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1 Introduction

Some years ago, Misner and Sharp (Misner & Sharp 1965) and Misner (Misner 1965)

provided a full account of the dynamical equations governing the adiabatic, and the

dissipative relativistic collapse in the streaming out approximation.

The relevance of dissipative processes in the study of gravitational collapse cannot be

over emphasized. Indeed, dissipation due to the emission of massless particles (photons

and/or neutrinos) is a characteristic process in the evolution of massive stars. In fact, it

seems that the only plausible mechanism to carry away the bulk of the binding energy of

the collapsing star, leading to a neutron star or black hole, is neutrino emission (Kazanas

& Schramm 1979).

In the diffusion approximation, it is assumed that the energy flux of radiation, as that

of thermal conduction, is proportional to the gradient of temperature. This assumption

is in general very sensible, since the mean free path of particles responsible for the prop-

agation of energy in stellar interiors is in general very small as compared with the typical

length of the object. Thus, for a main sequence star as the sun, the mean free path

of photons at the centre, is of the order of 2 cm. Also, the mean free path of trapped

neutrinos in compact cores of densities about 1012 g. cm−3 becomes smaller than the size

of the stellar core (Arnett 1977, Kazanas 1978).

Furthermore, the observational data collected from supernova 1987A indicates that

the regime of radiation transport prevailing during the emission process, is closer to the

diffusion approximation than to the streaming out limit (Lattimer 1988).

However in many other circumstances, the mean free path of particles transporting

energy may be large enough as to justify the free streaming approximation. Therefore it

is advisable to include simultaneously both limiting cases of radiative transport, diffusion

and streaming out, allowing to describe a wide range of situations.

In a recent work (Herrera & Santos 2003) we have studied the effects of dissipation, in

both limiting cases of radiative transport, within the context of quasi–static approxima-

tion. This assumption is very sensible because the hydrostatic time scale is very small for

many phases of the life of a star. It is of the order of 27 minutes for the sun, 4.5 seconds

for a white dwarf and 10−4 seconds for a neutron star of one solar mass and 10km radius

(Schwarzschild 1958; Kippenhahn & Weigert 1990; Hansen & Kawaler 1994). However,

during their evolution, self–gravitating objects may pass through phases of intense dy-

namical activity, with time scales of the order of magnitude of (or even smaller than) the

hydrostatic time scale, and for which the quasi–static approximation is clearly not reliable,

e.g.,the collapse of very massive stars (Iben 1963), and the quick collapse phase preceding
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neutron star formation, see for example (Myra & Burrows 1990) and references therein.

In these cases it is mandatory to take into account terms which describe departure from

equilibrium, i.e. a full dynamic description has to be used.

Thus the extension of Misner dynamical equations as to include dissipation in the

form of a radial heat flow (besides pure radiation) is our first task in this paper. This is

presented in Section 3. Then in the following Section, the resulting dynamical equation

is coupled to the transport equation obtained in the context of the Müller–Israel–Stewart

theory ( Müller 1967, Israel 1976, Israel & Stewart 1976, 1979).

After doing that we show that the effective inertial mass density of a fluid element

reduces by a factor which depends on dissipative variables. This result was already known

(see Herrera 2002 and references therein), but being valid only, just after leaving the

equilibrium, on a time scale of the order of relaxation time. The novelty here, and

the main result of this paper is, on the one hand, that such reduction of the effective

inertial mass density is shown to be valid at an arbitrary time scale, and on the other,

that the“gravitational force” term in the dynamical equation is also reduced by the same

factor, as expected from the equivalence principle. Prospective applications of this result

to astrophysical scenarios are discussed at the end.

In the next section the field equations, the conventions, and other useful formulae are

introduced.

2 The energy–momentum tensor and the field equa-

tions

In this section we provide a full description of the matter distribution, the line element,

both, inside and outside of the fluid boundary and the field equations this line element

must satisfy. Since we are going to follow closely the Misner approach (Misner 1965) we

shall use comoving coordinates (for a description of gravitational collapse in non–comoving

coordinates, see (Herrera et al 2002) and references therein).

