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Abstract

The classification of the octonionic realizations of the one-dimensional extended su-
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superstring and M-theory are mentioned.
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1 Introduction.

In this work we extend the results of [1] and present a classification of the non-associative
realizations of the 1-dimensional extended supersymmetries which are based on the divi-
sion algebra of the octonions.

In [1] it was proven that the linear multiplets of representations of 1D-Extended Su-
persymmetry (i.e. the basic ingredients in Supersymmetric Quantum Mechanics) fall into
classes of equivalence each one characterized by a given “short multiplet”, denoted as
{n, n}, such that all the n bosonic (and all the n fermionic) states are grouped together
with the same spin, the spin of the fermions differing by 1

2
w.r.t. the spin of the bosons.

This first result of [1] was obtained by noticing that the supersymmetry transformations
of the higher-spin (let’s say at the level s) components in a given multiplet (these transfor-
mations in any D dimension are total derivatives) in D = 1 coincide with time derivatives.
In its turn this implies that the original supersymmetry multiplet can be algebraically re-
placed by a shorter one, with the original higher spin states now accommodated together
with the s− 1 spin states in this level. The iteration of such a procedure produces at the
end a short multiplet as defined above.

The second part of the [1] classification consisted in proving that all short multi-
plets are in one-to-one correspondence with a special class (which can be named either
of “Weyl type” or “of supersymmetric type”) of irreducible representations of Clifford
algebras. These are the Clifford algebra representations, splitted into 2× 2 block matri-
ces, which are non-vanishing only in the antidiagonal blocks. The restriction to this class
of Clifford algebras can be intuitively understood when thinking to them as the Clifford
algebras which can be “promoted” to be fermionic matrices (as it would be expected for
supersymmetry), realizing a superalgebra.

The one-to-one correspondence between Weyl-type Clifford algebras on one side and
short multiplets of 1D extended supersymmetries on the other side implies the following
identifications

D = N (1)

and

d = n (2)

where on the l.h.s. D denotes the spacetime dimensionality (here, for simplicity, assumed
Euclidean) of the given Clifford algebra and 2d the matrix size of the representation. For
what concerns the r.h.s. N denotes the number of extended supersymmetries, while n is
the number of bosonic (or fermionic) states in the given short multiplet.

On the other hand, not all extended supersymmetries admit a matrix representation.
There are several examples, some of them discussed in the following, of dynamical sys-
tems admitting a non-associative realization of the extended supersymmetries. Of course
the non-associativity prevents representing the supersymmetry transformations through
standard supermatrices and therefore these supersymmetric systems are outside the [1]
classification. It is worth mentioning that in all the known examples the non-associativity
enters through the octonionic structure constants.
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In this paper, mimicking the approach of [1], we extend its results relying this time
upon the classification of the octonionic realizations for Clifford algebras. We are able
to classify the octonionic-valued extended supersymmetries carried by octonionic-valued
short multiplets.

The first non-trivial example of a non-associative realization of supersymmetry involves
the octonionic realization of the N = 8 supersymmetry. A dynamical system admitting
invariance under a global octonionic N = 8 is e.g. given by the N = 8 super-KdV [2],
whose Poisson brackets coincide with the Non-associative N = 8 Superconformal Algebra
introduced in [3]. The superKdVs are non-linear non-relativistic systems in (1 + 1)-
dimensions. However, since the supersymmetry transformations depend on the space
coordinate alone, they are classified in agreement with the results for the 1D Extended
Supersymmetries.

Other dynamical systems admitting invariance under non-associative realizations of
the Extended Supersymmetries involve the octonionic spinning particles, as later dis-
cussed.

The scheme of this paper is as follows. In the next section we present the classification
of the octonionic realizations of the Clifford algebras. This is the necessary ingredient for
introducing in section 3 the classification of the octonionic realizations of the Extended
Supersymmetries. In section 4 some examples of dynamical systems admitting octonionic
realizations of the extended supersymmetries are discussed in some detail. Finally, in the
Conclusions, we make further comments on our results, mentioning, among other, the
possible relevance of the classification of the one-dimensional octonionic supersymmetries
in the dimensional reduction from octonionic string and M-theory.

