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Laboratório de Cosmologia e F́ısica Experimental de Altas Energias

Rua Dr. Xavier Sigaud, 150,

22290-180, Rio de Janeiro, Brazil

E-mail: joffily@cbpf.br

Dedicated to Professor Roberto A. Salmeron

on the occasion of his 80th birthday.

Abstract

The large complex zeros of the Jost function (poles of the S matrix) in the complex

wave number-plane for s-wave scattering by truncated potentials are associated to the

distribution of large prime numbers as well as to the asymptotic behavior of the imaginary

parts of the zeros of the Riemann zeta function on the critical line. A variant of the Hilbert

and Polya conjecture is proposed and considerations about the Dirac sea as “virtual

resonances” are briefly discussed.
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There is an old conjecture attributed to Hilbert and Polya about the zeros of the

Riemann zeta function ζ(z) on the critical line as eigenvalues of a self-adjoint linear

operator H in some Hilbert space. Ever since Montgomery’s [1] discovery of these zeros

behaving like the eigenvalues of a random hermitian matrix, attempts have been made in

order to find a quantum system with the Hamiltonian represented by such an operator (see

Berry and Keating [2], and references therein). We report in this Letter a variant for the

above conjecture: instead of looking for H, whose spectrum coincides with the Riemann

zeta zeros, we are looking for complex momenta poles of the scattering S matrix such that

by a given transformation they are all mapped into the axis Re z = 1/2 in coincidence with

the Riemann zeroes. The associated quantum system could be the “vacuum”, interpreted

as an infinity of “virtual resonances”, described by the corresponding S matrix poles.

The first to associate the Riemann hypothesis in terms of transient states were Pavlov

and Faddeev [3] by relating the nontrivial zeros of the zeta function to the complex

poles of the scattering matrix of a particle on a surface of negative curvature. Here the

same problem is discussed in the usual scattering by a potential. We begin by showing

that complex momenta zeros of the Jost function for s-wave non-relativistic scattering

by repulsive cutoff potentials, after appropriate transformations, correspond to the global

behavior of heights {tn} of the zeros of ζ(z) on the critical line, zn = 1/2 + i tn, and

surprisingly to the global behavior of the prime sequence {pn}. With the aid of these
transformations it is possible to obtain an approximate formula connecting the nth prime

and the nth zeta zero, which we believe will be useful to strategies for primality. The

local behavior, defined as deviations from the average density of the zeta zeros, are not

obtained by the potential considered here. This will be the object of a forthcoming work

where a statistical hypothesis with respect to some residual interaction will be introduced

[4]. Actually fluctuations in {tn} are interesting for their universality, being observed in
quantal spectra in different physical systems (see Mehta [5]), and by the connection with

chaotic dynamics, (for a review see Bohigas [6]).

The distribution of primes, {pn}, among all natural numbers, n, in spite of their local
deviation of any known order when viewed at large possesses regularities that can be

approximated by some formulas. The approximate number of primes π(x) less than a

given x, also called the prime counting function, is given by the prime number theorem

π(x) ∼ x/ lnx (see Titchmarsh [7], Chapter- III), where ln x is the natural logarithm of

x. This relation gives the asymptotic approximation for nth prime pn,

pn ∼ n ln n , as n→ ∞ . (1)

The connection between the distribution of prime numbers π(x) and complex zeros of

the zeta function, a kind of duality between the continuum and discrete in number theory,
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started with Riemann’s 1859 paper (see Edwards [8], p.299) by introducing methods of

analytic function into number theory. Riemann’s zeta function is defined (Ref. [7], p.1)

either by the Dirichlet series or by the Euler product

ζ(z) =
∑
n

n−z =
∏
p

(1− p−z)−1 , Rez > 1 , (2)

where n runs through all integers and p runs over all primes. ζ(z) can be analytically

continued to the whole complex plane, except at z = 1 where it has a simple pole with

residue 1. It satisfies the functional equation ζ(z) = 2zπz−1 sin(πz/2)Γ(1 − z)ζ(1 − z) ,

called the reflection formula, where Γ(z) is the gamma function. It is known that ζ(z)

has simple zeros at points z = −2n, n = 1, 2, . . ., which are called trivial zeros, with an
infinity of complex zeros lying in the strip 0 < Re z < 1. From the reflection formula

they are symmetrically situated with respect to axis Re z = 1/2, and since ζ(z∗) = ζ∗(z),

they are also symmetric about the real axis, so, it suffices to consider the zeros in the

upper half of strip 1/2 ≤ Re z < 1. It is possible to enumerate these complex zeros as

zn = sn+ i tn, with t1 ≤ t2 ≤ t3 ≤ . . ., and the following result can be proven (Titchmarsh

