0 and ρ† = 0 are equivalent, but neither one of them implies σ = 0.
Therefore if we assume the spacetime to be conformally flat (E = 0), then the local

anisotropy produces inhomogeneity in the energy density according to the equation

(r3Π)† = r3ρ†. (83)
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Next, it follows from (72), with the help of (11), (67), (74) and (76) that

[r3(E−4πΠ)]. + dr
dt
[r3(E−4πΠ)]′+8πΠωe(ν−λ)/2r2 = −2πσr3(ρ+Pr)

√
1− ω2eν/2. (84)

implying thereby that the convective derivative of r3(E − 4πΠ) is controlled not only by
σ, but also by Π.

If E = 4πΠ, then the following link between the shear and the anisotropy results

4Πωe−
λ
2 = −σr√1− ω2(ρ+ Pr). (85)

If the fluid is shear-free and E = 4πΠ then it is either static or locally isotropic. Of

course in this last case the fluid is also conformally flat.

3.4 Locally isotropic dissipative fluids in the quasi–static evolu-

tion

We shall now relax the condition of non–dissipation by allowing q �= 0 (for simplicity we
put ε = 0), but assuming that the evolution is slow, which means that ω2 = ω̇ = ˙̃q = λ̈ =

ν̈ = 0 and q ≈ O(ω) (see [19]). Then from (76) and (73), we obtain (in the quasi–static
approximation)

E ′e−λ/2 +
3Ee−λ/2

r
= −4πρ†, (86)

taking into account that in the quasi–static approximation

ρ† = ρ′e−
λ
2 , (87)

we have

E
′
+
3E

r
= −4πρ′. (88)

Next, it follows from (72), with the help of (67)

Ėe−ν/2 + E ′ωe−λ/2 + ωe−λ/23E

r
− 4πe−λ

2 q′ + 4πqe−
λ
2

(
1

r
− ν ′

)
= −2πσ(ρ+ Pr), (89)

or, equivalently
eλ/2

4πr3
(r3E)∗ = q′ + q

(
ν ′ − 1

r

)
− 1
2
eλ/2σ(ρ+ Pr). (90)

From (88) it follows at once that conformally flat and ρ′ = 0 are equivalent conditions,

which is also true in the perfect (non–dissipating) fluid, in the quasi–static approximation.

Also, from (89) or (90) it follows that E = 0 does not implies shear–free. In-

deed,assuming E = 0 in (90) we have

q′ + q
(
ν ′ − 1

r

)
=
1

2
eλ/2σ(ρ+ Pr), (91)
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yielding

q = re−ν

[∫
eλ/2+ν

2r
σ(ρ+ Pr)dr + β(t)

]
. (92)

If, we further impose the shear–free condition then, one obtains from (92)

q = rβ(t)e−ν (93)

leading to a condition on the temperature, which may be obtained using the Landau-

Eckart equation

qµ = κh
ν
µ(T,ν − Taν), (94)

or

q = −κe−λ
2 (T

′
+
Tν ′

2
). (95)

Using (95) in (93) we obtain

T = e−ν/2

[
C(t)− β(t)

κ

∫ r

0
re(λ−ν)/2dr

]
. (96)

The two functions β(t) and C(t) are simply related to the total luminosity of the sphere

and the central temperature, through (93) and (96), respectively. A simple model satis-

fying E = σ = 0 wil be next presented.

3.5 A conformally flat, shear–free sphere, dissipating in the

quasi–static regime (with ε = 0)

From (5) and E = 0 we have

8πP⊥ =
e−λ

r

(
ν ′ − λ′ − 1

r

)
+
1

r2
, (97)

Then substracting (4) from (97), and considering Π = 0, we obtain

e−λ = r2c1 + 1, (98)

where c1(t) is an arbitrary function of time. Substituting (98) into (3) yields

8πρ = −3c1. (99)

Considering E = 0 with (98) we obtain

ν ′′ +
ν ′2

2
− ν ′

r(r2c1 + 1)
= 0, (100)
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which has the solution

eν/2 = (r2c1 + 1)
1/2c2 + c3, (101)

where c2(t) and c3(t) are arbitrary functions of t.