2 The octonionic Clifford algebras.

The classification of the 1D Extended Supersymmetries is based, as recalled in the In-
troduction, on the classification of Clifford algebras [4, 5]. We summarize here the main
results which will be used in following concerning real and octonionic-valued Clifford alge-
bras. A very convenient presentation for them is in terms of the following algorithm, which
allows individuating a single representative for each irreducible class of representations of
Clifford’s Gamma matrices.

Let us prove at first that a recursive construction of D+2 spacetime dimensional Clif-
ford algebras is available, when assumed known a D dimensional representation. Indeed,
it is a simple exercise to verify that if γi’s denotes the d-dimensional Gamma matrices of
a D = p + q spacetime with (p, q) signature (namely, providing a representation for the
C(p, q) Clifford algebra) then 2d-dimensional D + 2 Gamma matrices (denoted as Γj) of
a D + 2 spacetime are produced according to either

Γj ≡
(

0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0
0 −1d

)

(p, q) �→ (p + 1, q + 1). (3)
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or

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0
0 −1d

)

(p, q) �→ (q + 2, p). (4)

As an example, the two-dimensional real-valued Pauli matrices τA, τ1, τ2 which realize
the Clifford algebra C(2, 1) are obtained by applying either (3) or (4) to the number 1,
i.e. the one-dimensional realization of C(1, 0). We have indeed

τA =

(
0 1
−1 0

)
, τ1 =

(
0 1
1 0

)
, τ2 =

(
1 0
0 −1

)
. (5)

All Clifford algebras are obtained by recursively applying the algorithms (3) and (4) to
the Clifford algebra C(1, 0) (≡ 1) and the Clifford algebras of the series C(0, 3 + 4m) (m
non-negative integer), which must be previously known. This is in accordance with the
scheme illustrated in the table below.

Table with the maximal Clifford algebras (up to d = 256).

1 ∗ 2 ∗ 4 ∗ 8 ∗ 16 ∗ 32 ∗ 64 ∗ 128 ∗ 256 ∗

(1, 0) ⇒ (2, 1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ⇒

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) →
↗

(0,3)

↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) →

(1,8) → (2,9) → (3,10) → (4,11) → (5,12) →
↗

(0,7)

↘

(9,0) → (10,1) → (11,2) → (12,3) → (13,4) →

(1,12) → (2,13) →
↗

(0,11)

↘

(13,0) → (14,1) →

(1,16) →
↗

(0,15)

↘

(17,0) →

(6)

Concerning the previous table, some remarks are in order. The columns are labeled
by the matrix size d of the maximal Clifford algebras. Their signature is denoted by
the (p, q) pairs. Furthermore, the underlined Clifford algebras in the table are called
the “primitive maximal Clifford algebras”. The remaining maximal Clifford algebras,
known as the “maximal descendant Clifford algebras”, are obtained from the primitive
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maximal Clifford algebras by iteratively applying the two recursive algorithms (3) and
(4). Any Clifford algebra is said “non-maximal” if obtained by a maximal one by deleting
a certain number of Gamma matrices. It should be noticed that Clifford algebras in
even-dimensional spacetimes are always non-maximal.

For what concerns the construction of the primitive maximal Clifford algebras of the
series C(0, 3 + 8n) (also known as quaternionic series, due to its connection with this
division algebra, as we will explain later), as well as the octonionic series C(0, 7 + 8n),
the answer can be provided with the help of the three Pauli matrices (5). We construct
at first the 4 × 4 matrices realizing the Clifford algebra C(0, 3) and the 8 × 8 matrices
realizing the Clifford algebra C(0, 7). They are given, respectively, by

C(0, 3) ≡
τA ⊗ τ1,
τA ⊗ τ2,
12 ⊗ τA.

(7)

and

C(0, 7) ≡

τA ⊗ τ1 ⊗ 12,
τA ⊗ τ2 ⊗ 12,
12 ⊗ τA ⊗ τ1,
12 ⊗ τA ⊗ τ2,
τ1 ⊗ 12 ⊗ τA,
τ2 ⊗ 12 ⊗ τA,
τA ⊗ τA ⊗ τA.

(8)

The three matrices of C(0, 3) will be denoted as τ i, = 1, 2, 3. The seven matrices of C(0, 7)
will be denoted as τ̃i, i = 1, 2, . . . , 7.

