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Abstract

We deduce the effective ordinary non-linear differential equations satisfied by the

moments associated to the end-to-end probability distribution of a polymer chain

in the presence of a potential simulating phenomenologically the self-avoidance of

the chain with the z-axis. Additionally, we show by a straightforward asymptotic

analysis of a large number of links that the above cited chain distribution moments

effective ordinary differential equations for such “almost” self-avoiding chain, reaches

out further into the usual three-dimensional space than the usual gaussian chain.
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Introduction

One of the most outstanding problem in the “Polymer physics” is to explain the feature

of the geometrical (conformational) property related to the experimental fact that the self-

avoiding Polymer chain reaches out into the usual space more than the usual gaussian

one and described mathematically by a growing of the square moment distribution (in

relation to the chain number of links N) of the following form < �r 2(N) >∼ N ν̄ with

ν̄ ∼ 1 +
1

6
> 1 ([1]).

We aim in this Brief Report to show such asymptotic growing by a simple and straight-

forward analysis of a set of effective ordinary differential equations satisfied by the moment

distributions associated to the above problem and proposed by us. In order to obtain this

result we follow F.W. Wiegel ([2]) by substituting the delta-function interaction between

the polymer chain monomer at a planar radial distance ρ with the z-axis by a potential

of the form V (ρ) =
A

ρ2 + δ2
with a “hard-care” parameter δ very small in relation to the

monomer lenght σ.

This Brief report is organized as follows:

In section 1 we deduce the set of effective ordinary differential-integral equations satis-

fied by the moment distributions associated to the end-to-end probability distribution of

a polymer chain in thermal equilibrium with the “solvent-environment” and added with

the presence of a general potential V (�r).

In section 2, we apply the results obtained in section 1 to the problem of “almost”

self-avoidance with a linear ([3]) and moddeled by the above described phenomenological

Wiegel potential.

1 The Moments Probability Distribution Equation

Let us start our analyse by considering the general partial differential diffusion equation

governing the end-to-end polymer chain probability distribution ρ(�r;N) in the presence

of a potential of a force par monomer denoted by V (r)

∂ρ(�r,N)

∂N
=
σ2

6
∆ ρ(�r,N)− β V (�r)ρ(�r,N) (1)
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with the initial condition

ρ(�r, 0) = δ(�r − �r ′) (2)

and prossesing the information where the polymer chain start its replication. Here σ is

the monomer lenght forming the polymer chain.

It is a somewhat cumbersome problem of mathematical methods on Physics the search

of exact solutions of eqs. (1)-(2). At this point we alternatively propose to consider

directly the associated effective ordinary differential equations satisfied by the moments

and the geometrical vector position of the polymer chain averaged with the probability

chain density. Let us, thus, consider for simplicity of exposition the three basic objects to

describe the conformational geometry of our polymer at large-order behavior for N . We

have, thus, to consider the following objects: the polymer partition function

Z(N) =

∫
d3�r ρ(�r;N) (3)

the averaged chain vector position

�R(N) = 〈�r〉(N) =
(∫

d3�r ρ(�r;N) · �r
) /

Z(N) (4)

and the chain giration radius

R2(N) = 〈(�r · �r)〉(N) =
(∫

d3�r ρ(�r;N)(�r)2
) /

Z(N) (5)

It is straightforward, for instance, to show that �R(N) satisfies the following relation

after using the definition eq. (4) and eq. (1)

d

dN
�R(N) = −β

{∫ +∞

−∞
d3�k Ṽ (�k)

1

i
∇�k〈ei

�k·�r〉
}
− Z ′(N)
Z(N)

�R(N) (6)

where Ṽ (k) denotes the Fourier transform of the environment potential V (�r), and, of

course, 〈 〉 denotes the end-to-end probability distribution of our polymer chain eq. (1).
Let us firstly point out that under the leading approximation of the first order of the

cummulant expansion of the Fourier transform Kernel (or equivalently for low conforma-

tional frequency region |�k|2 � 0)

〈ei�k·�r〉 = ei�k·〈�r〉 (7)



CBPF-NF-045/01 3

the relation eq. (6) turns into the following first order ordinary non-linear differential

equation for the chain vector position

d

dN
�R(N) = −β �R(N)× V (�R(N))−

(
Z ′(N)
Z(N)

�R(N)

)
(8)

By proceeding by the same steps exposed above, we obtain that at first order com-

mulant approximation, the chain radius giration satisfies and exactly soluble first-order

ordinary differential equation

d

dN
(R2(N)) = σ2 − β(�R(N))2V (�R(N))−

(
Z ′(N)
Z(N)

(R2(N))

)
(9)

At this point we remark the appearance of a damping term with a damping constant

variable with the chain lenght N in eq. (8) and eq. (9).

The chain partition function Z(N) will be taken to be known in our study from

hereafter ([1], [2], [4]). However, its chain lenght evolution equation is easily written

down
d

dN
Z(N) = −βV (0)Z(N)− β(�R(N) · ∇�v(0)) + · · · (10)

where the terms in coma · · · have the meaning of involving higher-derivatives of the
potential V (�r) at the origin and higher order moments.