2.1 The interior spacetime

We consider a spherically symmetric distribution of collapsing fluid, which, for sake of

completeness, we assume to be locally anisotropic, undergoing dissipation in the form of

heat flow and free streaming radiation, bounded by a spherical surface Σ. For such system
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the energy–momentum tensor is given by

T αβ
− = (µ+ P⊥)V αV β + P⊥gαβ + (Pr − P⊥)χαχβ + qαV β + V αqe¯

ta + εlαlβ , (1)

where, µ is the energy density, Pr the radial pressure, P⊥ is the tangential pressure, ε is

the radiation density, V α is the four velocity of the fluid, qα is the heat flux, χα is a unit

four vector along the radial direction and lα is a null four vector. These quantities have

to satisfy

V αVα = −1, V αqα = 0, χαχα = 1, χαVα = 0, lαlα = 0. (2)

We assume the interior metric to Σ to be comoving, shear free for simplicity, and spheri-

cally symmetric, accordingly it may be written as

ds2 = −A2(t, r)dt2 +B2(t, r)(dr2 + r2dθ2 + r2 sin2 θdφ2), (3)

and hence

V α = A−1δα
0 , q

α = qδα
1 , l

α = A−1δα
0 +B−1δα

1 , χ
α = B−1δα

1 , (4)

where q is a function of t and r and we have numbered the coordinates x0 = t, x1 = r,

x2 = θ and x3 = φ. Now the Einstein’s field equations become with the help of (1-4)

8πT−
00 = 8π(µ+ ε)A2 = −

(
A

B

)2

2B′′

B
−
(
B′

B

)2

+
4

r

B′

B


+ 3

(
Ḃ

B

)2

, (5)

8πT−
01 = −8π(qB + ε)AB = −2

(
Ḃ′

B
− B′

B

Ḃ

B
− A′

A

Ḃ

B

)
, (6)

8πT−
11 = 8π(Pr + ε)B2 =

(
B′

B

)2

+
2

r

B′

B
+ 2

A′

A

B′

B
+

2

r

A′

A

−
(
B

A

)2

2B̈
B

+

(
Ḃ

B

)2

− 2
Ȧ

A

Ḃ

B


 , (7)

8πT−
22 =

8πT−
33

sin2 θ
= 8πr2P⊥B2 = r2


B′′

B
−
(
B′

B

)2

+
1

r

B′

B
+
A′′

A
+

1

r

A′

A




−r2
(
B

A

)2

2B̈
B

+

(
Ḃ

B

)2

− 2
Ȧ

A

Ḃ

B


 , (8)

where the dot and prime stand for differentiation with respect to t and r. The rate of

expansion Θ = V α
;α of the fluid sphere is given, from (3) and (4), by

Θ = 3
Ḃ

AB
, (9)
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and from (6) we have

8π(qB + ε)B =
2

3
Θ′. (10)

Since q > 0 and ε > 0 then from (10) we have Θ′ > 0 meaning that, if the system

is collapsing Θ < 0, q and/or ε decrease the rate of collapse towards the outer layers

of matter. If q = 0 and ε = 0 from (10) Θ′ = 0, which means that the collapse is

homogeneous.

The mass functionm(t, r) of Cahill and McVittie (Cahill & MacVittie 1970) is obtained

from the Riemann tensor component R23
23 and is for metric (3)

m(t, r) =
(rB)3

2
R23

23 =
r3

2

BḂ2

A2
− r3

2

B′2

B
− r2B′. (11)

2.2 The exterior spacetime

The exterior spacetime to Σ of the collapsing body is described by the outgoing Vaidya

spacetime which models a radiating star and has metric

ds2
+ = −

[
1− 2m(v)

ρ

]
dv2 − 2dvdρ+ ρ2(dθ2 + sin2 θdφ2), (12)

where m, the total mass inside Σ, is a function of the retarded time v. The surface Σ

described by the comoving coordinate system (3) is r = rΣ = constant, while in the non

comoving coordinate system (12) is ρ = ρΣ(v). Matching the interior spacetime (3) with

source (1) to the exterior spacetime (12) by using Darmois junction conditions we obtain

(Pr)Σ = (qB)Σ, (13)

(qB + ε)Σ =
1

4π

(
L

ρ2

)
Σ

, (14)

(rB)Σ = ρΣ, (15)(
r3

2

BḂ2

A2
− r3

2

B′2

B
− r2B′

)
Σ

= m(v), (16)

AΣdt =

(
1− 2m

ρ
+ 2

dρ

dv

)1/2

Σ

dv, (17)

where L is defined as the total luminosity of the collapsing sphere as measured on its

surface and is given by

L = L∞

(
1− 2m

ρ
+ 2

dρ

dv

)−1

, (18)

and where

L∞ =
dm

dv
(19)
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is the total luminosity measured by an observer at rest at infinity. The result (13) rep-

resents the continuity of the radial flux of momentum across Σ which only the heat flow

q appears. However, for the total radiation leaving Σ (14) the radiation ε contributes as

well as q. Although it might seem to be obvious, it is perhaps important to stress that

the radiation ε has the same null property associated to the exterior null radiation that

it produces, while the heat flux q, producing the exterior null radiation too, is not a null

flux. Relation (15) is the equality of the proper radii as measured from the perimeter of

the spherical surface Σ in both frames (3) and (12). The expression for the total mass

(16) is the corresponding mass function (Cahill & Mac Vittie 1970) given by (8). The

relationship of proper times measured on Σ with both frames (3) and (17) is given by

(17).

