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Abstract

For the stationary axially symmetric vacuum spacetime we study the functional

invariance of the Ernst equation with the object of finding new solutions of this

complex equation. We present two classes of solutions. The first is obtained from

a three parameters SU(1, 1) transformation. While the second arises from the as-

sumption that there exists a functional dependence between the real and imaginary

parts of the complex Ernst potential.
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I Introduction

Einstein vacuum field equations for a stationary axially symmetric spacetime reduce to

the Ernst equation [1]

(ξξ̄ − 1)∇2ξ = 2ξ̄∇ξ · ∇ξ, (1)

where ∇ and ∇2 are the gradient and the three-dimensional Laplacian operators respec-

tively, ξ̄ is the conjugated of the complex potential ξ. The solution of (1) is usually

written in terms of prolate spheroidal coordinates, λ a radial coordinate and −1 ≤ µ ≤ 1

an angular coordinate , which are linked to the Weyl coordinates, ρ and z, by

ρ = k(λ2 − 1)1/2(1 − µ2)1/2, z = kλµ, (2)

where k > 0 is an arbitrary constant. The general solution of (1) can be expressed as

ξ(λ, µ) = P (λ, µ) + iQ(λ, µ), (3)

where P and Q are real functions of λ and µ. Substituting (3) into (1) we obtain

(P 2 + Q2 − 1)
[
(λ2 − 1)P,λλ + 2λP,λ + (1 − µ2)P,µµ − 2µP,µ

]

= 2P
[
(λ2 − 1)(P 2

,λ − Q2
,λ) + (1 − µ2)(P 2

,µ − Q2
,µ)

]

+4Q
[
(λ2 − 1)P,λQ,λ + (1 − µ2)P,µQ,µ

]
, (4)

(P 2 + Q2 − 1)
[
(λ2 − 1)Q,λλ + 2λQ,λ + (1 − µ2)Q,µµ − 2µQ,µ

]

= −2Q
[
(λ2 − 1)(P 2

,λ − Q2
,λ) + (1 − µ2)(P 2

,µ − Q2
,µ)

]

+4P
[
(λ2 − 1)P,λQ,λ + (1 − µ2)P,µQ,µ

]
, (5)

where the commas stand for differentiation with respect to the indexes.

In this paper we propose to study the invariance of the system (4) and (5) following

the action of a functional transformation. More precisely, the question that we want to

answer is the following. If [P (λ, µ), Q(λ, µ)] and [R(λ, µ), S(λ, µ)] are two solutions of

this system, under which conditions can we find transformations of the form P (R, S) and

Q(R, S) that can allow to pass from one system to the other? Then, if

ξPQ = P (λ, µ) + iQ(λ, µ), ξRS = R(λ, µ) + iS(λ, µ), (6)

are two solutions of the Ernst equation (1) we look for

ξPQ = P (R, S) + iQ(R, S) = ξPQ(ξRS). (7)

In two recent preprints [2, 3] the invariance of Ernst equation is considered. The effect

of coordinate transformations on the Ernst equation and the conditions of its invariance
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are studied in [2]. In the second preprint [3], transformations on the unknown functions

written explicitly with the Ernst twist potential leaving the complex field equation invari-

ant are obtained. Here we proceed in a slightly different way, we consider the conditions

for the invariance of the form of Ernst equation itself written with P and Q, which means

that we look for the invariance of the system (4) and (5). This method produces more

symmetrical results.

II The method

In (4) and (5) we assume a functional transformation

P (λ, µ) = P1 [R(λ, µ), S(λ, µ)] , Q(λ, µ) = Q1 [R(λ, µ), S(λ, µ)] , (8)

where [R(λ, µ), S(λ, µ)] is a solution of this system. We find that this functional depen-

dence has to verify six second order partial differential equations with unknowns P1 and

Q1 and variables R and S. In principle two equations are sufficient since there are two

unknowns.

To present the differential equations we first define the following quantities,

A1 ≡ (P 2
1 + Q2

1 − 1)P1,RR − 4Q1P1,RQ1,R − 2P1(P
2
1,R − Q2

1,R), (9)

B1 ≡ (P 2
1 + Q2

1 − 1)P1,SS − 4Q1P1,SQ1,S − 2P1(P
2
1,S − Q2

1,S), (10)

C1 ≡ (P 2
1 − Q2

1 − 1)P1,RS

−2Q1(P1,RQ1,S + P1,SQ1,R) − 2P1(P1,RP1,S − Q1,RQ1,S, (11)

A2 ≡ (P 2
1 + Q2

1 − 1)Q1,RR − 4P1P1,RQ1,R + 2Q1(P
2
1,R − Q2

1,R), (12)