Substituting (98) and (101) into (4) we obtain

8πPr = c1
[
1 + 2c2e

−(λ+ν)/2
]
. (102)

From (27), condition σ = 0 can be rewriten as

(
ωeν/2

r

)′
= − λ̇e

λ/2

2r
, (103)

which after integration becomes

ω =
(
c4 − ċ1

2c1
eλ/2

)
re−ν/2, (104)

where c4(t) is an arbitrary function of t.

From (98), (99), (101), (102) we have

8π(ρ+ Pr)ω = −
(
2c1c4 − ċ1eλ/2

)
rc3e

−ν . (105)

Now substituting (98), (101), (105) into (6) we obtain

8πq = (2c1c3c4 + ċ1c2) re
−ν . (106)

Next, using (21) and (22) in (98) and (101) we obtain

c1 = −2M
r3Σ
, (107)

and

c3 =

√
1− 2M

rΣ
(1− c2). (108)

Also, from the junction condition (23) and from (104) evaluated at the boundary surface,

it follows that

c1(1 + 2c2) = (2c1c3c4 + ċ1c2)
rΣ

(1− 2M
rΣ
)
, (109)

and

ċ1 = 2c1

√
1− 2M

rΣ

(
c4 − ωΣ

rΣ

√
1− 2M

rΣ

)
. (110)

Solving algebraically the system (108)–(110) for c2, c3 and c4, we can express these func-

tions in terms of M, rΣ, ωΣ and Ṁ .
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We shall further specify our model by assuming

c2 = 1, (111)

c3 = 0, (112)

implying

e−λ = eν = 1− 2Mr
2

r3Σ
. (113)

Using (107), (111), (112) and (113) in (99) and (102) we obtain

8πρ = −8πP r =
6M

r3Σ
. (114)

Then using (111) and (112) in (106) we obtain

8πq = rċ1e
−ν , (115)

which is our equation (93) with ċ1
8π
= β(t). By virtue of (107) and (109), the expression

for q becomes

8πq = −6Mr
r4Σ

(1− 2M
rΣ
)

(1− 2Mr2

r3
Σ
)
. (116)

Next, using (107), (109), (113) in (96), we obtain

T =
1√

1− 2Mr2

r3
Σ

[
Tc − 3

16πκrΣ
(1− 2M

rΣ
) log (1− 2Mr

2

r3Σ
)

]
, (117)

with Tc denoting the temperature at r = 0, and from (104)

ω =
r

rΣ

√√√√√ 1− 2M
rΣ

1− 2Mr2

r3
Σ


3
2


1−

√√√√√ 1− 2M
rΣ

1− 2Mr2

r3
Σ


+ ωΣ


 . (118)

Thus our model represents a conformally flat sphere of fluid evolving slowly and shear

free, with homogeneous energy density and pressure, satisfying the “inflationary” equation

of state ρ+ Pr = 0, with an inward (q < 0) heat flux.

3.6 General case

In the most general case, we obtain from (76) and (73), after some rearrengements,

[r3(E − 4πΠ− 4πq̃ω)]† + r34πρ̃† = −4π(q̃ω)†r3, (119)
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or, equivalently

[r3(E − 4πΠ)]† + 4πr3ρ̃† = 4πr3q̃(σ
2
+ θ), (120)

if q̃ = 0 we recover (81).

Also, from (72), with the help of (67) we get

[r3(E − 4πΠ)]. + dr
dt
[r3(E − 4πΠ)]′ + 8πΠωe(ν−λ)/2r2

+4πr3
√
1− ω2eν/2[q̃(

s1

r
− 2a)− q̃†] = −2πσr3(ρ̃+ P̃r)

√
1− ω2eν/2, (121)

which yields (84) in the non–dissipative case.

