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ABSTRACT

We analyze in the Path Integral Formalism the Polyakov’s Fermi-Bose Transmutation in
the context of the 3D Abelian Thirring model.
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The Polyakov’s Fermi-Bose Transmutation in the infrared regime of the (CP! model
([1}) has became a basic phenomenum to understand high 7, superconductivity in a
Quantum Field Framework ([2],[3]). In this paper we present the above cited phenomenum
in an Abelian four-fermion theory (the Thirring Model) by using the quantum field path
integral formalism.

Let us start our study by considering the 3D-massive Abelian Thirring lagrangian in
the Euclidean world '

L)1, ¥2) = ¥a1(#78)2 + g* (¥17*92)* + mep1yhe (1)

Here the (Euclidean) complex Fermi fields are denoted by (31,%3) and g? is the model
positive coupling constant. The 3D-Euclidean 4* matrices obey the usual relationship

{1} = i [v%7°] = 16, (2)

The Euclidean fields %(z) and 12(z) satisfy the Euclidean anti-commuting relations
(o, 8=1,2,3)

{91 (2), ¥5(2)} = 8ap8%(z - y) 3)

The Lagrangian (1) is invariant under the global Abelian group ¥; — €i*; 1, — e "¢,
with the Noetherian conserved current

Bu(P17"2)(z) = 0 (4)

In order to analyze the Polyakov’s Boson-Fermion transmutation, we consider the

generating functional
1

Z(ﬂ)[o'l 0]

Zay[n, A} = /DF [¢1(I)]DF(¢2(E)]G$;?{_ / &z (Lia)(¥1,%2) + Yy + nl,bz)}

(5)
By making use of the Hubbard-Stratonovich field reparametrization, we rewrite eq.
(4) in a form useful for our purposes

Zol 7l = gy | DT EIDT @)D Au(e)

cap (-3 [ #2432)) 6P1@.A)2)
eTp (— / Ez{th1(iv0 + gyA + m)p2 + At + m,bg]) (6)

where Ay(z) is an auxiliary Euclidean Abelian real vector field satisfying the Landau
gauge as a consequence of Eq. (4).

At this point, it becomes important to remark that the fermionic measure
DFp1(z) DF [2(z)] in eq. (6) is defined in terms of the normalized eigenvectors of the
self-adjoint Euclidian Dirac operator iv,(d, — igA,) since we want to keep the model’s
physical local gauge invariance in the pure fermion sector of the theory

¢1(3) — 11’1(-'5) e‘“‘(”) o
Pa(x) = th(z) e (7
Au(z) — Au(z)
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Note that this local Abelian gauge invariance in the fermionic parametrization eq.. (1)
is a consequence of the current conservation eq. (4) at the quantum level of the generating
functional eq. (5) and differs from the usual local gauge invariance of the gauge models.
The local invariance eq. (7) is a consequence of the following path integral identity

[ DF ()= D a(a)e ez {— [ Ealte =@, e-"a<=>} -
[ D N a(e) eap{ - [ Pttt ) - a(e)urr (o]} ©

In this quantum field path integral framework, the infrared Polyakov’s Fermi-Bose
transmutation ([1]) may be understood as the large fermion mass limit of the otherwise
trivial 3D-Abelian Quantum Field Thirring model ([4]).

Explicitly we should introduce a cut-off in eq. (6), write the effective m — oo field
theory and at the end of this procedure remove the cut-off in the final result.

Zoln ) = 5= [ DA exp (— [ o))

detlind + g1A + m)wm[(aﬂm)lew{% [ #ay aia)ir0+ gva+ m)-‘n(y)} (9)

The fermion vacuum loops associated to the fermion functional determinant may be
easily evaluated at the limit of large mass by using the proper-time definition for this
functional determinant. We have, therefore, the definition

log det{ind + gAy + m] = — lim ? Trm (e ( -t[i18+y'm+m]:) (10)

e— 0t

where T'r(r) denote the functional trace.
We have thus, the following result for the family of interpolating Dirac operator iyd +
sgA+m,0<s<1:

i[log det[i'ya + sg7A + m]] =

lim dt e TrrygyA(i70 + 3g7A.S + m)exp(—t[ivd + gsA + m]®) (11)

e—0t

By taking the limit of large fermion mass as in ref. [5], we get the result below, after
integrating the interpolating parameter s in the range 0 < s <1

e AR CAO)
_ip YT I2I f Faf ,.e“”F.,,(A))(a:)+0( ) (12)

log det(iv0 + gyA + m)/det(iy8+m) =

It is worth point out the existence of an induced (cut-off dependent) mass term for

the auxiliary vector field (this auxiliary vector field at the quantum level coincides with
the Noetherian U(1) global current A,(z) = (¥r17*42)(x))).
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Note that this mass term signals the dynamical breaking of the usual gauge invariance
in the pure fermionic sector of eq. (9) which involves the gauge field change A, — A,(z)+
13,0(z) as in 2D-models (see eq. [7]) and differing from the model gauge invariance
physical one eq. {7). It is instructive point out that we have evaluated the functional
determinant at the himit of m — oo by not imposing the usual gauge invariace above
mentioned, in the domain of the Dirac operator in the presence of the external auxiliary
field A,(z). If this is not the case one could rule out the first term in the right hand side
of eq. (12) by using the gauge invariance of this domain.