3 Dynamical equations

For studying the dynamical properties of the field equations and following Misner and

Sharp, let us introduce the proper time derivative Dt given by

Dt =
1

A

∂

∂t
. (20)

Then using (20) we can describe the velocity U of the collapsing fluid as

U = rDtB < 0 (in the case of collapse), (21)

then (11) can be rewritten as

(rB)′

B
=

[
1 + U2 − 2m(t, r)

rB

]1/2

= E. (22)

The right hand side of (22) can be interpreted as being the energy density E of a collapsing

fluid element. Next, by taking the proper time derivative of (11) we obtain

Dtm = r3BḂB̈

A3
+
r3

2

(
Ḃ

A

)3

− r3BȦḂ
2

A4

+
r3

2

ḂB′2

AB2
− r3B

′Ḃ′

AB
− r2 Ḃ

′

A
. (23)

Considering (6) and (7) we can rewrite (23) as

Dtm = −4π

[
(Pr + ε)r3B

2Ḃ

A
+ (qB + ε)r2B(rB)′

]
, (24)
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and with (21) and (22) it becomes

Dtm = 4π [−(Pr + ε)U − (qB + ε)E] (rB)2, (25)

which gives the rate of variation of the total energy inside a surface of radius rB. In the

right hand side of (25) (Pr + ε)|U | (in the case of collapse U < 0) increases the energy

inside rB through the rate of work being done by Pr and the induction field produced

by ε and already observed in (Lindquist, Schwartz & Misner 1965). Clearly here the heat

flux q does not appear since it does not produce an induction field. The second term

−(qB + ε)E is the matter energy leaving the spherical surface.

Another proper derivative that helps us to study the dynamics of the collapsing system

is the proper radial derivative DR, where

R = rB, (26)

constructed from the radius of a spherical surface, as measured from its perimeter inside

Σ, being

DR =
1

R′
∂

∂r
. (27)

Then by taking the proper radial derivative (27) of (11) we obtain

DRm =
B

(rB)′


−r3B

′B′′

B2
+ r2B

′′

B
+
r3

2

(
B′

B

)3

− 3r2

2

(
B′

B

)2

−2r
B′

B
− r3A

′Ḃ2

A3
+
r3

2

B′Ḃ2

A2B
+ r3 ḂḂ

′

A2
+

3r2

2

(
Ḃ

A

)2

 . (28)

Considering (5) and (6) then (28) becomes

DRm = 4π

[
µ+ ε+ (qB + ε)

rBḂ

(rB)′A

]
(rB)2, (29)

and with (21) and (22) we finally have

DRm = 4π
[
µ+ ε+ (qB + ε)

U

E

]
(rB)2. (30)

This expression gives the total energy entrapped between two neighboring spherical sur-

faces with respect to proper radius inside the fluid distribution. The first term on the

right hand side of (30) µ+ ε is due to the energy density plus the induction field and no

heat flux appears. The second term (qB+ ε)U/E is negative (in the case of collapse) and

measures the out flux of heat and radiation.
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Finally, we can obtain the acceleration DtU of a collapsing particle inside Σ. In order

to do that we start from (7) and (11) which allows us to write

DtU = −
[
m+ 4π(Pr + ε)(rB)3

]
(rB)−2 +

A′

A

(rB)′

B2
. (31)

Calculating the r component of the Bianchi identities, T 1β
− ;β = 0, from (1) we obtain

P ′
r + ε′ + (µ+ Pr + 2ε)

A′

A
+ 2(ε+ Pr − P⊥)

(rB)′

rB

+(5qB + 4ε)
Ḃ

A
+ q̇

B2

A
+ ε̇

B

A
= 0. (32)

Substituting the expression A′/A from (32) into (31) and considering (11), (20), (26) and

(27) we obtain

(µ+ Pr + 2ε)DtU = −(µ+ Pr + 2ε)
[
m+ 4π(Pr + ε)R3

] 1

R2

−E2
[
DR(Pr + ε) + 2

ε+ Pr − P⊥
R

]

