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ABSTRACT

A statistical model for the electron distribution in
orbitrons is constructed where the effect of the end plates is
considered. A comparison is made with the measured density of
charge. The electromagnetic oscillations generated. by orbitrons
are calculated as pressure waves and the results obtained are

compared with the data.



RESUMO

E construido um modelo estatistico para a distribui-
cdo de elétrons dentro do drbitron que leva em conta o compri-
mento finito do aparelho. E feita uma comparacgdo com a distri-
buicao de carga medida experimentalmente. As oscilagdes eletro
magnéticas geradas pelo orbitron sdo calculadas como ondas de
pressao e os resultados obtidos sdao comparados com os dados

experimentais.



1. INTRODUCTION

In a previous paper (1) we have analysed the charge
distribution in orbitrons and compared our results to the expe-
rimental data obtained by Cybulska and Douglas (2). Our basic
hypothesis was that the electrons would always estabilish a
local thermal equilibrium in the observed steady state of the
charge distribution. The filament injects electrons very far
from this equilibrium situation and our hipothesis is equivalent
to say that the relaxation time for the initial distribution
injected by the filament to reach the steady state distribution
described by our model is shorter than the mean life time of
the electron in the orbitron. The opposite assumption is behind
the considerations of Hooverman (3), Feaks et al. (4) and

Deichelbohrer (5).

These authors assumed that the electron distribution
is determined by the individual unperturbed orbits of the elec-
trons that come from the filament region. Therefore the local
statistical equilibrium assumed by us is suposed never to be
reached and equivalently the relaxation time refered to above
is suposed to be much longer than the mean life time of the
electron inside the orbitron. Calculations of relaxation times
are a difficult task and we have relied on the agreement of our
model to the experimental data of Cybulska and Douglas (2) to
set out this controversial point. Extensive analysis of
Porto Pato (6) based on the assumption of independent trajecto-
ries of the electrons from the filament region have shown to be

unable to explain the experimental data of Cybulska and Douglas (2).



The situation with the statistical model for the electron dis-
tribution is different. We have obtained a reasonably good

agreement with the experimental data, with a single adjustable
parameter (the equilibrium temperature of the electrons in the

steady state).

In this paper we will improve our previous calculations
by considering partially the effect of the end plates on the
distribution. We then calculate the eletromagnetic oscillations
generated by the orbitron as pressure waves in the electron

distribution and compared with the experimental results of

Troise et al. (7).



2. THE ELECTRON DENSITY FUNCTION

As we have argued inreference (1), the steady state
phase space distribution function for the electrons inside the

orbitron is given by
f(r,p) = A exp{-H(p,r)/kT] peD (2.1)

subjected to the constraint that p should be inside a the domain
D caracterized by the orbits that do not touch the boundaries of
the orbitron. For p outside D f 1is zero. In eq. (2.1)

H(p,r) 1is the single particle hamiltonian for the electron:

5%

H(p,r) = + e V(r) |, (2.2)

k is the Boltzmann constant, T the temperature of the electrons- in
the steady state and A a normalization constant. The potential
V(r) can be considered as the mean electrostatic potential in
which one takes into account self consistently the effect of the
space charge of the electrons. For the applications we have in

mind, we will neglect the space charge effect and set

_ log(r/b)
vir) =V, log(a/b)

where vV, is the anode electrostatic potential and a and b are

the anode and cathode radii respectively.

The spatial distribution is given by



n(r) = | £F,pap (2.3)
D

and the essential point in our model for n(r) is the specific-
ation of the domain D. This domain is specified by the kinema-
tical considerations that follows. It is well recognised that
the electrons in orbitrons, have a very long mean free path. We
assume that once the trajectory of the electron is such as to be
able to make contact with its metal environment, the electron
is absorbed. We therefore fix the domain D by excluding from
f(r,p) every momenta p that lead to trajectories that touch the
anode or the cathode. To prevent the electrons from touching the
cathode its enough to assume that their energies are negative.

