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We present a new and very simple model for treating directed and more

general diode percolation problems, by allowing neighboring sites to be

joined by up to two independent bonds of opposite orientations. A

generalized "break—-collapse'" method is developed to calculate renormalization
group recursion relations. On the square lattice, a very symmetric phase
diagram is obtained which displays multicritical percolation phenomena, and a
variety of interesting conductivity transitions are predicted.

P.A.C.S. Numbers: 05.40.+3j, 64.60.Kw

In their original work on percolation, Broadbent and Hammersley
proposed models in which neighboring lattice sites were connected by directed
bonds, or diodes, which allow information '"flow'" in one direction only. This
is in contrast to the bercolation models generally considered2 where sites
may be connected by two-way bonds, or resistors. Recent interest in directed

percolation stems from their rich phenomenology and diverse applications.3

The directionality constant gives rise to anisotropic critical phenomena3—5
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and shifts in the upper critical dimension from 6 in pure percolatiop'td 5.
More general models‘can be defined where the bonds may be either resistors,
diodes of an arbitrary orientation, or even bonds that conduct in both
directions, but with different conductivities.5 Such networks exhibit novel
critical phenomena driven by either concentration or érientational fields.
Unfortunately, the description of these more general models requires a
large parameter space and tedious calculations in the renormalization group
framework. In this Letter, we show that the rich geometrical and
conductivity properties of such networks can be satisfactorily described by a
very simple model in which neighboring lattices sites may be 3oined by up to

two independent directed bonds of opposite orientations (Fig. 1). The

interplay between percolation in one direction and the opposite direction
gives rise to an interesting multicritical behavior in our model. Moreover,
our study indicates that results of pure percolation are recovered 1f a
network is globally isotropic rather than each bond being isotropic.

We consider the square lattice where "positively" oriented bonds which
point either upward or to the right occur with probability p, while
"negatively" oriented diodes occur with an independen£ probability g. When
one of p or q is zero, directed percolation is recovered,3’4 while for p = q,
./ach bond is isotropic, on average,.and the results of pure percolation are
obtained. From a position-space renormalization grouﬁ (PSRG) approach, we
find a multicritical point at p = q = 1/2, where a two-~way percolating phase
(denoted + - in Fig. 2) is simultaneously critical with one-way percolating
phases (either + or -) and a non-percolating phase.

To perform-the PSRG calculation, we partition the square lattice into
2 x 2 cells6 as indicated in Fig. 1. Each such cell is rescaled into a

single bond pair with renormalized values of p’ and q‘. The recursion
t
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relations for these two qQantities are determined by calculating the
respective probabiiities of traversing the cell upward or downward. A
priori, this calculation entails a tedious evaluation all of the 210
configurations on the 2 x 2 cell. To avoid this, we have developed an
extension of the break—collapse7 method to calculate éraversing probabilities

by performing simple topological operations without evaluating all cell

configurations.

To illustrate the method, notice as a preliminary that the probabilities
of traversing two bond pairs, (pl’ql) and (p2’q2)’ which are either in series

or parallel respectively, are

P, = Py Py (1a)

P, P (1b)
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and analagously for the q’s. This can be applied to an arbitrary graph that
is reducible by series and parallel operations. However, if the graph is

irreducible, such as the Wheatstone bridge of Fig. 3, we need the following

~

G = (l—pi)(l-—qi)G?b + (i—pi)inEc + pi(l—qi)Ggb + piin(i:C . (2)
where G is the probability of traversing thergraph comprised of the bond set
{(pi’qi)}’ and the superscripts on Gi denote that the ith bond pair (pi’qi)
has its constituents either "broken" (b) or "collapsed" (c). We illustrate
the use of Eq. (2) in Fig. 3. The dashed line represents a "pre-collapsed”
bond which is present with probability unity, It is necessary to keep such a
bond in this staté, until it is ascertained that a path through the cell

actually traverses via this particular bond.

i
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By using the property

be chb bb cc
G)C + 67° = G + Gy (3)

Eq. (2) can be rewritten more simply as

C = (1- bb cc - cb (4
( PG + q 67 + (py=q,)6] )
The combined use of Egs. (1) and (4) constitute a generalized break-collapse
procedure for calculating traversing probabilities, and the break-collapse

7

method for pure percolation’ jis recovered when P; = 9 for all {i.