Related to problem of taking higher order corrections in the cummulant expansion of

the Fourier Kernel exp(i�k ·�r), let us show how to proceed in the case of second order cor-
rections in our effective ordinary differential equations. We consider, thus, the corrected

expansion

〈ei�k · �r〉(N) = e
i�k · 〈�r〉(N)e−

1

2

{
|�k|2(〈(�r)2〉 − 〈�r〉2)(N)

}
(11)

the relation eq. (6) takes the integro-differential form but involving now the giration

radius in its functional structure and, thus, becoming a non closed integro-differential

equation, opposite to eq. (8) in the first order approximation

d

dN
�R(N) = −

(
β �R(N)

{∫
d3y V (�y)G(�R,R2, �y)

})
−

(
β(R2(N)− (�R · �R)(N))

∇�R(N)

{∫
d3y V (�y)G(�R,R2, �y)

})
−

((
Z ′(N)
Z(N)

)
�R(N)

)
(12)
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where

G(�R,R2, �y) = [R2(N)− (�R · �R)(N)]−3/2exp

{
−1
2

[
(�R(N)− �y)2

(R2(N)− (�R · �R)(N)

]}
(13)

Similar correction on the cummulant expansion for the Fourier-Kernel can be consid-

ered for the chain giration radius. Another point worth remark is the explicit solution of

eq. (9) for the chain giration radius

R2(N) =
1

Z(N)

{∫ N

0

dN ′ Z(N ′)
[
(σ2 − β(�R(N ′))2V (�R(N ′))) + 1

]}
(14)

Note that we have re-introduced the monomer lenght σ in eq. (9).

We now proceed to show that in these somewhat first order approximations an “al-

most” self-avoiding chain is “bigger” than the usual Free (Gaussian) polymer chain in the

next section of our study.

2 The “Almost Self-Avoiding Case

In this section we apply the previous framework to analyze the Physico-Chemical im-

portance case of a Polymer chain in a phenomenological interaction with the z-axis though

the Wiegel potential with a “hard-core” parameter σ in the radial distance of the chains

monomer to the z-axis with the following behaviour of the polymer chain partition func-

tional for large number of links N

Z(N) ∼ N−γ (15)

with the positive exponent γ equals to γ = 2− ε where ε ∼ 1/5 ([1]).

Our basic effective equation (8) for the averaged polymer chains vector position reads

as

d

dN
Ra(N) = −β A

(R2
1 +R

2
2)(N) + δ

2
−

( γ
N

)
Ra(N) (16.a)

d

dN
R3(N) = −

( γ
N

)
R3(N) (16.b)

where the subscript a = 1, 2 indexes the chain vector position components on the (x, y)

plane.
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In order to solve eq. (16a) at large N , we firstly consider the associated (ordinary)

differential to the planar radius lenght y(N) = (R2
1 + R

2
2)(N) which is easily write down

as follows
dy

dN
(N) = −2βA

(
y

y + δ2

)
(N) =

( γ
N

)
y(N) (17)

Let us solve eq. (17) by means of a asymptotic series in the N -variable

y(N) =
1

N1+ω

[
a(N) +

b(N)

N
+O

(
1

N

)]
(18)

where the exponent ω > 0 takes into account the approach to the equilibrium solution

g(N) ≡ 0 of eq. (17) at N → ∞. Let us note that one should only consider now

the situation of zero “hard-core” monomer interaction δ2 = 0 and not before, since the

differential equation makes sense only for y(N) 
= 0. Anyway, we always consider in the

following discussion the case of a very small δ but non zero.

At largeN , we can neglect the potential term in eq. (12) and obtain, thus, the behavior

of the effective gaussian case (A = 0 in eq. (16a))

y(N) ∼ N−γ (19)

After substituting eq. (19) into eq. (16a), we finally get the planar and z-axis large

N behavior for the polymer chain averaged vector position components

Ra(N) ∼ exp−
(
βAN

δ2

)
N−γ (20)

R3(N) ∼ N−γ (21)

From eq. (20), we can see a fastest exponential relaxation behavior to the “Effective”

Gaussian case due to the presence of the experimental term exp

(
−βAN

δ2

)
.

The large N -behavior of the polymer chain giration radius is easily evaluated by means

of eq. (14)

R2(N) = N−γ

[∫ N

(N ′)γ
(
σ2 − 3β

δ
A(N ′)−2γ

)]
∼ σ2

(γ + 1)
N +

(
− 3AB

δ(1− γ)
)
N−2γ+1

(22)

which by its turns shows that for large N the self-avoiding polymer chain with δ << σ2

reaches our further in the three-dimensional space than the usual Gaussian the relationship
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effective chain, namely for large N , we have

R2(N)−
(
σ2

γ + 1

)
N ≥ N−2γ+1

(
3Aβ

δ(γ − 1)

)
(23)

an important qualitative result and strongly dependent of the self-ordinary interaction

parameters (δ, γ) in a non-analytical way.
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