The physical consequence of this term is a renormalization of the bare fermion mass

at one loop [6] m
?B =mpgr. (13)

The second term in the right-hand side of eq. (12) is the Chern-Simons Lagrangian.
Substituting eq. (12)-eq. (13) int eq. (9) we get the partial result at large mp

Zin,ma = 0] = 7o [ DF(A4(o)

i ,
ezp{—-i (1 (41r)sz) /da:l:A }

cap{~ig™ST [ £a(A,e F(A)(a) | D(0,,) o)

esp{+> [ Lody i(a)(i10 + 974+ m) n(y) (14)
{2/ }

Following closely ref. [1], now we analyse the large mp limit of the external fermion
sources by considering the Feynman path integral representation for the Feynman green
function of the Dirac operator in the presence of A,(z)

(7 + g7A + ma) h(z,y) = fo e f DF[a(o)le’*ho oAl 5(z, )

p R
(15)
where the spin-factor is explicitly given by
$o5(z,y) = / DF[x#(0)).e o = X)) p {eff.:aa(«»(o}«,.)} (16)

Here P means the path ordenation of the 3D-7, matrices along the Feynman trajectory

{Xu(a)}.
At the limit of large mg, only the straight-line trajectory is leading to eq. (15)-eq.
(16) (¢ — 0) and producing the result

i (620 + 974+ mr)7h(e,0) = (U0 cop(rio [ @zt (1)

where U&l)’(z)

{v',¥%}.

are the usual spinerial base associated to the free massive fermion fields
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By grouping togheter eq. (17) and eq. (14) we finally obtain our Polyakov’s infrared
Bosonization for the 3D-Thirring model

Zn, 7] = 'Z-[i},-ﬁi' / DF[A,,(I)]ezp{_%( f ";;) j Pz Ai(x)}
cop{~igTYT [ EaAe E )G} ENOANE)
exp {+% / Brd®y(n,(z)n(z)) (U T )exp (+£g /: A,,(:z:)d:r:“) } (18) |

Now it is a straightforward consequence of eq. (18) the infrared (large mass) Bosoniza-
tion formulae for the 3D-Abelian Thirring model

Va(z) = Ui.ezp (ig _/ ] Audx")
Yi(z) = ﬁgz) ezxp (—-:'g fs A,;da:”) (19)

— 0

where A,(z) 1s the quantum field associated to the “massive” Chern-Simon theory

c(A,.(x))=-—-§( 9"‘“) [ et @ - L [ #aemm, )@ @)

Equations (19) and (20) are our main result.
In the important case of the Thirring model coupled to an external divergence free
current source Jy(z).

Lo (1,92, Ju) = Liay (1, %2) + Jul17*a)(2) (21)

we can proceed as above and obtain the associated Polyakov’s full bosonized generating
functional.

23] = 575 j DA SN @ AN Deap {5 [ (4, +J,;)*(==)}

2 ‘lg \/_ Birp T
{ 2em) / &z Ad(z) - —— j &z (A"?F,,(A))( )} (22)

We point out that we have neglected in eq. (9) the zeros modes of the Dirac operator
(148 + gyA + m) under the hypothesis that this set is a set of zero functional measure in
the manifold of the (random) Euclidean fermion fields {#1(z), ¥a(z)} contributing to the
generating functional eq. (6). They may be relevant only in a situation of implementing
a semi-classical approximation around these Saddole-points zero modes and being not
quantized within this hypothesis. In other words we have the field decomposition

¥i(z) = ${(z) + Api(z)
a(z) = () + hpi(z) (23)
Au(z) = AO(z) + B AY(z)
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with _
(170 + gA®y + m)ypty (z) = 0 (24)
and

DF [4n(2)| D" [2(2)] D" [Au(2) ~ DF[${(2)] DF [¢3(z)| D [AL(=)) (25)

In the case one quantize these zero modes it is easy to see that the fermionic normalized
generating functional eq. (6) (without the A,(z) - funcitonal integral) as well defined if
and only if the sources {n(z), i(z)} are orthogonal to these zero modes due to the existence
of the normalization factor in the theory generating functional.

Note that the fermion vacuum energy (the theory’s partition functional) is always zero
when one considers quantized zero modes, opposite to the case of Saddole-point frame-
work (eq. (23)-eq.(24)) where it is non zero and depending on the explicit geometrical
topological caracterization of the moduli space associated to these zero modes.

As a last remark we write a family of zero modes of the Euclidean 3D-Dirac operator
in the presence of special external A}’™***(z) vortex fields.

Explicitly we have the following result

(178 + gvAL™ () + m)(z) = 0 (26)
where
Ao(2,y,2) = Ao” (,¥)
Ar(z,y,2) = A (z,y) (27)
Ax(z,y,2) =0
and

$(z) = Pz, y).emm

Here {A{™(z,y), A{™(z,y)} are 2D-vortex field configurations and $(™)(z,y) the as-
sociated 2D-fermion (vortex) zero modes associated to the 2D-Chern number m(—oco <
m < o) ([7]).

Finally we remark that in the case of evaluating correlation functions of bilinear
fermion fields on the non-Abelian case at large number of colors one arrive at evalua-
tions of punctured Wilson loops in the gauge invariant non-Abelian Chern-Simons Theory
which by its turn are exactly given by the fermion vertexs associated to the proposed topo-
logical fermionic string representation of refs. (3], [8] for the Thirring bosonized eq. (82
non-Abelian Chern-Simon Theory with the gauge invariant fining tuning g*mp = (47)3
parametrization (see eq. (18)).
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