−E
[
(5qB + 4ε)

U

R
+BDtq +Dtε

]
. (33)

Equation (33) has the “Newtonian” form

Force =Mass density ×Acceleration (34)

The first term in the right hand side of (33) represents the gravitational force. It shows

that the gravitational force acting on a particle has a Newtonian part withm and a purely

relativistic gravitational contribution due to Pr and ε. The second term in square brackets

represent the hydrodynamical forces. It consists of the usual pressure gradient term

(including the contribution of the radiation to the pressure) DR(Pr+ ε) < 0 counteracting

collapse, and the anisotropic force term ε+Pr−P⊥ which can be positive or negative thus,

respectively, acelerating more or counteracting the rate of collapse. In these two terms

the appearance of ε is due to the contribution of radiation to the total energy density

and radial pressure. The last term in square brackets contains the specific contribution of

dissipation to the dynamics of the system. The first term within this bracket is positive

(U < 0) showing that the out flux of q > 0 and ε > 0 diminish the total energy inside

the collapsing sphere thereby reducing the rate of collapse. It is interesting to observe

the different effects that q and ε have on the dynamical behaviour of the collapsing fluid.

The heat flux q helps only to slow down the rate of collapse by diminishing the energy

inside the fluid sphere by producing an exterior outflowing radiation. On the other hand,

the radiation density ε behaves not only in a similar way as q by diminishing the energy
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of the collapsing sphere through the exterior outflow of radiation, but contributes too as

an induction field to the gravitational energy, first observed in (Lindquist, Schwartz &

Misner 1965), and contributes to the radial pressure Pr. The effects of Dtε have been

discussed in detail in (Misner 1965). Thus it remains to analyse the effects of Dtq, this

will be done in the next section after introducing the transport equation.

Before coming to the next section, we observe that from (33) the limit of hydrostatic

equilibrium when U = 0, q = 0 and ε = 0 can be achieved, producing

DRPR +
2(PR − P⊥)

R
= − µ+ Pr

R(R− 2m)

(
m+ 4πPrR

3
)
, (35)

which is just the generalization of the TOV equation for anisotropic fluids (Bowers &

Liang 1974), obtained in comoving coordinates in (Chan, Herrera & Santos 1993) while

studying dynamical instability for radiating anisotropic collapse.

4 Transport equation and its consequences

As we mentioned before we shall use a transport equation derived from the Müller-Israel-

Stewart second order phenomenological theory for dissipative fluids ( Müller 1967, Israel

1976, Israel & Stewart 1976, 1979).

Indeed, it is well known that the Maxwell-Fourier law for the radiation flux leads to a

parabolic equation (diffusion equation) which predicts propagation of perturbation with

infinite speed (see Joseph & Preziosi 1989, Jou, Casas-Vázquez J.& Lebon 1988, Maartens

1996, Herrera & Pavón, 2002 and references therein). This simple fact is at the origin

of the pathologies (Hiscock & Lindblom 1983) found in the approaches of Eckart (Eckart

1940) and Landau (Landau & Lifshitz 1959) for relativistic dissipative processes.

To overcome such difficulties, different relativistic theories with non-vanishing relaxation

times have been proposed in the past (Müller 1967, Israel 1976, Israel & Stewart 1976,

1979, Pavón, Jou & Casas-Vázquez 1982, Carter 1976). The important point is that all

these theories provide a heat transport equation which is not of Maxwell-Fourier type

but of Cattaneo type (Cattaneo 1948), leading thereby to a hyperbolic equation for the

propagation of thermal perturbation. Thus the corresponding transport equation for the

heat flux reads (Maartens 1996)

τhαβV γqβ;γ + qα = −Khαβ(T,β + Taβ)− 1

2
κT 2

(
τV β

κT 2

)
;β

qα, (36)

where hµν is the projector onto the three space orthogonal to V µ, κ denotes the thermal

conductivity, and T and τ denote temperature and relaxation time respectively. Ob-

serve that, due to the symmetry of the problem, equation (36) only has one independent
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component, which may be writtten as:

τ(qB)̇B + qAB2 = −K(TA)′ − κT 2qB2

2

(
τ

κT 2

)
˙− 3τḂBq

2
. (37)

Now, using (20) and (31)

BDtq = −κT
τE

DtU − κT ′

τB
− qB

τ
(1 +

τU

R
)−

−κT
τE

[
m+ 4π(Pr + ε)R3

]
R−2 − κT 2qB

2AE

(
τ

κT 2

)
˙− 3UBq

2R
. (38)