B2 ≡ (P 2
1 + Q2

2 − 1)Q1,SS − 4P1P1,SQ1,S + 2Q1(P
2
1,S − Q2

1,S), (13)

C2 ≡ (P 2
1 + Q2

1 − 1)Q1,RS

−2P1(P1,RQ1,S + P1,SQ1,R) + 2Q1(P1,RP1,S − Q1,RQ1,S), (14)

which have to satisfy

A1 + B1 = 0, A2 + B2 = 0, (15)

in order to preserve the invariance of (4) and (5). Now we can write the system of six

partial differential equations which we present in two groups, the first arising from (4),

(P 2
1 + Q2

1 − 1)(P1,RR + P1,SS) = 2P1(P
2
1,R − Q2

1,R + P 2
1,S − Q2

1,S)

+4Q1(P1,RQ1,R + P1,SQ1,S), (16)

2(P 2
1 + Q2

1 − 1)
RP1,R − SP1,S

R2 + S2 − 1
+ A1 = 0, (17)

2(P 2
1 + Q2

1 − 1)
SP1,R + RP1,S

R2 + S2 − 1
+ C1 = 0; (18)
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and the second arising from (5),

(P 2
1 + Q2

1 − 1)(Q1,RR + Q1,SS) = −2Q1(P 2
1,R − Q2

1,R + P 2
1,S − Q2

1,S)

+4P1(P1,RQ1,R + P1,SQ1,S), (19)

2(P 2
1 + Q2

1 − 1)
RQ1,R − SQ1,S

R2 + S2 − 1
+ A2 = 0, (20)

2(P 2
1 + Q2

1 − 1)
SQ1,R + RQ1,S

R2 + S2 − 1
+ C2 = 0. (21)

We can verify that P1 = R and Q1 = S, as well as P1 = S and Q1 = R, are solutions

of the system (16-21), which must be true since (R, S) is a solution by construction of the

method itself.

In the following sections we build two kinds of different solutions of the systems (16-18)

and (19-21) which satisfy the invariance of Ernst equation. In the next section we obtain

the solution of the first kind satisfying a SU(1, 1) transformation with three parameters. In

section IV the second kind of solutions is presented which satisfy a functional dependence

between P1 and Q1.

III Solutions arising after SU(1, 1) transformation

Since we know that a particular solution of the system (16-18) and (19-21) is P1 = R and

Q1 = S we can consider the complex potential ξRS,

ξRS = R + iS, (22)

and build a new solution, which we call P and Q, after using a three parameters trans-

formation [5, 6],

ξ = P + iQ =
c1ξRS + d1

d̄1ξRS + c̄1

, (23)

with c1 and d1 complex and


 c1 d1

d̄1 c̄1


 ∈ SU(1, 1), |c1|2 − |d1|2 = 1. (24)

We call the attention that (23) is not, strictly, an Ehlers transformation (which is

wrongly stated as such in [5, 6]), which belongs to the group SU(2) and has only one

parameter. The transformation (23) belongs to the group SU(1, 1) or QU(2) (see [4] for

the group classification).

Now we can calculate P (R, S) and Q(R, S) and verify easily that they are solutions of

the system (16-21). The inverse solution of (23) is obviously also a solution of the same
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system. The solution (23) is more general than the one obtained in [3] but still not, of

course, the most general. We can find other types of solutions as we show in the next

section.

IV Solution with functional dependence between P

and Q

Here we look for a solution of (16-21) with the form of a functional dependence between

P and Q through a new unknown function σ,

P = P [σ(R, S)] , Q = Q [σ(R, S)] . (25)

Then (16-18) with (25) becomes,

(P 2 + Q2 − 1)P,σ(σ,RR + σ,SS)

+(σ2
,R + σ2

,S)
[
(P 2 + Q2 − 1)P,σσ − 2P (P 2

,σ − Q2
,σ) − 4QP,σQ,σ

]
= 0, (26)

(P 2 + Q2 − 1)P,σ

[
σ,RR + 2

Rσ,R − Sσ,S

R2 + S2 − 1

]

+σ2
,R

[
(P 2 + Q2 − 1)P,σσ − 2P (P 2

,σ − Q2
,σ) − 4QP,σQ,σ

]
= 0, (27)

(P 2 + Q2 − 1)P,σ

[
σ,RS + 2

Sσ,R + Rσ,S

R2 + S2 − 1

]

+σ,Rσ,S

[
(P 2 + Q2 − 1)P,σσ − 2P (P 2

,σ − Q2
,σ) − 4QP,σQ,σ

]
= 0. (28)

This system (26-28) is satisfied if

(P 2 + Q2 − 1)P,σσ − 2P (P 2
,σ − Q2

,σ) − 4QP,σQ,σ = 0, (29)

with

σ,RR + σ,SS = 0, (30)