From (120) it is clear that the appearance of inhomogeneities in the energy–density are

controlled by the Weyl tensor, the anisotropy of the pressure and the dissipation. If we

express the heat flux through the temperature, the relaxation time and the heat conduc-

tion coefficient, by means of some transport equation (e.g. ([23]) then the aforementioned

parameters may be related with the creation of such density inhomogeneities.

A similar conclusion applies to the shear of the fluid, as it follows from (121).

With the sole purpose of bringing out the role of dissipation in the formation of density

inhomogeneities, let us present a simple and highly idealized model.

3.7 A dissipative model with E − 4πΠ = 0
Since we want to exhibit the role of dissipation in the formation of ihomogeneities we

shall assume E − 4πΠ = 0, then from (55) and (58) it follows that

E − 4πΠ = 0⇔ m = 4π
3
ρ̃r3 ⇔ e−λ = 1− 8π

3
ρ̃r2 (122)

From (72), (120) and (76) we obtain

ρ̃† = q̃
3ωs1

r
, (123)

and

3s1r2(q̃ + P̃rω) + (ρ̃r
3)∗ = 0, (124)

then combining the Einstein equations (12) and (13) with (122), it follows that

ν ′ =
8π(ρ̃+ ρ̃′r + 3P̃r)r

3(1− 8π
3
ρ̃r2)

. (125)

We shall further assume the equation of state

P̃r =
1

3
ρ̃ (126)



CBPF-NF-047/03 19

then, replacing (126) into (125) we obtain

eν =
(1− 8π

3
ρ̃Σr

2
Σ)

2

1− 8π
3
ρ̃r2

. (127)

Next, using (124) and (123) it follows that:

ρ̃† =
3ωq̃

r

√
1− 8π

3
ρ̃r2

1− ω2
(128)

and

ω =
− ˙̃ρr ±

√
( ˙̃ρr)2 − rρ̃′(rρ̃′ + 4ρ̃)(1− 8π

3
ρ̃Σr2Σ)

2

(rρ̃′ + 4ρ̃)(1− 8π
3
ρ̃Σr2Σ)

(129)

In the particular case ρ̃ = ρ̃(t) (but ρ̃† �= 0), these last equations reduce to

ω =
− ˙̃ρr

2ρ̃(1− 8π
3
ρ̃Σr

2
Σ)

(130)

and

q̃ =
1

3
˙̃ρre

λ−ν
2 (131)

From junction conditions it is very simple to express ρ̃ and ˙̃ρ, and thereof all physical

and metric variables in terms of the total mass M , the velocity of the surface ωΣ, the

radius rΣ and the luminosity of the sphere. Equation (128) shows how dissipation produces

density inhomogeneity. It is worth noticing that both kinds of dissipative processes (ε and

q) may produce such inhomogeneity.

4 Conclusions

We have established the set of equations governing the structure and evolution of self–

gravitating spherically symmetric dissipative anisotropic fluids. Emphasis has been put

on the role played by the Weyl tensor, the anisotropy of the pressure, dissipation, density

inhomogeneity and the shear tensor.

The particular simple relation between the Weyl tensor and density inhomogeneity, for

perfect fluids (also valid for locally isotropic, dissipative fluids in the quasistatic regime),

is at the origin of the Penrose’s proposal to provide a gravitational arrow of time. How-

ever the fact that such relationship is no longer valid in the presence of local anisotropy

of the pressure and/or dissipative processes, explains its failure in scenarios where the

abovementioned factors are present.

From (120) it is apparent that the production of density inhomogeneities is related to

a quantity involving all those factors ([r3(E − 4πΠ)]† − 4πr3q̃(σ
2
+ θ)). This situation is
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illustrated in the example provided in the last section, where density inhomogeneity is

produced by dissipative processes alone. Thus if following Penrose we adopt the point of

view that self–gravitating systems evolve in the sense of increasing of density inhomogene-

ity, then the absolute value of the quantity above (or some function of it) should increase,

providing an alternative definition for an arrow of time.
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