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ABSTRACT

A unified treatment of the A¢* theory in any number of di
mensions (v) is given, within the scheme of dimensional regu-
larization. Use is made of the Gaussian approximation and a
comparison with the one loop effective potential is given in
different dimensions.

For fixed renormalized quantities, there are cases (in par-
ticular far v => 4) for which the bare parameters go to zero.
Nevertheless the corrections (Gaussian or perturbative) are

such that the final results are finite.

Key-words: Field theory; Renormalization; Dimensional reguliari

zation; "A¢*" theory.
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§ I INTRODUCTION

One of the simplest theories that can be analized is the
scalar one with 19" coupling. Nevertheless, questions about
its existence have been raised time and again 1] and even
now the situation seems to be rather inconclusive.

Apparently, there is a point where the situation seems to
be conclusive, namely: a well defined limiting process has
to be used to be able to obtain "a theory".

Extensive use has been made lately of the "Gaussian meth
od" |_27] which is claimed to be better than the loop expan-
sion |_37, and has been applied to the case under discussion [4]
and also for the analysis of symmetry breaking I:Sj, a case
previously discussed in reference I:Gj.

What we want to do is to introduce dimensional regulariza-
tion |:7] to deal with the divergent integrals which appear.
In this way we will also be able to consider the Gaussian ef
fective potential for A¢® theory in any number of dimensions.
We can see then in a compact way how the behaviour of the the
ory depends on the number of dimensions.

The same procedure is followed with the one-loop potential,
which is written in any number of dimensions and compared with
the Gaussian one.

In this analysis we adopt the point of view, already used in
previous references, that the bare constants are adjusted so

as to obtain the predetermined renormalized variables, mRand
AR.

In § IT we write the Gaussian effective potential as a function of
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the number of dimensions v. Following the path of ref. |:4] we
deduce the relations between mR, AR and mB,NBas well as the
conditions to minimize the potential.

In § III we discuss the cases v = 2n.

In § IV we go to the specificcasesv = 1,2,3 and 4.

In § V We repeat all these calculations with the one loop ef

fective potential and finally in § VI we discuss the results.

§ 11

We take the expression for the Gaussian effective potential

fram ref. [_4] form (7)

— 1. 2 _ 42 1 2.2 4 2 2
V= T,+ 5y =0T +5 mp¢ ™+ Ap0" + 6A;T ¢° + 33515 (1)
where
2n-1
d?k(w ) 2 2. 1/2
() = J k we = (k*+ Q?) (2)
(2m) 32
These integralé diverge for n > -1.
In order to handle these divergences we define:
v
_ (@ % oon-1 _2n? (TaxkV7? 2n-1
LW =|""=T% =3 T3 W (3)
2(2m) F(EJ , 2(2m)
v
-n -2 v
2n+v-2 - Td=-n=-3) I -3)
I =30 A = Ay = —v—  4)
n n " n v 2+ 4 ro v
2°12 2 T'(3-n) 212

Note, in particular:
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VA, = A (5)

(1) représents the effective potential with the value (4) for
the integrals in dimension v.

We observe that (1) is well defined for v = odd, while it
has poles for v = even.

The value of 0 which minimizes (1) is :(equating the deriva-

tive to zero and using (5))

2

2 . .2 V= 2
Q= mB + lZXBAOQ + lZAB¢ (6)
2 s
Defining & Z = mé (remembering that %% = 0) and taking
d¢
$=0

into account (6) we obtain:

2 . V=2 _ 2 _ A2
mB + lZABAOQO = ms = Qo (7)

where Qg is the value of Q? for ¢ = 0. From (7),

=m2 - 12A.Am° 8
B0 R (8)

Replacing in (6)

2 _ A2 V=2 v=2 (9)
(mR Q ) + lZABAO(Q - mR ) + 12}&B¢2 =0

Define:

with the result: (10)
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3XB
R v=-4 B
1.-6KB(V-2)AOmR

Solving this algebraic eq. gives:

V=4 V=42
. 1 +6) (v=2)A m, 1 +6p (V-2)A my :[+ Ag
B V=4 B _ V-4 _ A
24(v—2)AomR _ 24(v 2)AomR 12(\)2)Aom]K