In order to construct the remaining Clifford algebras of the series we need at first to
apply the (3) algorithm to C(0, 7) and construct the 16 × 16 matrices realizing C(1, 8)
(the matrix with positive signature is denoted as γ9, γ9

2 = 1, while the eight matrices
with negative signatures are denoted as γj, j = 1, 2 . . . , 8, with γj

2 = −1). We are now in
the position to explicitly construct the whole series of primitive maximal Clifford algebras
C(0, 3 + 8n), C(0, 7 + 8n) through the formulas

C(0, 3 + 8n) ≡

τ i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
14 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
14 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,
14 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(9)

and similarly

C(0, 7 + 8n) ≡

τ̃i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,
18 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
18 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
18 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,
. . . . . . . . . ,
18 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(10)
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Please notice that the tensor product of the 16-dimensional representation is taken n
times. The total size of the (9) matrix representations is then 4×16n, while the total size
of (10) is 8× 16n.

The formulas given above provide quite a practical and efficient tool to operatively
construct the irreducible Clifford algebras.

An important subclass of Clifford Gamma matrices is obtained by the matrices which
are decomposable in 2× 2 blocks and are non-vanishing only in the anti-diagonal blocks.
Such matrices can be named as (generalized) Weyl-type matrices (they can also be re-
garded of “supersymmetric type” since they can be promoted to be fermionic matrices
associated with the representations of the extended supersymmetries, see [6]). An in-
spection of the previous tables shows that sets of (generalized) Weyl matrices are found
in special signatures only. All primitive Clifford algebras are not of (generalized) Weyl
type. However, all the derived Clifford algebras, through the two lifting algorithms, are

of Weyl-type, once deleted the

(
1d 0
0 −1d

)
matrix to produce a non-maximal Clifford

algebra.
So far we have shown how to construct the irreducible representations of Clifford

algebras, and not yet elucidated their relations with division algebras. Such a relation
can be expressed as follows. The three matrices appearing in C(0, 3) can also be expressed
in terms of the imaginary quaternions τi satisfying τi ·τj = −δij+εijkτk. As a consequence,
the whole set of maximal primitive Clifford algebras C(0, 3+8n), as well as their maximal
descendants, can be represented as quaternionic-valued matrices, acting on spinors, which
have to be interpreted now as quaternionic-valued column vectors.

Similarly, there exists an alternative realization for the Clifford algebra C(0, 7), ob-
tained by identifying the seven generators with the seven imaginary octonions satisfying
the algebraic relation

τi · τj = −δij + Cijkτk, (11)

for i, j, k = 1, · · · , 7 and Cijk the totally antisymmetric octonionic structure constants
given by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (12)

and vanishing otherwise. This octonionic realization of the seven-dimensional Euclidean
Clifford algebra will be denoted as CO(0, 7). Due to the non-associative character of
the (11) octonionic product (the weaker condition of alternativity is satisfied, see [7]),
the octonionic realization cannot be represented as an ordinary matrix product and is
therefore a distinct and inequivalent realization of this Euclidean Clifford algebra with
respect to the one previously considered (8). Please notice that, by iteratively applying the
two lifting algorithms to CO(0, 7), we obtain matrix realizations with octonionic-valued
entries for the maximal Clifford algebras of the series C(m, 7+m) and C(8+m,m−1), for
positive integral values of m (m = 1, 2, . . .). These realizations are denoted CO(m, 7+m)
and CO(8 +m,m− 1), respectively. The dimensionality of the corresponding octonionic-
valued matrices is 2m × 2m.

We should point out that the construction (10) leading to the primitive maximal
Clifford algebras C(0, 7 + 8n), can be carried on with the help of the octonionic-valued
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realization CO(1, 8) for the γi’s and γ9 matrices. As a consequence, octonionic realizations
of C(0, 7 + 8n) and their descendants can be produced acting on column spinors, whose
entries are tensor products of octonions. If in the r.h.s. of (10) k octonionic and n − k
real realizations are chosen, the maximal Clifford algebras C(m, 7 +m + 8n) and C(9 +
8n+m,m), for n ≥ 0 and m ≥ 0, are realized by matrices with k+1-tensorial octonionic
entries (the extra 1 being associated to CO(0, 7)) and respective size of 24n−3k+m and
24n−3k+m+1.