[7] , p.214)

|zn| ∼ tn ∼ 2πn

lnn
, as n→ ∞. (3)

The Riemann hypothesis is the conjecture, not yet proven, that all complex zeros of

ζ(z) lie on axis Re z = 1/2, called the “critical line”. Based on this conjecture Riemann

improved on Gauss’s suggestion that π(x) approximate the logarithmic integral as x→ ∞
with a new prime number formula, taking into account local prime fluctuations in terms

of nontrivial zeta zeros (Ref. [8], p.299).

The Jost function [9] has played a central role in the development of the analytic

properties of the scattering amplitudes. In order to recall its properties, let us consider

the scattering of a non-relativistic particle, without spin, of mass m by a spherically

symmetric local potential, V (r), everywhere finite, behaving at infinity as

V (r) = O(r−1−ε), ε > 0, r → ∞ . (4)

The Jost functions f±(k) are defined (see Newton [10], p.341) as the Wronskian W ,

f±(k) = W [f±(k, r), ϕ(k, r)], where ϕ(k, r) is the regular solution of the radial

Schrödinger equation

[
d2

dr2
+ k2 − V (r)] ϕ(k, r) = 0 , (5)

(in units for which h̄ = 2m = 1) k being the wave number and the Jost solutions,

f±(k, r), are two linearly independent solutions of equation (5). They satisfy the boundary
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conditions limr→∞[e∓ikrf±(k, r)] = 1, corresponding to incoming and outgoing waves of

unit amplitude.

The properties of the solution of differential equation (5) define the domain of analytic-

ity of the Jost functions f±(k) on the complex k-plane as well as its symmetry properties,

such as for real potentials, f ∗
+(k

∗) = f−(k). The phase of the Jost function is just minus

the scattering phase shift δ(k), that is f±(k) = |f±(k)| e∓iδ(k) , so that the usual S matrix

is given by

S(k) ≡ e2iδ(k) =
f−(k)
f+(k)

. (6)

The complex poles (Re k 
= 0) of S(k), or zeros of f+(k), correspond to the solutions of the

Schrödinger equation with purely outgoing, or incoming, wave boundary conditions. Res-

onances show up as complex poles with negative imaginary parts, their complex energies

being

k2
n = Ξn − i Γn

2
, (7)

where Ξn and Γn represent the energy and the width, respectively, associated with nth

resonance state. For small Γn, resonances appear as long-lived quasistationary states

populated in the scattering process. If the width is sufficiently broad no resonance effect

will be observed, as if the lifetime of state 1/Γn is smaller than the time spent by the

particle to traverse the potential: we will call this kind of S matrix pole as “virtual

resonances” throughout. “Virtual resonances” like the long lived observed ones, in fact,

are represented by pairs of symmetrical S matrix poles in the complex k-plane, a capture

state pole in the third quadrant and the decaying state in the fourth quadrant, since

they give to the asymptotic solution an incoming growing wave and an outgoing decaying

wave, respectively, exponential in time [11]. That could be described by Gamow vectors

treated by Bohm and Gadella [12] as pairs of S matrix poles corresponding to decay and

growth states. Examples of broad resonances are the well known large poles, related

basically to the cutoff in the potential considered to be without any physical significance

(see Nussenzveig [13], p.178).

Condition (4), which together with differential equation (5) establishes domains of

analyticity for f+(k), is not sufficient to determine the asymptotic behavior for its zeros;

for that we would need more information about the interaction. Then the potential

is set equal to zero for r ≥ R > 0, which is the cutoff of the potential at arbitrarily

large distances R. With this restriction it can be shown that f+(k) = 0 is an entire

equation of order 1/2 , and according to Piccard’s theorem, has infinitely many roots for

arbitrary values of the potential. Position kn of these zeros determines f+(k) uniquely in
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the whole complex plane, as a consequence of Hadmard’s theorem, which provides [14]

f±(k) = e±ikRf(0)
∏∞

n=1(1 − k/kn). The asymptotic expansion of kn, for large n, after

introducing dimensionless parameter β = kR, is given by (Ref. [10], p.362)

βn = nπ − i
(σ + 2) ln |n|

2
(8)

where n = ±1, ±2, ±3 · · · and σ is to be defined by the first term of the potential

asymptotic expansion, near r = R, through V (r) = C(R− r)σ + · · ·, σ ≥ 0 and r ≤ R.