For our model, we find the following recursion relations on the square

lattice after a simple calculation on the 2 x 2 cell

, 5 4 3 2 4 3 2
P" ~3p +p 4+2p  + (p - 2p + p)qzf(p,q)

e}
[}

q’ = f(q,p) (5)

which reduce to the recursion gelation for pure bond percolation6 whgn P=q,
and to that of directed percolétion8 for one of p or q equal to\zero.

The resulting phase diagram is shown in Fig. 2. The p~q plane is
diviéed by second-order transition lines into four phases chafacterized by
two-way percolation (+ ~), one-way percolation (+ or -), or no percolation.
These four phases meet at a multicritical point, M, defined by pc =q, =
1/2. The location of M at (1/2,1/2) is a consequence of self-duality, a
property of the square lattice. The line p = q renormalizes into itself

under rescaling and along it the results of pure percolation are reproduced.

Therefore the critical properties of our globally isotropic network (though

\
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not necessaarily locally isotropic) is the same as pure percolation. The
point (Pc,qc) is co;pletely unstable with an eigenvalue in the (1,1)
direction equal to 13/8, just as in pure percolation. This leads to a
correiation length exponent of ¥ = 1n 2/1n 1.625 = 1.43, compared to the
conjectured9 exact value of 2 = 4/3. The eigenvalue in the (1,-1) direction
is equal to 3/2, yielding an exponent of 1.71. Physically, this exponent
describes how the average length of connected paths, running opposite to the
average orientation of the diodes, diverges as the orientation becomes
random. This is somewhat analagous to the divergence of the spin correlation

length, ? n H—‘V/E;S

, as a function of the magnetic field H at the critical
temperature.

Let us now turn to treating the conductivity of this network. We
consider a model in which each directed bond has a finite conductance in the

direction of the arrow, and zero conductance in the opposite direction. The

conductance distribution for each bond is

i

(1-p)S(e) + pdlg-g,)
(1-9)8(g) + ad(g-g_) (6)

P (8

P_(g)

where + and - refer to the positive and negative directions respectively, and
2 is the value of the bond conduétance. We wish to investigate the
conductivity of a network containing these circuit elements in the vicinity
of the multicritical point M. At M, the network is isotropic and the usual
scaling laws relating eigenvalues to exponents should be valid. For the four
anisotropic fixed points,on the edges of the phase diagram, anisotropic

scaling laws or a different rescaling procedure than the one used here would

be needed.



Upon rescaling, a new conductance distribution is obtained which is a
sum over many delta functions, and we approximate it by the original bimary
10,11 ¢ cursion relations for g, and g_ are calculated by imposing that

form.

their average values remain invariant. This leads to

8, =, [P +16p" (1-p)+10p°(1-p) 2+p% (1-p) *+p>(1-p)a/ (3+2491+p” (1-p) 0/ (241 /*
5 3 |

m

h(P:Q:8+,g_)

= h(QsP:g_’g+) (7)

where Y = g+/g_. From Egqs. (5) and (7), we find the mean conductivities of
the lattice, O;Kp,q) and o-_(p,q), by using the factlo that these quantities

. - _
scale respectively as bd ”g+1

, where b is the rescaling factor in the

PSRG. From this, we may nunerically calculate U; and O, and the values
obtained reflect the geometry of the lattice. In the non-percolating phase,
both(?; and ¢_ are zero, while in the one-way percolating phases one of G; or
0~ is non-zero, and in the two-way percolating phase both G;.and G_ are
non—zero. '