3 The octonionic extended supersymmetries.

We furnish here the classification of the 1D octonionic extended supersymmetries. More
precisely, we give the list of the octonionic maximal supersymmetries supported by short
multiplets of n bosonic and n fermionic fields. This is based both on [1] and the previous
section results. The octonionic extensions can be recovered from a suitable restriction of
the [1] classification formulas of the real representations of the 1D extended supersym-
metries. Indeed, the octonionic realizations of the maximal Clifford algebras are obtained
by lifting the CO(0, 7 + 8n) series. No octonionic counterpart exists for the C(1, 0) and
the C(0, 3 + 8n) series.

The one-to-one correspondence of 1D extended supersymmetries and Weyl type real-
valued Clifford algebras [1] is obtained by expressing the supersymmetry generators Qi

satisfying the supersymmetry algebra

{Qi, Qj} = ηijH, (13)

for the generalized pseudo-Euclidean metric ηij
1 of (p, q) signature, through

Qi =
1√
2

(
0 σi

σ̃iH 0

)
, (14)

where H is the hamiltonian and one can set

Γi =

(
0 σi

σ̃i 0

)
(15)

satisfying

ΓiΓj + ΓjΓi = 2ηij. (16)

The octonionic realizations are recovered by setting σi, σ̃i as matrices with octonionic-
valued entries, instead of being real matrices. From the previous section we know that
Weyl type (15) octonionic-valued matrices Γi satisfying (16) are recovered from the max-
imal Clifford algebras derived from the CO(0, 7 + 8n) series, after deleting the diagonal

1the Euclidean case was considered earlier in [8]. Pseudo-Euclidean supersymmetries naturally appear
as dynamical invariances for systems like the spinning particles moving in generic space-time target
manifolds.
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(
1 0
0 −1

)
matrix. This leaves us the two series of octonionic maximally extended su-

persymmetries of (p, q) signature, namely

(m, 8 + 8n +m) (17)

and

(8 + 8n+m,m), (18)

for integral values n,m ≥ 0.
In both cases the number of octonionic bosonic, as well as fermionic, components is

given by 2n+m. Please notice the equivalence of (17) and (18) under the sign flipping
p ↔ q.

This result can be summarized as follows. The inequivalent classes of octonionic
irreducible realizations of the maximally extended supersymmetries acting on octonionic
multiplets of d = 2k bosons and equal number of fermions is given by

(x+ 8ε(k + 1− x), x+ 8(1− ε)(k + 1− x)), (19)

for integral values 0 ≤ x ≤ k and ε = 0, 1.
At the lowest order of d, the following table can be produced

(p, q)
d = 1 (8, 0), (0, 8)
d = 2 (16, 0), (9, 1), (1, 9), (0, 16)
d = 4 (24, 0), (17, 1), (10, 2), (2, 10), (1, 17), (0, 24)
d = 8 (40, 0), (33, 1), (26, 2), (19, 3), (12, 4), (4, 12), (3, 19), (2, 26), (1, 33), (0, 40)

(20)

Of course, irreducible realizations of non-maximal octonionic extended supersymmetries
are recovered from the previous table for the values (p′, q′), with p′ ≤ p and q′ ≤ q,
provided that p′, q′ are not too small. For instance, the irreducible 2+2 realization of the
octonionic (8, 1) ⊂ (9, 1) is encountered, while the irreducible (8, 0) is directly present in
the table and found at d = 1.

4 Dynamical systems with octonionic supersymme-

try.

In this section we present some examples of dynamical systems admitting invariance under
1D octonionic extended supersymmetries.

The first example of a non-associative, octonionic realization of a 1D supersymmetry is
given by the octonionic N = 8. It is associated, according to the previous section results,
to CO(8, 0) and is expressed in terms of 2× 2 octonionic-valued matrices. Explicitly, the
eight supersymmetry generators Q0, Qi, for i = 1, 2, . . . , 7, are given by

Q0 =
1√
2

(
0 1
H 0

)
, Qi =

1√
2

(
0 ti

−tiH 0

)
, (21)
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where ti denote the imaginary octonions and H is the hamiltonian.
The above supersymmetry can also be expressed in an octonionic language. It cor-

responds to the simplest (for D = 1) case of a class of higher-dimensional generalized
octonionic supersymmetries, investigated in the light of superstring theories, M-theory,
etc., see [9]. We can indeed introduce the octonionic supercharge Q and its octonionic
conjugate Q∗ (under octonionic principal conjugation), through