Using cylindrical coordinates we have

pr L pz
e + E;;Z + —= - e V(r) < 0 . (2.4)

The electrons that do not collide with the anode are
those that the angular momentum L is larger than a minimum value

fixed by the radius a of the anode

2 1
~ \/ P, ,
L > Lim = a 2m(H - 5t ¢ Va) (2.5)

Let us introduce dimensionless quantities defining the variables:

x =1r/b ,



u = pr/(Zm vkT )
v = L/(2mr /KT ) ,
t = p,/(2m /KT)
and the constants
X, = a/b (2.6)
and
o = e Va/(kT) . (2.7)
With these definitions eqs. (2.4) and (2.5) take the
form
w? s vP e 12 < oF) (2.8)
and
X 2 2
{——7 - l] vV -u~ > a[l—F(x)] (2.9) -
X0

where we introduced

F(x) = log x/log X,

One observes that the integration in eq. (2.3) trans-
forms into integration over the (u,v,t)-space of the transformed
domain D. It is in this space that D takes its simple geometri-
cal meaning. Eq. (2.8) shows that D is inside of a sphere of
radius aF(x) and eq. (2.9) shows that the other boundary of D

is a hiperbolic cylinder with geratrix parallel to the t-axis.



Fig. 1 shows the traces of these two surfaces in the

plane t=0. Defining Vi, V, and vy as in this figure, we have:

1-F() /’((xz-xoz) / onyll/z' . (2.10)

o

v, =

v, = X vYa/x (2.11)
and

V. = VaF(X . (2.12)

The density distribution may now-be written as

— Vv u, (v) t. (u,v)
2 2 1 2 1 2
n{x) = const.x eaF(X) [ dv eV ( du e 4 [ dt et
—’vy 0 0
V3 ._Vz UZ(V) _uz tl(u,V) -tz
+ dv e du e dt e (2.13)
v, 0 0 -

where

tl(u,v) = V/aF(x)—uz-vzf
_ 1/2

u (v) = (Xz—xoz)vz/xoz—a(l-F(x){J (2.14)
_ 1/2

uz(v) = aF(x)—V%I

The constant of normalization in eq. (2.13) is fixed by



We observe from eq. (2.13) that n(x) depends on two
parameters: Xg, which is fixed once the geometry of the orbitron
is given, and a, which is related to the steady state temperature
of the electron cloud and has to be adjusted to the experimental

data.

Fig. 2 exhibits n(x) plotted for different values of
a. One observes that the larger the value of o more sharp is the
maximum of the distribution near the anode and smaller is the
value of x at the maximum. This can be easily understood as a 1is
inversely proportional to T. (See eq. (2.5).) The larger the
value of o smaller is the value of T and electrons with less kinetic
energies are more strongly pushed towards the anode. The value of
Xg taken for the curves exhibited in Fig. 1 where those reported
in (2). In Fig. 3 we exhibit the effect of varying Xy By incre-
asing X the peak of the distribution shifts away from the
anode. This is due to the fact the only electrons with larger
angular momenta are allowed in the distribution. This effect is
very important for the understanding of the orbitron as an ion
pump. The titanium cylinder (8) is what determines the radius of
the anode and being appreciably large it shifts the peak of the
distribution away from the anode having the effect of increasing

the effective volume of the orbitron.

The density of electrons as a function of the radial
distance r to the anode was indirectly observed by Cybulska
and Douglas (2) by measuring the energy spectrum dI/dE of positive
ions collected at the cathode in the limit of zero pressure. This
spectrum can be connected to the ion current (dI/dQ) produced by

unit of volume in the electron cloud as



dlI _ dI d@ _ 27rr (dV)-l dI
dE = 49 dE e dr do :

On the other hand dI/dQ 1is given by

%% = c Nr, J d3p Vo (pz/Zm)f(TsP) )

where N 1is the total number of electron per unit of length in
the orbitron, n, the density of the neutral gas and o(E) the
ionization cross section as a function of the electron energy.

We take for o(E) the same expression used in reference (1).

In Fig. 4 we show the experimental points of Cybulska
and Douglas as dots with the corresponding error bars. The curves

are theoretical predictions using their value of = 0.06/4.5

X0
and o = 8,10 and 13. One observes from this figure that o = 10,

i.e., kT = 80eV, gives the best fit to their data.

It is important to mention that our calculation des-
cribed here gives a better fit than the one previously reported
in ref. (1), where we did not consider the cut off imposed on
PZ as given by eq. (2.4). The improvement is better observed in

the low energy part of the ion current spectrum.



3. COLLECTIVE OSCILLATIONS

One may look at the steady state of the electron cloud
inside the orbitron as a gas in thermal equilibrium. Let be pj,
the equilibrium mass density of the electrons and Py the corres-

ponding pressure. We have

as the equation of state of the electron gas, m is the mass of

the electron.