(12)
we go back to (1) using (8) and substracting the value of V

for ¢ = 0. We obtain

A
=V - =_9%¢(q 2 2 v=2 1 2. Y
p=V-V ¢=0~— v(. -m ) +5 (m -Q )AOQ +3 mR¢ +Ag 0
(13)
2

- V-2 V-2 _ V=2 v=2. .2
+3XB'AO(Q mR )] 6 A (m -0 ) o

By the use of (9) we can elliminate Q' from this last eq.

the result being:

242 2 2 2
__(mmpt @ ) oo Loz oy, w2, 1 1
P = e e A () (O R e + (- 0%
B B

(14)

Diwhﬁngkw'mg and introducing the definitions

2
c % e el (15)
me R my
— l - - _
. (28% by xlesd) 258 + =P A-vamt+G-dae?  (6)

lZvAB

Dividing (9) by mé and using (15)

V-2
2

(1-x) +12358% + 123 (x 2 -Limy * = o (17)
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This last eq. fixes x as a function of ¢ and using this x
in (16) we obtain the effective potential as a function of .
In all these egs. the number of dimension v appears as a pa

rameter, covering in a compact way all integer dimensions.
§ II EFECTIVE POTENTIAL AS A FUNCTION OF v

Our purpose is to study these pair of eqs. as a function of
v  ((16) and (17)).

The first observation to be made is that for non-integer val
ues of v, everything is finite. As AO has poles only at v=2n, all
coefficients appearing in (16) and (17) are well defined. To

solve (17) we assume for small ¢ and v # 2n

x = c(l +a¢? +b5“). From here

v=2 v-2 (18)
X = ¢ ? (1 +£X%Elxa52+ bo*) + %(v-—Z)(v -4)a%p"

Replacing in (17) and equating to zero the coeffic¢ients of

powers of ¢ we obtain a solution

123
a = ST
V=4 ,v=-2
lZABAOmR (—3—) # 1
12xBAOm§'4%(v~2)(v-4)a2
- XBAomR 2
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The effective potential (16) is then (up to ¢" term):
- 1 y 20
P =35 0%+, 0% (20)

As it should be for self-consistency.

The solution (18), (19) is only valid for small 52.Fbrlarge
values of 52‘v£%7) tells us that x is aiso large (x>>1). If we then com
pare X with xji—.we see¢ that, asymptbtiéally, for v>4 the latter domi

nates, while for v<4 the former is dominant. S we have, from (17):

V-2
for v>4 x?2 > - ———%:Z o2, (21)
Amp
which means that
A
x » 6¥7% = ¢  with o < 2. (22)

For this reason the term-—2kB¢“ dominates in (16) and

p o> =-22 6" (23)

On the other hand, for v < 4, (17) gives

X > 123,47 (24)
and from (16)

P> A0 (25)
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We want to make a comﬁent.

The theory "\Ao"*" is considered renormalizable, by power
counting, for v < 4 in which case (25) shows that the Gaussian
effective potential goes like XBEﬁ exactly like the original
potential.

Assuming kB >0 we see that the theory makes sense for v <4
(v not being a pole).

For v >4 the effective potenﬁial does not have a lower bound

and the theory is known to be nonrenormalizable. (See (23)).
§ 3 v+>2n,n > 2

The previous discussion refers to the case where A, had no
pole. This is not the case when v is an even integer.
From form (12) we see that when v - to a pole of AO, one of

the roots is finite and the other goes to zero; i.e.:

Ag > - é; (26)

A E (1 —}5:2-5)48 (27)
where

e = L | (28) .

V=4
24 (v 2)mR Ao

where it is evident that € goes to zero like (v =2n) near a
pole of AO. Let us first discuss the finite case (26).

From (4) we see that A, has a pole at v =2n with residue
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n
Res A = (-1) 2 (29)
v+>2n ° (4m)™ (n-1) !

From (17) we deduce that for v - 2n, x > 1 in the following

way:

x =1 + (v-2n)K$* , (30)
K being a constant to be determined. So:

3 N

x =1 + (n=-1)(v-2n)K¢?

and replacing in (17) we obtain:

Observe that (31) coincides with the value for (a) from (19).
Note also that b goes to zero like (v -2n)?. Replacing (30)in

(l6) we get.
P =3 82 - 20,83 = 237 + a0 (32)

We see from (32) that having started with AB:$0 we © ended
with A, <0, a negative coefficient for the ¢* term. So, the
effective potential fails to give a ground state to the theory.