Q = Q0 +
1√
7

∑
i=1,...7

Qti,

Q∗ = Q0 − 1√
7

∑
i=1,...7

Qti, (22)

with

Q =
1√
2

(
0 1

−H 0

)
. (23)

As a consequence, the octonionic N = 8 can be rewritten as

{Q,Q} = {Q∗,Q∗} = 2H,

{Q,Q∗} = 0. (24)

We already pointed out that the octonionic N = 8 is an inequivalent realization of the 1D
N = 8 supersymmetry with respect to standard N = 8, obtained by replacing the seven
imaginary octonions ti in (21) with the seven (associative) 8× 8 matrices given in (8)2.

Perhaps the most convenient way of getting ourselves convinced of the inequivalence
of the associative-versus-nonassociative realizations of N = 8, consists in presenting a
dynamical system which only admits invariance under the octonionic N = 8. No coun-
terpart is found with invariance under the associative N = 8. A nice example of that
is given by the N = 8 KdV. Due to the absence of central extension for N -extended
superconformal algebras with N > 4 [10], superKdV equations only exist for N ≤ 4.
Indeed, the Virasoro central extension is necessary to produce the three-derivative term
entering the KdV equation. On the other hand, the mathematical no-go theorem prevent-
ing the construction of superKdV equations for N > 4 can be overcome by noticing that
non-Jacobian superconformal algebras like the Non-associative N = 8 SCA introduced in
[3], can present central extension and be regarded as generalized Poisson brackets for a
non-associative supersymmetric extension of KdV. In [2] we proved that there exists only
one such extension, the N = 8 KdV, invariant under the global octonionic N = 8. From
the considerations above, it is clear that no N = 8 superKdV based on the associative
N = 8 can exist, since this is prevented by the no-go theorem.

The N = 8 superKdV equations are explicitly given by

Ṫ = −T ′′′ − 12T ′T − 6Q′′
aQa + 4J ′′

i Ji,

Q̇ = −Q′′′ − 6T ′Q− 6TQ′ − 4Q′′
i Ji + 2QiJ

′′
i − 2Q′

iJ
′
i,

Q̇i = −Qi
′′′ − 2QJ ′′

i − 6TQ′
i − 6T ′Qi + 2Q′J ′

i + 4Q′′Ji −
2Cijk(QjJ

′′
k −Q′

jJ
′
k − 2Q′′

jJk),

J̇i = −Ji
′′′ − 4T ′Ji − 4TJ ′

i + 2QQ′
i + 2Q′Qi − Cijk(4JjJ

′′
k + 2QjQ

′
k). (25)

2In the Q0, Qi entries 1 is also replaced by 18.
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(the dot and the prime denote, as usual, the time and respectively the space derivative).
They involve the eight bosonic fields T , Ji and the eight fermionic fields Q0 ≡ Q, Qi

(i = 1, . . . , 7, while a = 0, 1, . . . , 7). One should notice the presence of the octonionic
structure constants Cijk. The N = 8 global supersymmetry transformations leaving the
(25) system invariant are generated by

∫
dxQa(x), for a = 0, 1, . . . , 7, under the Non-

associative N = 8 SCA Poisson brackets, see [2] for details. They coincide with the
(21) transformations once setting the hamiltonian H = i ∂

∂x
. Please notice that, despite

the fact that the fields entering the N = 8 superKdV are dependent on both the space
and time coordinates, the N = 8 supersymmetry transformations only depend on the
space coordinate x. The time dependence being “frozen”, one can directly read these
transformations from the 1D octonionic N = 8 supersymmetry generators given above.

We have clarified the role of the octonionic supersymmetry transformations and pre-
sented a first example of a non-trivial system invariant under non-associative supersym-
metries. Another example of a class of dynamical systems invariant under octonionic su-
persymmetry involves the octonionic spinning particles, whose simplest example is again
found for N = 8. The octonionic generalization of the free real-valued spinning particles
is described by the octonionic-valued bosonic and fermionic fields, x = x0 +

∑
i xiτi and

ψ = ψ0 + ψiτi respectively. The imaginary octonionic super-coordinates xi, ψi can be
regarded as super-coordinates associated with the seven sphere S7 [11] since the latter
can be described by unitary octonions. The free kinetic action is given by

S =
1

2

∫
dt · tr{(x∗, ψ∗)

(
d2

dt2
0

0 d
dt

)(
x
ψ

)
}, (26)

where tr denotes both the matrix trace Tr and the projection over the octonionic identity
[12], while “∗” denotes the octonionic principal conjugation (see also formula (22)).