We will now consider the deviations from these steady

state values:

p(r,t) = py(r) + p'(x,1)

p(r,t) = py(r) + p'(r,t)

and we will show that these deviations p'(r,t) and p'(r,t) will
propagate inside the cloud as pressure waves. To describe these
waves we will start from the two basic equations of fluid dynamics:

the equation of continuity
90 4 I (V) = 0 (3.1)

and Euler's equation

o5 = &-Vp . (3.2)
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The vector field §(r,t) is the velocity field and g
is the external force density applied to the gas. From the equi-

librium value we must have

0q ¥
]

Vpo

<+
]

0

In what follows we will derive the equation for the propagation of

u = p'/po ,

on the assumption that u << 1 and v and o'/p are of the same

order as u.

We will first assume that the variation of u and p in

the electron cloud are adiabatic and set

du _ ,9u
- Ggds

We have

where vy = 5/3 1is the ratio of the specific heat at constant
pressure and at constant volume. Making use of this fact we trans-

form the eq. (3.1) into:

—>
_8_11+V

1 e
? 3 B v =0 (3.3)

<Y
+
<l
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where
L3 : (3.4)

Similarly we can transform Euler's eq. (3.2) and we have

3V Py
av _ _Po gy | (3.5)

at equilibrium.

Eliminating V¥ between the eqs. (3.3) and (3.5) we

finally have

52
U= (3.6)

2 > > 1
VU“‘C{.VU"?——TE

where

| 1
c = V¥po/eg =

is the velocity of the pressure waves in the electron gas.

For kT = 80 eV this gives
c = 0.0162 o

where o is the velocity of light.

Because of the cylindrical symmetry of the orbitron a,

except near the end plates, is a radial vector function of r only.
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To find the eigen modes of the oscillations we assume

u = u_(r)ug(6)u, (2) eivt

i.e., u is separable in cylindrical coordinates. The boundary

condition are

uZ(O) = uz(zo) =0

ue(O) = ue(ZW)

and
ur(a) = ur(b) =0
We then have
n
u, = sin (_E_ z)
0
ug = sin (ne.e+a)

where n, and n are integers and Zg is the length of the

0

orbitron.

The equation for u. takes the form

dzu du n

g + p(x) Eir‘ + (A - -——7)u =0 (3.7)
dx b'e

with boundary conditions

u(xo) =u(l) =0

where x and X, are the dimensionless variables previously introduced,
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do
_ 1 0,1
A TN I S
and
m_b
R (3.8)

Eq. (3.7) was solved numerically and the eigenvalues

Xn n where found where n is the number of nodes of the radial
r’ 0

functions. The eigen frequencies of the oscillations are then

given by

c \// TrbnZ 2‘
f = 5= A + (—=) . (3.9)
nr,ne,nZ 2Tb n_,n Z
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4. COMPARISON WITH THE EXPERIMENTAL DATA

Eq. (3.7) was solved for different values of n, and

the eigenvalues of )X where obtained. Fixing Xq> the equation
was integrated from Xq towards x = 1. The values of ur(l)
as a function of A for n, = 0 and ng = 1 are plotted in
Fig. 5. The values of A for which ur(l) = 0 are the eigen-

values looked for. Table I gives the value of Ay for X0=l/30
r’0

and o = 8 and 15. One observes that the value of o has an im-
portant effect over the lower values and decreases its influence

for the higher values of A n

nr, )

Troise (7) measured the oscillation frequencies for an
orbitron with the following parameters:

a=0.075cm , b = 2.25cm (xO = 1/30)

z. = 10.8cm V = 1000V
0 a

The frequencies observed in MHz where the following:

fl = 13.6 = 0.2 f4 = 58.5 t 2.6 f7 = 172.0 £ 3.7
f2’= 22.7 £ 2.2 f5 = 85.0 = 2.8 f8 = 213.4 £ 4.1
f3 = 34,0 £+ 2.4 f6 = 127.0 + 3.3 fg = 260.0 £ 4.6

The four high frequencies observed are identified in Table II.
Let us observe that, from eq. (3.9), to obtain lower frequencies
one would have to decrease c or equivalently kT, but this

imples in increasing o. XO 0 increases as o increases, and
?
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therefore one understands why it is impossible to predict a funda-
mental frequency below 100 MHz in Troise's orbitron. The depen-

dence of an,ne on o 1is plotted in Fig. 6.