In order to study the critical behavior of the conductivity, we need to
specify the initial ratio of ﬂf. We shall treat the special case § =1 as
this leads to a network which is both geometrically and electrically
isotropic at M. Two independent exponents govern the behavior of the
conductivity as M is approached. If the point is approached from the two-way
percolating phase along a pa?h with p = q (see Fig. 2), then the conductivity
is isotropic and it vanishes as (p - 1/2)*. The 2 x 2 rescaling gives a
conductivity exponént of t = 1.17,11 to be compared with the recent numerical

2 On the other hand, if the multicritical point

\
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is apprvached along the path p = 1 - g, then the directed conductivity
vanishes with a new ;xponent which is equal to 1.40 in our 2 x 2 cell
approximation. Just as for percolatién pfoperties, the exponent t measures
how the conductivity vgpishés when a temperature-like field is varied, while
the new exponent measures how the directed conductivify vanishes when a
magnetic—field-like variable vanishes. It would be interesting to obtain a
more accurate estimate of this new exponent perhaps by treating larger

cells6, as well as providing an interpretation for the exponent in terms of

cluster structure.

A second interesting feature is the behavior of the condﬁctivity as a
function of p for various values of q (Fig. 4). For g < 9 (which equals
0.444 in the 2 x 2 approximation), U; becomes non-zero at some value of p,
and this conductivity increases smoothly until p = 1. However for
0.444 < g < O.S,Cﬁ; display: two singularities. At the first one, G; becomes
non—-zero, while at the second one, there is percolation of connected paths
running in the negative sense which cause ¢_ to become non-zero. These new
paths provide additional current-carrying contributions in the positive
direction, théreby causing a non-analyticity in G;, This property, and
related features, such as negative resistance, appear to be a characteristic
of biased networks which are between the isotropic and directed percolation
thresholds;13 When g = 1/2, the.two thresholds coalesce, and for q > 1/2,
only a single threshold occurs.

In conclusion, we have introduced a new model to describe the geometry
and conductivity of random networks with directed bonds. This model has the
advantage of providing a large amount of. qualitative information with'very
simple calculationé. A symmetric phase digram was found which displays

multicriticality between two-way-percolating, one-way-percolating, and
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non-percolating phascs. 1In treating the conductivity , a new exponent was
introduced to descri£e how the directed conductivity becomes isotropic near
the multicritical point. It would be worthwhile to extend the present study
to the case %’= g+/g_ # 1, where eien more interesting network responses are
possible.

One of us (C.T.) acknowledges the hospitality of the Center for Polymer
Studies and the Department of Physics at Boston University, as well as useful

remarks from M. Barma, M. E. Fisher and S. V. F. Levy.
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Figure Captions

Figure 1 Definition of our percolation model, on a 2 x 2 cell of the square
lattice. Each pair of neighboring sites may be connécted by a
"positive" bond which occurs with probability p, or a "negative"
bond which occurs with an independent probability g. Only the
vertical bonds and the upper-left horizontal bond pair are required
for the PSRG calculation, leading to the Wheatstone bridge of Fig.
3.

Figure 2 Phase diagram 6f the the model on the square lattice. Fixed points
of the renormalization transformation are shown by heavy dots, and
the arrows indicate the direction of flow under rénormalization.
The four phases of thé network are indicated. At M, t;o'
.independent exponents may be defined by_approaching the point along
either the (1,1) diagonal or along the (1,-1) diagonal.

Figure 3 Break-collapse reduction of the Wheatstone bridge. The dashed
lines indicate a bond in a "pre-collapsed" state, and the
probabilities of the various graphs are shoﬁn on- the figure.

Figure 4 Schematic behavior of the normalized positive conductivity, U;, as

a function of p for various values of q. Two distinct

singularities occur if 0.444 < q < 0.5 (dashed line of Fig. 2).
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