The above free action is invariant under the octonionic N = 8 supersymmetry, whose
suitably normalized explicitly transformations acting on the component fields are given
by

δ0x0 = ψ0, δ0xi = ψi,
δ0ψ0 = ẋ0, δ0ψi = ẋi

(27)

and

δix0 = −ψi, δixj = δijψ0 − Cijkψk,
δiψ0 = ẋi, δiψj = −δij ẋ0 + Cijkẋk,

(28)

with i = 1, . . . , 7.
The classification of the octonionic spinning particles, invariant under generalized

(p, q) supersymmetries, is an immediate consequence of the classification formulas for
the octonionic supersymmetries presented in the previous section. The construction of
the octonionic spinning particles straightforwardly follows the one here presented for the
N = 8, i.e. the (p = 8, q = 0), octonionic supersymmetry.

5 Conclusions.

In this work we furnished the classification of the octonionic 1D extended supersymmetries
acting on small multiplets of n bosonic and n fermionic fields. The key observation
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allowing us to classify the octonionic supersymmetries consists in noticing that they are
in one-to-one correspondence with the class of Weyl type realizations of Clifford algebras,
expressed through matrices with octonionic-valued entries. “Weyl type” simply means
here the subclass of matrices in a Clifford algebra which can be “promoted” to be fermionic
(i.e. odd-graded) elements in a superalgebra.

The classification of the octonionic supersymmetries can therefore be extracted from
the classification of the octonionic Clifford algebras. Explicit tables, expressing the num-
ber of generalized (p, q) supersymmetries (for p positive and q negative eigenvalues) sup-
ported by the n+ n field multiplets, are given.

We further mentioned that the octonionic realizations can be put in correspondence
with a subclass of the associative representations of the 1D extended supersymmetries.
Basically, this can be done by replacing the seven imaginary octonions with the seven
antisymmetric matrices producing the Euclidean Clifford algebra C(0, 7). Nonassociative
and associative realizations of supersymmetry remain, nevertheless, inequivalent. This
point is better understood by noticing that N = 8-octonionic invariant systems, such as
the N = 8 KdV, indeed exist, while on the other hand is known (due to a mathematical
no-go theorem discussed in the previous section) that no N = 8 extension of KdV based
on the associative N = 8 supersymmetry can be constructed.

We further explicitly discussed another example of a class of dynamical systems invari-
ant under the octonionic supersymmetry, i.e. the one provided by the octonionic spinning
particles.

Finally, it is worth mentioning the possible relevance in physical applications of the
supersymmetric systems investigated in this paper. While it is well known since the
work of [13] that division algebras are associated with extended supersymmetries, quite
understandably due to the complications arising from the non-associativity, octonionic
realizations received less attention than the associative division algebras. Nevertheless,
octonions continued being investigated as, e.g., in [14, 15] in the context of superstring
theory. More recently, in [9], the existence of an octonionic version of the M-theory with
surprising features, among the others the equivalence of theM5 five-brane sectors with the
M1 and M2 sectors, was pointed out. In general higher-dimensional octonionic theories
have peculiar features, for instance they are no longer invariant under the full Lorentz
group, but under its G2 coset, since this is the group of the octonionic automorphisms.

For what concerns the specialization to D = 1, i.e. the case treated in this paper,
we should mention that in the Jordan framework and at least for the restricted class of
Jordan algebras, see [16], a consistent octonionic quantum mechanics is available. On
the other hand it is clear that higher-dimensional octonionic supersymmetric theories,
like the superstring or the M-theory mentioned above, can be dimensionally reduced to
1D. In this passage we obtain octonionic quantum mechanical systems admitting, as in
the standard associative case [17], extended number of supersymmetries. Such systems
must be constructed in terms of the octonionic multiplets here classified, leaving room for
promising applications of the results and the techniques presented in this paper.
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