In Table II*we have adjusted the value of a (a=15)
to fix the fundamental mode in 126.8 MHz. The other frequencies
are therefore predictions of our theory. It is interesting to
observe that these high frequencies are all identified with
different 6-modes. This is justified by the further evidences
given by Troise. He observed that these frequencies vary very

little with =z He actually did not detect any significant va-

0°
riation with 2> the length of orbitron. The sensitiveness of
the frequencies with zy can easely be obteined from eq. (3.9).

We have

bn
f ™o, 2
n.,Ng,0, -( zp ) Azo
= . . (4.1)
fn n. .1 ﬂbnZ 2 z
T’ 8’z An a ( > )
r’e 0

If we had identified these frequencies with different values of
n, we had predicted an increase in sensitiveness to 2 with
increasing the frequency, contrary to what was observed. The way
we have identified these frequencies, the larger sensitiveness

is for the 127 MHz frequency and even for this one we have

Az
Af _ 0
-+ = (0.026) _EE s

what exhibits a very low sensitiveness to Zg -
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Fig. 7 shows the dependence of these high frequencies
on the voltage Va of the anode, the other parameters of the
orbitron being fixed. The values of the frequencies do not agree
with those in Table I because Troise used a different orbitron
and the parameters of this orbitron has not been reported. One
observes that these frequencies are directly proportional to
/V;. It is simple to interpret this result. One expects the
parameter o to be constant for a given orbitron as o, the ratio
of ev, to kT, measures the efficiency with which. a given orbitron
transforms the initial energy of the electrons (eVa) into
kinetic energy in the steady state. We therefore assume that KT
is proportional to Va for a given orbitron and so, ¢, the
velocity of pressure waves in the electron cloud is proportional

to /V; and so it is also the frequencies fnr’ne’nz given by
eq. (3.9). The five low frequencies repported by Troise has a
different explanation as it has been put forward for the first
time by Rogerio (9). His idea was that these low frequencies come
from the beats of the frequencies of the normal modes of vibra-
tion. The base of his idea is the well known result of mechanics
that says that non-linear terms considered as perturbations of
the linear wave equation generate frequencies which are additions
or subtractions of the non-perturbed frequencies. In Table III

we put forward the explanation of the low frequencies as differences
of normal mode frequencies calculated from our linear wave equation.
We observe that the two very low frequencies come from the beat of
z-modes of vibration. The third frequency (34.0 MHz) may come

either from the beat of z-modes or 6-modes and the other two

(58.5 and 85.0MHz) como from beats of the 6-modes as indicated in
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the above mentioned Table.

In Fig. 8 we show the results of Troise for the depen-
dence on Zq of the low frequencies of an orbitron different from
the one where the frequencies reported in Table III were measured.
We observe a strong dependence on Zq> the length of the orbitron.
This can be partially understood as a consequence of these fre-
quencies be beats of normal modes of vibration. We will consider

two cases corresponding to beats in the z-mode and 6-mode.

Let us consider the beat frequency f given by

|
It

f'-f .

From eq. (3.9) we have

Q
Hhi
@]

QI
N

-, 2 2
nZ nZ
7 - £ 1 (4-2)

[aw)
~
N

This equation shows that the sign of variation of f with Zg
depends on the fac that f comes from 6-mode (né = nz) or z-mode

(n!

; > nz). One observes then that 6-mode predicts that the fre-

quency increases with zo as it has been observed by Troise.

To make a quantitative comparison let us take zg = 3.5cm, as can
be seen from Fig. 8. The repported Va was 600V and we assume
the other geometrical dimensions to be the same, that is a=0.075
and b=2.25. We also assume o = 15. Under these considerations
the beat between the two modes (0, 1, 1) and (0, 0, 1) gives the

frequency f = 11.8MHz in the region observed by Troise. From

eq. (4.2) we have
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Af _ ? Az
= ) ( z )
f 420 ff' 0
and we obtain,
CZ
——— = 0.31
420 ff'

From Fig. 8 we should have a value 10 times larger than this one.

We now observe that the sensitiveness of f is proportional to

0
plates has the effect of reppelling the electron cloud and so

z and so very sensitive to the value of Zg used. The end
shorten the effective length of the orbitron. As Troise's orbi-
trons is already very short (smaller than its diameter) we are
not surprise at the disagreement of the sensitifeness of f to
Zg- If we say that the end plates decreases Zq of 2.5cm, we
would get the value for (Af/f)/(AzO/zo) observed in Fig. 8.
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5. CONCLUSION

We may conclude by saying that most of the experimental
information of Cybulska and Douglas (2) and Trdise (7) has been
theoretically explained on the basis that the electron cloud
inside the orbitron reaches a steady state characterized by an
equilibrium temperature. The oscillations observed by Troise has
been explained as pressure waves in the electron cloud. It is
interesting to observe that due to the lack of a theoretical back-
ground at the time Troise took the measurements of these oscillat-
ions, his data has not been extensively recorded to give a deep
insight on the behavior of the electron cloud. Nevertheless we
are able to sustain that the steady state thermal equilibrium
of the electrons gives a good understanding of the behavior of
orbitrons.