σ,RR + 2
Rσ,R − Sσ,S

R2 + S2 − 1
= 0, (31)

σ,RS + 2
Sσ,R + Rσ,S

R2 + S2 − 1
= 0. (32)

While for (19-21) with (25) the system is satisfied if

(P 2 + Q2 − 1)Q,σσ + 2Q(P 2
,σ − Q2

,σ) − 4PP,σQ,σ = 0, (33)

plus again the same set (30-32). We see that (30-32), which determines σ(R, S), is a linear

system of partial differential equations, while the system (29) and (33), that determines
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P (σ) and Q(σ), is non linear. We observe too that this last system is invariant under the

transformation P [χ(σ)] and Q[χ(σ)] with

χ = ασ + β, (34)

where α and β are constants. Furthermore, if we introduce a complex function X, like

X = P + iQ, (35)

in the system (29) and (33) then it can be written

(XX̄ − 1)X,σσ = 2X̄X2
,σ, (36)

which has a first integral

X,σX̄,σ = (1 − XX̄)2, (37)

or

P 2
,σ + Q2

,σ = (P 2 + Q2 − 1)2. (38)

IV.1 Solution for σ(R, S)

The expression (31) can be written in two different ways,

[
(R2 + S2 − 1)σ,R

]
,R
− 2Sσ,S = 0, (39)

[
(R2 + S2 − 1)σ,S

]
,S
− 2Rσ,R = 0; (40)

as well as (32) can be written similarly,

[
(R2 + S2 − 1)σ,R

]
,S

+ 2Rσ,S = 0, (41)
[
(R2 + S2 − 1)σ,S

]
,R

+ 2Sσ,R = 0. (42)

The integration of (39-42) produces a homogeneous differential equation of first order,

Rσ,R + Sσ,S + σ = 0, (43)

where we have suppressed the integration constant. Integrating once more we obtain from

(43)

σ(R, S) =
f(τ)

R
, (44)

where f is an arbitrary function of τ = S/R. In order that σ, as given by (44), behaves

as an harmonic function, since (30) must hold, then f has to satisfy

(1 + τ 2)f,ττ + 4τf,τ + 2f = 0, (45)
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which has the solution

f =
a + bτ

1 + τ 2
, (46)

where a and b are two arbitrary constants. Hence from (44) and (46) we have the solution

for σ(R, S),

σ =
aR + bS

R2 + S2
. (47)

IV.2 Solutions for P (σ) and Q(σ)

To find solutions of the system (29) and (33) is more difficult. One way of tackling this

problem is to assume P (Q), then the compatibility condition of this system becomes

(P 2 + Q2 − 1)P,QQ + 2(1 + P 2
,Q)(P − QP,Q) = 0. (48)

We found two different solutions for (48).

IV.2.1

A simple particular solution is

P = kQ, (49)

where k is a constant. Inversely, if we assume Q(P ) then the same system reduces to

(P 2 + Q2 − 1)Q,PP + 2(1 + Q2
,P )(Q − PQ,P ) = 0, (50)

which still satisfies the same particular solution (49).

Substituting (49) into (29) or (33) we obtain

Q,σσ

Q,σ
+ 2

(1 + k2)QQ,σ

1 − (1 + k2)Q2
= 0, (51)

which after integration produces the solution

Q =
tanh

[
(1 + k2)1/2σ

]

(1 + k2)1/2
, (52)

with P obtained from (49). We observe that the inverse solution QI ,

QI = −coth
[
(1 + k2)1/2σ

]

(1 + k2)1/2
, (53)

is also a solution of (29) and (33).
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IV.2.2

Another solution of (48) for P (Q) is obtained from the quadratic expression, a circle,

(P − c)2 + (Q − d)2 = c2 + d2 − 1, (54)

where c and d are arbitrary constants. Now the system (29) and (33) can be integrated,

but the simplest way is to differentiate (54) with respect to σ and substitute it into (38)

yielding

P,σ =
(P 2 + Q2 − 1)(Q − c)

(c2 + d2 − 1)1/2
, (55)

where Q is the solution Q(P ) of (54). Following a well known method, by considering

(55) as an equation of the type

P,σσ = −∂U

∂P
, (56)

where U(P ) is a potential, one can obtain a number of different solutions. These solutions

depend upon the chosen values of the constants, they can be periodical or non periodical,

like soliton waves of the form l cosh−2(lσ) where l is a constant.

V Conclusion

We reduce the study of invariance of the complex Ernst equation to the study of a system

of six second order partial differential equations (16-21) independent of the coordinate

system. Two classes of solutions of this system are presented. One stemms from a three

parameter SU(1, 1) transformation and the other from the assumption that there exists

a functional dependence of the real and imaginary parts of the Ernst complex potential.

We thank D. Graf for helpful comments regarding our paper.
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