The connection between the complex zeros of the Jost function and those of the Rie-

mann zeta function is obtained by means of the transformation:

z = −i β

2 Im β
, (9)

by which the lower half of complex β-plane (Re β 
= 0) is mapped into the critical axis,
Re z = 1/2, of complex z-plane. This suggests a variant for the Hilbert and Polya

conjecture, namely, looking for a potential that gives a Jost function with all zeros on

the lower half of complex β-plane (Re β 
= 0) that coincide with complex zeros of the

Riemannn zeta function after the transformation (9). In this way the Riemann hypothesis

follows. For real potentials, these complex β zeros are located symmetrically about the

imaginary axis, then by (9) they will be mapped symmetrically about the real axis into

the critical line.

Now we show that for cutoff potentials transformation (9) gives rise to complex Jost

zeros with the same asymptotic behavior as the complex Riemann zeta zeros, being all in

the critical line. If {βn} are the zeros of f+(β) then by (9) we get

zn =
1

2
− i Re βn

2 Im βn
, (10)

from (8), with σ = 0, we see that {Im zn} has the same asymptotic expansion as {tn},
given by (3), i.e.,

Im zn =
tn
4

as n→ ∞ , (11)

which means that for each resonance, ratio {2Re βn/Im βn} corresponds to the height of
the zeta zero on the critical line.

On the other hand, after introducing dimensionless quantities, energy En = R
2Ξn and

widths Gn = R
2Γn , equation (7) is written as β

2
n = En − iGn/2, the dimentionless widths

{Gn}, defined as

Gn = 4 Reβn Imβn , (12)
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after taking into account (8), when σ = 0, shows the same asymptotic expansion for large

primes (1), given by the prime number theorem,

Gn = 4πpn as n→ ∞. (13)

Then nth large complex Jost zeros are also related to nth large primes, showing an

asymptotic connection between primes and complex Riemann zeta zeros, in a one-to-one

correspondence.

In the scattering on a surface of constant negative curvature [3] the potential is replaced

by imposing that the particle move on the given surface in order to obtain the scattering

function S(k) in terms of the Riemann zeta function. Provided the Riemann hypothesis is

true the poles of S-function in the complex k-plane are given by kn = tn/2−i/4 [3,16]. By
using transformation (9) we obtain zn = 1/2+ i tn in coincidence with the complex zeros

of the zeta function as expected. It follows also from the usual resonance width definition

(7) that Γn = tn/2, is therefore not constant as considered by Wardlaw and Jaworski

[16], exhibiting the same fluctuation of the height of the zeta zero in the critical line in

accordance with the results on the time delay fluctuation [16] for this kind of unusual

scattering.

In order to look for physical systems associated to the proposed S-function, we will

return to the conventional scattering. In this connection it is interesting to examine

more explicitly the potential parameter dependence in the above asymptotic expression

(8). Khuri [17] has recently proposed a modification to the inverse scattering problem

in order to obtain the potential whose coupling constant spectrum coincides with the

Riemann zeta zeros. The model we have chosen is the non-relativistic s-wave scattering

by a spherically symmetric barrier potential, V (r) = V0 for r < R and 0 for otherwise.

From the stationary scattering solution with this potential one obtains the Jost function

f+(k) = eikR[k′cos(k′R) − ik sin(k′R)] , where k′2 = V0 − k2. Introducing dimensionless

parameters: α = k′R, β = kR and v = V0R
2, the zeros of the Jost function are given by

the solution of the complex transcendental equation
√
β2 − v cot

√
β2 − v = iβ (14)

for each value of potential strength v. The displacements of the roots, βn, in the β-plane

with the variation of the potential strength are shown by Nussenzveig [15]. These zeros are

all in the lower half of complex β-plane and located symmetrically about the imaginary

axis. For finite v 
= 0, in equation (14), the large values of the βn zeros are asymptotically

determined, as [11,15]