It is interesting also to observe that orbitrons can

6 Ok

maintain an electron cloud at temperatures of the order of 10
in the absence of magnetic fields and any positive charge to neu-
tralize the electrostatic repulsion among the electrons. The
cloud of electrons make a good laboratory device for studying
atomic and molecular behavior under such extreme condition with
the temperature controlled by the anode voltage as, by varying

the anode voltage, we vary directly the temperature of the

cloud but not its spatial distribution.



-20-

Figure 1
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TABLE I

R

130.

135.

a = a-= 15

9. 16.0

15. 20.6

27. 31.4

| 41. 45.8
59. 63.2

| 41. i 52.1
| 53. f 62.0
% 75 i 82.4

101. % 107.3
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TABLE

11

Frequencies in MHz

Experimental | Theoretical mode
(ur,ue,nz)
127 + 3.3 1 126.8 0, 0, 1)
—_— é 143.5 (0, 1, 1)
172 £ 3.7 176.5 (0, 2, 1)
213 £ 4.1 212.8 (0, 3, 1)
260.024.6 249.6 (0, 4, 1)
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TABLE III

Frequencies in Mz Beat
Exp. Theor. (nr,ne,nz)-(nr,n ,nz)
13.6 + 0.2 12.6 (0, 0, 3) - (0, 0, 1)
22.7 £ 2.2 22.8 (0, 0, 4) - (0,0, 1)
22.3 (0, 0, 5 - (0, 0, 3)
34.0 £ 2.4 33.0 (0, 2, 1) - (0,1, 1)
34.9 (0, 0,5 -(0,0, 1)
58.5 + 2.6 58.0 a1, 2, 1) -(1,0,1)
85.0 + 2.8 86 .0 (0, 3, 1) - (0, 0, 1)
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TABLE CAPTIONS

Table I The eigenvalues of Ay n of eq. (3.7) for two
r’7o

different values of o as indicated.

Table 1II The theoretical identification of the modes of
the high frequencies observed by Troise (7). The
first collumn is the experimental values, the
second collumn the theoretical value and the
third collumn is the mode of the vibration. We
assume the following parameters o = 15, a = 0.75cm,
b = 2.25cm, 29 = 10.8 cm and Va = 1000V.

Table III The theoretical identifications of the beat mode
of the low frequencies observed by Troise (7). The
first collumn is the experimental values, the second
collumn the theoretical prediction for the frequencies
both in MHz. The third collumn is the corresponding

beat mode.
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FIGURE CAPTIONS

The traces of the two boundaries of the domain defined
by eqs. (2.8) and (2.9) in the plane t=0. The coordi-

nates v,, v, and v, are given by eqs. (2.10), (2.11)

1’
and (2.12).

2

The density distribution given by eq. (2.13) plotted

for different values of a(eq. (2.5)) as indicated.

The same as in Fig. 2 plotted for two values of x0=0.01333

and 0.1 and o as indicated.

The experimental points of Cybulska and Douglas plotted
as dotts with the corresponding error bars. The curves
are theoretical predictions for different values of o
as indicated. The abcissa is the voltage measured to
stop the ion after passing the cathode. The ordinate is

the ion current.

The function u, (x = 1) as a function of X for two

values of ng as indicated. The zeros of ur(l) are the

eigenvalues of X . u_(x) satisfies eq. (3.7)
n.,ng T

and the equilibrium density was calculated with

a = 1.5, = 0.033.



Fig. 6
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The values of An n plotted as a function of a for the
r’ 0

values of n. and n as indicated.

0
The dependence of two high frequencies on the anode vol-
tage Va‘ The abcissa is the /V;. The numbers indicated
are the values of V,- The ordinate is the frequency

in MHz. The data were taken from Troise (7).

The dependence of low frequencies on z The experimental

0
points and the curves plotted were taken from Troise (7).
The abcissa is the length Zq of the orbitron and the
ordinate is the frequency in MHz. The repported anode

voltage for this set of data was 600 V.
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