Now we go over to the case AB +~ 0 (cf (27)). If we first
take eq. (19) we note that althougha has a well defined limit,

this is not the case for b, which is seen to have a pole
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that invalidates (18).
From (27) and the definition of A (cf (4)), we deduce
4

v=4 _ 2 1
122gA m." " = 555 o+ -——4>‘R

K_(v-2n)] (33)

Taking (33) into account, (17) gives, in lowest order:

L
n-1

n-1

1 - x + (x - 1) =0 (34)

which, for n>2, has x=1 as double root. This ig 5 also the

only positive root of (34). We can then expand X 2 as a func

tion of the small parameter x - 1. We have

V=2 V=2

x 2 =Ow 1)) 7 =1 %52 0e1) 45 v-2) (v-4) (k1) +... (35)
Replacing (33) and (35) in (17) we get:
L ox 120,07 +[1 +-50 (yo2 1 2

x +12X,0% + *Z‘x;“)‘ n)|[x-1+F5(v-4) (x-1)7] =0 (36)
In lowest order:

) 2 \)"4 - 2 _
12)\B¢ + T(,X l) =0

(x=1)2 = = B 42 (37)

1/2

Which shows that x=1 +0 (¢ ) and also that is complex (un

physical), for any n >2. This should be related to the fact

that in this case the theory is not renormalizable.
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§ 4 SPECIAL CASES

Of the lower dimensional cases, v=1 and v=3 are well de-
fined and without problems. In particular eq. (17) reduces to
a cubic (resp. quadratic) equation in xl/2 with finite coef-
ficients l:3]. When solved for x, the effective potential can
be explicitly calculated (cf (16)) and the genéral properties
pointed out in § 2 can be checked.

For v = 2, although A has a pole, the product (v -2) A is
finite and equal to - 5%.

Then, if we take into account that

v-2
2

-2
x4 -1 > 222 pnx (38)

[\

We see that eq. 17, reduces, for v = 2, to:

3rg
1 - x + 12AB¢2 - — fnx =0 (39)

2
Tm
R

For small ¢?> we assume
x=1 + a¢? +bo"* ...

For which eq. (39) gives:

122 a?x

B 3
a=———=—  ; b=3 —B (40)
kB 2 2 3
1+3 e + 3y
ﬂmé

(40) are easily seen to coincide with (19) for v =2.
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The effective potential eq. (16) is also seen to be finite

for v » 2.

Now we go over to the particular case
v =>4 , A - 0

If we start from (17)

v=-2
(1-x) + 12307 + 120 am (%2 - 1) =0 (17)

B0 R
We see that to the lowest order it is identically satisfied,

as (33), which is valid in this case, implies

Developping (17) near v = 4, rearranging terms using 33
V-2
and xZ - 1 =x —J.ﬁxﬁnx(ﬁ%i) we get:

2
(1,-x)<§ +(Z;) ) + 161%¢% + xfnx = 0 (41)
R

which coincides with form (30) of ref. | 4]

For the effective potential we get for v - 4

- -1)2 -
p= izl el T %02 (42)
12872 16X,

which coincides with form (29) of same ref. when (41) is taken
into account.

If we look at (8)
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2 _ 2 v=-2
my = mp lZABAOmR (8)

and use (33) in lowest order (this is true for v - 2n)

= V=4 2 o D=2 o 46
my = S—5 M —T mp n > 2 (46)

N
<
i
[~
o
=l k=]

We see then that in four dimensions (n =2).M,=> 0.

We see also that A&‘ is a very peculiar theory, both Ay and
mp are infinitesimal constants and the theory must be:computed
at v # 4 and only afterwards, the limit v - 4 must be taken.

It is in this sense that the theory seems to exists.

