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ABSTRACT

We propose a quantum string functional for the Wheeler-De Witt quantum Einstein grav-
ity constraint in the Ashtekar-Sen field coordinates.

Key-words: Ashtekar-Sen quantization; Quantum gravity; String representation.



~1- CBPF-NF-046/94

1 Introduction

The Ashtekar-Sen propose of a new set of complexified SU(2) coordinates for Einstein
action ([1]) has became very promising at the quantum level by allowing explicit classical
loop space solution for the Wheeler-De Witt equation without cosmological term ([2]).

In this rapid communication we follow our previous studies ([3],[4],[6], {10},{11]) by
proposing to replace the classical closed loop in the Smolin-Jacobson wave functional by a
random surface (quantum string) possessing SU(2) color degrees ([3]). We show, thus that
this proposed quantum string wave functional satisfies the Wheeler- De Witt equation and
the diffeomorphism constraint.

2 The Random Surface Wave Functional

Let us start our analysis by considering the problem of associating a wave functional
for an arbitrary self-intersecting random surface S with boundary C.; = {C.(0),0 <
o < 27,C,(0) = C,(27) = z} and possessing SU(2) color degrees of freedom interacting
with an external SU(2) connection A%(xz)A:. Here ); denote the SU(2) generators in the
fundamental representation.

The surface § is characterized by two fields: firstly, by the usual (bosonic) vector
position X,(¢), £ € D and D is the appropriate parameter associated to the surface
Xu(D) = S. The surface SU(2) color variable g(¢) belongs to the fundamental SU(2)
group. The intrinsic metric properties of § are represented by 2D metric fields kay(£)
(14])-

The classical action for this color SU(2) surface is given in the Polyakov’s formalism

([4])

S =S+ 5% (1)
with
S = 3 [ PeVERAXXNQ +4* [ PevR (La)
ID D
5@ = L fD LE(VRTr) (g 18,9)?) + 4xiTua[g] (1.b)

where T',;[g] denotes the two-dimensional Wess-Zumino functional. Its existence, to-
gether with the integer m in the written SU(2) o-model afford us to consider the more

suitable fermionic equivalent action for S{&)

5 = jD (VE Blr Vo ))E) ()

where the two-dimensional Dirac field ¥(¢) belongs to the fermionic fundamental SU(2)
representation.

At this point, the simplest action taking into account the interaction with the external
Ashtekar-Sen connection is given by

S™(€), $(€); Aulz)] = e L (VR 970X, A (2) M) ()¢ (3)
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It is instructive point out the interaction eq. (3) written in terms of the bosonic SU(2)
variable g(£) [5].

The complete classical interacting action eq. {1}, eq. (2) and eq. (3) is invariant under
the gauge transformations

ALX©) — (E AL+E0,0(X°)
$E) —~ UXTEE)
Be) - HOOXEE) (4)

where £,y € SU(2)
We shall now use eq. (1) and eq. (3) to propose the following random surface fermionic
functional integral as a surface Wilson Loop ([6])

WanlS, Comy A] = Trtr { [ WD 1.0, 002r,0)
exp{—(So + S{ + 5™} } (5)

Notice that our above proposed random surface phase factor is a 2 x 2 matrix in the
flat domain D(a,b = 1,2).

The covariant fermion functional integral is defined by the functional element of volume
associated to the following functional Riemann metric with the fermions fields satisfying
the Neumann boundary condition

169])? = /B (VRGw6w)](E) e (6)

The quantum surface functional will be defined by the Nambu-Goto functional integral
over the X,(£) variables as written in ref. (7] - eq. (23) with the Dirichlet boundary
condition 85 = C,, and in the orthonormal surface coordinates

Z{ > {WalS, cu,A]}} (WaslS, Cezy Al) = 0[4] (7)
Cxa {8}:85=C;z2
where (a6
= DIC.(0)]e”3 by w(CH(o)Pdo 7.a
> Loy, PO (1)

is the z-dependent loop average and

i = oo Moz (= [ &G0 X))