We can couple the transport equation in the form above (38) to the dynamical equation

(33), in order to bring out the effects of dissipation (in the diffusion approximation) on

the dynamics of the collapsing sphere. With that purpose, let us replace (38) into (33)

(putting ε = 0), then we obtain after some rearrangements

(µ+ Pr)(1− α)DtU = Fgrav(1− α) + Fhyd +

+
EκT ′

τB
+
EqB

τ
− 4qBEU

R
+
κET 2qB

2Aτ

(
τ

κT 2

)
˙+

3UBq

2R
. (39)

Where Fgrav and Fhyd are defined by

Fgrav = −(µ+ Pr)
[
m+ 4πPrR

3
] 1

R2
, (40)

and

Fhyd = −E2
[
DRPr + 2

Pr − P⊥
R

]
, (41)

where α is given by

α =
κT

τ(µ+ Pr)
. (42)

We can now analyze the overall effects of dissipation (in the diffussion approximation)

on the evolution of the collapsing sphere.

First of all observe that as α tends to 1, the effective inertial mass density of the fluid

element tends to zero. This effect was known (see Herrera 2002 and references therein),

but only to be valid just after the system abandons the equilibrium, on a time scale of

the order of (or smaller than) the relaxation time. Here we see that it is present all along

the evolution. Furthermore we see that Fgrav is also multiplied by the factor (1 − α).

Indicating that the effective gravitational attraction on any fluid element decreases by

the same factor as the effective inertial mass (density). Which of course is to be expected,

from the equivalence principle. It is also worth mentioning that Fhyd is in principle

independent (at least explicitly) on this factor.
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Next observe that the third and the fourth terms, as well as the fifth and the last terms,

on the right hand side of (39), are of oposite sign and of the same order of magnitude (at

least in the case of not too strong gravitational field). Finally, the sign and the order of

magnitude of the sixth term is clearly, model dependent. Furthermore this term as well as

the last one on the right hand of (39) are absent in the “truncated” version of the theory

(see Triginer & Pavón 1995).

With these comments above in mind, let us imagine the following situation: A collaps-

ing sphere evolves in such a way that the value of α keeps increasing and approaches the

critical value of 1. As this process takes place, the ensuing decreasing of the gravitational

force term would eventually lead to a change of the sign of the right hand side of (39).

Since that would happen for small values of the effective inertial mass density, that would

imply a strong bouncing of the sphere, even for a small absolute value of the right hand

side of (39).

For this picture to be physcally meaningful one should first answer to the following

questions:

• How close may α approach the critical value?

• In what physical scenarios one could expect values of α close to the critical value?

Since these questions are related to each other, we answer to them, simultaneously.

First of all it should be mentioned that from the analysis of stability and causality

in dissipative relativistic fluids (Hiscock & Lindblom 1983), it follows that causality and

hyperbolicity (which imply stability) require for dissipative viscous free systems

τ >
κT

µ+ p
+
κ

n

c2s
cp
, (43)

τ >
κT

1− c2s

[
1

µ+ p
+

1

nT

(
1

cv
− c2s
cp

)
− 2αp

ncvκT (µ+ p)

]
(44)

and

τ >
κ

nc2scv

[
2αpT

κT (µ+ p)
− 1

]
, (45)

where n and cs denote the particle density and the sound speed, cp and cv are the specific

heat at constant pressure and volume, κT is the thermal expansion coefficient and αp

the isothermal compressibility. These expressions are found from equations (146-148)

in (Hiscock & Lindblom 1983), taking the limit βo, β2 → ∞ and αi = 0 (this method

was applied in Maartens 1996 to the case in which only bulk viscous perturbations were

present). It should be kept in mind that the conditions above, are obtained within a linear

perturbative scheme.
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Obviously, condition (43) is violated at the critical point (in fact it is violated, slightly

below it). However as we shall see below, it is not difficult to find physical conditions

for which the numerical values of variables entering in the definition of α lead to α = 1.

Therefore, the relevant question is: Can a physical system actually reach the critical point?