βn = ±nπ ∓ ln(2 nπ/|
√
v|)

nπ
− i(ln(2 nπ/|√v|) ∓ 1

nπ
) , (15)
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FIG. 1. (a) The height of nontrivial zeta zeros on the critical line. The full line according

to energy/width ratios {4 πEn/Gn} from the Jost zeros; the dashed line from the asymptotic

formula (3); the points are computed by Odlyzko 18. (b) Primes in order of size. The full line

according to dimensionless width {Gn/4π} from the Jost zeros; the dashed line according to

the prime number theorem (1); the dotted line taken from the table of Caldwell 19. Insets are

defined in the text.

n being a large positive integer. This formula gives the dependence of the potential

strength v, considered as a free parameter, in the determination of the asymptotic Jost

zeros βn to be compared, after the transformation (10), with the zeta heights tn on the crit-

ical line, and after (12) with asymptotic prime numbers pn. By using asymptotic expansion

(15) we calculate the energy/width ratios {4πEn/Gn}, where 4πEn/Gn ∼ πRe βn/Im βn,

which are compared to {tn} computed by Odlyzko [18] and shown in figure 1(a), for v = 2.
Then we see the approximate agreement from the beginning, for n up to 6×104. The same
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Jost zeros βn, for v = 2, after transformation (12), give dimensionless widths {Gn/4π}
that are compared with prime sequence {pn} taken from the table of Caldwell [19], as

shown in figure 1(b). The numerical factor 1/4π was imposed to Gn by the asymptotic

limit (13) from the prime number theorem. Here we see the agreement with the global

behavior of the sequence of primes, from the beginning in the same range. In the upper

left hand corner in both figures the local zeta zero and prime fluctuactions shown by dots

are not present when obtained by the corresponding Jost zeros (open circles), here nor-

malized on the 9880-th zero; the normalization factor corresponding to the height on the

critical line is Nz = 1.071 and to the prime being Np = 0.978. The inset of each figure

in the lower right hand corner shows deviation in the height of zeta zeros figure 1(a) and

prime figure 1(b), obtained by the corresponding Jost zeros, from true values taken from

tables [18,19] in the range considered.

Finally, a conjecture is made in order to associate the Dirac sea as “virtual resonances”.

The hole theory is the interpretation of the negative energy solution of the relativistic

single-particle Dirac equation in which the vacuum consists of all these negative energy

states being filled with electrons, such that it could be considered from the beginning

as a many-particle system being described by the formalism of the single-particle theory.

According to Dirac (Ref. [20], p.34), “The vacuum must be a state with a lot of particles

present corresponding to some stationary solutions of the Schrödinger equation. But

there are no known solutions of this Schrödinger equation - not even a solution which

could represent the vacuum”. The question about the vacuum structure was bypassed

by the second quantization, where a vacuum state is assumed and an operator defined,

in order to create an electron when applied to this state, without knowing what the

vacuum state really is. We would like to suggest a description of the vacuum structure

as being a dynamical system described by “virtual resonances”, completely independent

of the second quantization. Instead of looking for a stationary solution, we look for a

transient state of very short time duration. Specifically we propose a dynamical model

for the vacuum described by infinite denumbered virtual resonances, with discrete widths

and energies, which could be useful in the description of quantum chaos, which is under

investigation. It could perhaps be verified experimentally by some devise that amplifies

the vacuum fluctuation; the fluctuating nature of the Casimir force was recently discussed

by Bartolo et al. [21]. In this case, the universality of level fluctuation laws of the spectra

of different quantum systems (nuclei, atoms and molecules) [5,6] could be understood

by the “vacuum” role as a dissipative system [22]. It had already been shown by Maier

and Dreizler [23], in a Dirac particle scattering in (1+1) dimensions by an electrostatic

square well potential, that complex momenta poles of the S matrix exhibit the particle-
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antiparticle content of the Dirac theory and in the limit of weak potential strength the

poles distribution are similar to the nonrelativistic case.

In summary, we have shown that the zeros of Riemann’s zeta function are related

to the zeros of the Jost function for cutoff potentials in the complex momenta plane in

a one-to-one correspondence. The energy/width ratios of the large “virtual resonances”

are associated to the nontrivial zeta zeros and the corresponding widths related to the

prime sequence. In analogy to the mean field it is expected, by means of a statistical

hypothesis, that the above relationship would be improved and the distribution of the

virtual resonances would reflect the chaotic nature of the vacuum.
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