§ 5 ONE LOOP EFFECTIVE POTENTIAL

With the aim of comparison we will take the one loop effec

tive potential given in ref. (8) as a function of the number of

dimensions.
v v v
I'(-%) - 122 =
1 2.2 b 2 242 B ,2\2
V= 3 mio? + Ay z(4w)\’/2(mB) @+--z—-mB ¢) (44)

Developping the last term for small ¢2 (up to ¢ %

Vv AV
Fc-j) 242 | u
V=- 572;7377(m3) +is mR¢ + XR¢ (45)
with
V
m2 = m?2 + (1 2 v=2
R B j————g— o lZAB (46)
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r2 -2
_ _ _____2_ vv—a 2
KR = AB S mB 36)\B (47)
(4m)Z

Comparing resp. with (8) and (1) we see that they coincide
up to first and second order in AB’ resp.

On the other hand, asimptotically in¢, the loop potential is
proportional to ¢v. This means that: for v <4 the term AB¢“
daminates, as for the Gaussian approximation. On the other hand, for
v >4 the one-loop correction is unbounded .

For v »2n the I'-functions in (46) and (47) have poles. Then

for m§ and A, to be finite it is necessary to have A; >0 and
mé + 0, (from (46) (47)). It is then easy to see thatwe should
have
A
(4m? (- 1)n"
V) 2 R
my > S (48)
AT(1 -3,
A
2o, 1 M (49)
2 Vo 2
mB 3(—2- 1) mR
v DT am Pl (v - 2n)
i.e. my = (50)

4(1’1"2): >\R

for v » 2n.
The zero loop potential then goes to zero, but the one loop
potential gives a finite result, namely:

A
. 4 R. n .
(i 2 o)
.n-1 m? R
v = my :) (51)

8n! (n~-2)! A

R

In particular, for v = 4 (n=2) we get
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D S T P Y (53)
2 R R ‘

It is interesting to observe that while the original poten
tial :goes to zero, the one loop correction gives rise to the
same potential in term of the renormalized guantities.

Also from (49) (50) for v = 4

2

2Tm
N R 1/2
m]23 v —)\—177 (4 -v) (54)
R
Ag X %; A;/Z(A _v)l/2 (55)

(54) and (55) shows that we must approach VvV = 4 from below.
For the case v +2, we note that for (46) and (47) to give

finite mé and A, it is necessary that we have

‘ 3

2 2 _ 1 B .

Mg > W = 737 5 rorg T AR
,(Al"-é-)

The first coincide with (8) exactly while the second one

coincides with (1ll) in lowest order.

§ 6 DISCUSSION

In the first part of the paper we discussed the Gaussian
approximation within the scheme of dimensional regularizatién.
This allowed us to treat the X¢" theory in a unified way for
any number of dimensions. For any v we observe that the asym

ptotic behaviour of the effective potential is of the form.



CBPF-NF-046/84

-15-

+ xB¢“ if v<4 or
- 2AB¢“ if v >4

Showing how the renormalizability reflects in the Gaussian
appréximation.

For odd powetsv =2n +1 the effective potential is finite
and the asymptotic behaviour is the one pointed out above.

For v = 1,2,3, everything is finite and well behaved.

For v=4 we essentially reobtain the results of ref, [:4]
with the addition that the bare mass goes to zero with the
bare coupling constant.

In the second part we analyse the one~loop approximation
with results that are similar to the previous one. For exam-
ple the asymptotic behaviour, where only for v <4 it isof the
form Ay$" while for v > 4 it goes 1like ¢°.

The cases in which the bare coupling constant goes to zero
are examples of "evanescent couplings" which were previously
introduced to obtain the triangle axial anomaly [:9].

In perturbation theory one can start (at v #4) with a coup
ling which is zero when read at dimension four but which tends
to zero for v +4 in such a way that when multiplied with a
divergent integral (v U%Z? coming from perturbative correc-
tions, the result is finite. For instance a divergent intégral
(v ~=z) when multiplied with A2 (A~ /45%, see form (55)) gives
a finite result. We can then see that "the limit of the theo
ry" for v - 4 is not equal "to the theory of the limit". The

latter being @ free particle theory.
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In the Gaussian approximation something similar occurs. The
case AB +~ 0 is also "evanescent" but when multiplied with the
divergent quantity Ao it gives a finite result (see for exam-

ple (33)).
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