If the answer to this question is negative, then it should be explained how a given system

avoids the critical point. Since, as mentioned before, numerical values of κ, T , τ , µ, and

Pr, leading to α ≈ 1 may correspond to a non very exotic scenario. On the other hand, a

positive answer seems to be prohibited by causality and stability conditions. However, we

shall conjecture here that this might not be the case. In fact, the vanishing of the effective

inertial mass density at the critical point, indicates that linear approximation is not valid

at that point. So it seems that the behaviour of the system close to the critical point

cannot be studied with a linear perturbative scheme, in which case it might be possible

for a given system to attain the critical point. Furthermore, in the general case (including

viscosity) it may happen that causality breaks down beyond the critical point (Herrera

& Mart́ınez 1996). Thus, it appears that there exist situations where a given physical

system may attain the critical point and even go beyond it.

Indeed, condition α ≈ 1 can be accomplished in non very exotic systems. One of

them is an interacting mixture of matter and neutrinos, which is a well-known scenario

during the formation of a neutron star in a supernova explosion. In this case the heat

conductivity coefficient is given by (Weinberg 1971,Shapiro 1989)

κ =
4

3
bT 3τ, (46)

where τ is the mean collision time and b = 7Nνa/8, with Nν the number in neutrino

flavors and a the radiation constant. Assuming that two viscosity coefficients vanishes,

and p� µ then

α =
κT

τκ (µ+ p)
	 κT

τµ
. (47)

Using usual units, the critical point is overtaken if

T >

(
6µc3

7Nνa

)1/4

∼ 4.29× 108µ1/4, (48)

where we have adopted τ ∼ τκ, Nν = 3, T is in Kelvin and µ is given in g cm−3. The

values of temperature, for which α ≈ 1, are similar to the expected temperature that can

be reached during hot collapse in a supernova explosion (Shapiro & Teukolsky 1983 [§
18.6]).
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5 Conclusions

Following the scheme developped by Misner and Sharp, we have established the set of

dynamical equations governing the evolution of collapsing dissipative spheres, taking into

account, both, the free–streaming and the difussion approximation. We have further

coupled the dynamical equation with a heat transport equation obtained from the Müller-

Israel-Stewart theory. The resulting equation brings out the relevance of a critical point

(α = 1) for which, both the effective inertial mass density and the gravitational frorce

term vanish. We have shown that in principle that critical point may be attained under

acceptable physical conditions (e.g. a supernova scenario) and have speculated about

the possibility that in that case, a collapsing sphere bounces. Of course the eventual

application of this model to a supernova, would require much more details about the

astrophysical settings.

Before concluding we would like to make the following remarks:

1. It should be noticed that the appearance of the factor 1 − α in the inertial mass

density and the gravitational force term, is produced by the first term on the left

of equation (36). But this is the term which introduces causality in the transport

equation and therefore, is to be expected in any causal theory of dissipation. Ac-

cordingly our main result is also expected to hold for a general family of theories

which includes the Müller-Israel-Stewart theory. However, whereas the mere ap-

pearance of the factor 1− α in the dynamical equation is a very general result, the

possibility of reaching the critical point and the physical consequences derived from

that, will depend on the specific theory of dissipation to be adopted.

2. Observe the formal similarity between the critical point and the equation of state

for an inflationary scenario (µ = −Pr) without dissipation. This kind of equation of

state has been recently proposed to describe the interior of a cold compact object

without event horizons, and which would represent an alternative to black holes

(Mazur & Mottola 2001). One could speculate with the possibility that such interior

could be described instead, by a dissipative fluid with α tending to 1.

3. In the same line of arguments, collapsing objects endowed with strong magnetic

moments have been recently proposed also as alternatives to black holes (Robertson

& Leiter 2003). In these objects the magnetic dipole field drives them to radiate,

leading to steady collapse at an Eddington limit rate. As mentioned before, the

condition of such steady collapse, DtU ≈ 0, may be reached as α tends to 1, without

invoking the presence of strong magnetic fields. Alternatively the simultaneous
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action of both mechanisms would enhance the possibilities of formation of such

objects.

4. It should be clear that the analysis presented here depends strictly on the validity

of the diffusion approximation, which in turn depends on the assumption of local

thermodynamical equilibrium (LTE). Therefore, only small deviations from LTE

can be considered in the context of this work. Thus when we state that the effective

inertial mass density decreases by the factor (1− α), at all time scales, this means

at time scales within which the system is not very far from LTE.

5. For the sake of completeness we have considered an anisotropic fluid (instead of an

isotropic one, Pr = P⊥), leaving the origin of such anisotropy completely unspecified.

As it is apparent, anisotropy does not affect the most important result obtained here

(e.g. the existence of the critical point). However, should anisotropy be related to

viscosity, then for consistency the anisotropic pressure tensor should be subjected

to the Israel-Stewart causal evolution equation for shear viscosity.
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