%—(4+3) (@XHYOXH) o }
cap{ B0 [ gerag (FEICL @xn0,0) €60} ()

denotes the correct way to sum random surfaces with wheight given by the Nambu-Goto
action.
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Let us show that eq. (7) satisfies formally the Wheller-De Witt constraint ({2]) inte-
grated over the three-dimensional manifold M C R* (([8]) - chapter 3).

iy 88 _
[, = Pike) gy s {WelS. o A} =0 ®

It 1s a straightforward calculation to show that

/M o ek (@) g i)
= [ /i) [ e/ (X @8O - X7(€), PX(E))
FLOE(©)- e T { [ Dewie it

$a(0, OBV N D(E)BE VBN Y(E)]o(27, 0)eap{—(So + 57 + 57} ) (9)

Wab[S-.u Csm A] =

In the context of random surfaces sum eq. (8) we have that the X, (¢) functional
integral lead us to the following condition in the e-perturbative expansion for eq. (7)

([9))-

(O*X*(€)FNX(¢) - X “'(E'))('a" X )EN0u[X )
= {6(8°X*(€))5(X(€) = X (€N X*)ENBul X (E))) (10)

As a consequence of F,,(X(€)) being anti-symmetric in the (g, v)-indexes we get the
result eq. (8).

It is interesting point out that only in the condition of non self-intersection surfaces
X,u(€) = X,.(€') - € = ¢ one obtains that eq. (5) is solution of the integrated Wheeler-De
Witt equation ([6]-Appendix C}.

In order to satisfy automatically general coordinate invariance on the 3D-manifold M

§r' = ' (X%) =* (=) (11)
with €'(z) being the vector fields generator of a element of Gpirr(M), one could con-

sider formally the functional integral over Gpirr(M) of the action piece of our proposed
solution eq. (5) involving the random surface S coordinates namelly

S0, (0] = 3 [ FEVRRPRLXAOBX#(E)
+e [ PEVREOPRORI"XHOALXEWE (12)

we have, thus, the Gprrr(M) invariant solution

&’[ﬁ, :B] = Z {Z Z Wab[S’ € :Cﬂa A] } (13)

e{z}eGprpr{M} | Ciz {5:05=0s:}
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where the sum over the fields generators €'(x) on M must be weighted with the non-
compact formal Haar measure associated to Gpirr(M).

Another Gprrr(M) invariant solution of the Wheeler-De Witt equation (8) is to con-
sider the domain parameter D) contained on M in such way the Gprrr(M) when restricted
to the two-dimensional sub-manifold DcM coincides with Gprrr(D) which is automat-
ically satisfied by eq. (5) since we have imposed the Neven-Schwarz condition on the
fermion fields ([6]).

#(0,0) = ¥(2x,0) _
':B(Os 0) = '2’-(27": 0) (14)

Another point worth to remark is that the supersymmetric random surface general-
ization of eq. (5)-eq. (7) XF(£,0) = X.(€) + ifp#(£) ([10]) still satisfies the integrated
Wheeler-De Witt equation without cosmological constant.

Finally we comment on the geometrical-physical observables associated to our pro-
posed random surface solution for Einstein quantum gravity. We propose that the sim-
plest operator which measures metrical information in this quantum geometrical approach
is the formal average of the desitised inverse object ([2])

(a9)e) = 5 [ dulAIB1A, 3 (Z_; m) B[4, 7 (15)

where {g,,(2)} is a possible outcome of a classical observable detect the topological man-
ifold M possesses the metric ds? = g,,(2)dz#dz” at Planck scale. The average in eq. (5)
dp|A] should be defined by the Chern-Simon theory on M in order to preserve diffeomor-
phism and gauge invariance of eq. (15).

du[A] = ezp{— / Tr(ANdA + %A A AN A)) (16)

In the case of our random surface degenerates to its boundary X,,(£§) — C,.{c), the
object eq. (15) will be given by Chern-Simon average of the Wilson loop defined by C,(o)
with the marked point 2 and leading to the generalized Jones polynomial associated to
our fermionic topological string by integrating out the fermion degrees of freedom ([11]}

A extended paper on the results presented on this rapid communication will appear
elsewhere.
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