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Abstract

Relations between solutions of homogeneous wave equations for di�erent dimen-

sions are discussed. Idem for Green functions. A similar discussion is given for the

Klein Gordon equations.

Relations with solutions for powers of D'Alembertian and Kleinian are also dis-

cussed. Its importance for the understanding of the relations between Analytic and

dimensional regularization is brie
y mentioned.
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I. Introduction

It is very diÆcult to discuss the wave equation (w.e) or Klein Gordon eq. (K:G) and say
something new about it. You are never sure that the same thing has not been done many
years ago.

In this note we intend to discuss relations between solutions of w.e. (or K:G) in
di�erent dimensions. The interest in di�erent n0 of dimensions has increased very much
during the last decade so it looks worthy to try to �nd relations among them. We shall
limit this discussion to solutions with spherical symmetry and �nd very simple relations
among them. In particular between solutions in n-dimension and those with n + 2 (n
being d+ 1, space time dimensions).

There are also simple relations with di�erent powers of the D'Alembertian or the
Kleinian.

We shall see that the \radiation part" (that surviving at r =1) implies a multipole of
order d�3

2
. It looks like a space dimension d had, associated with it, an intrinsic multipole

of this order. This result was already known from quantum mechanics. These results will
prove to be valid for fractional derivations and integrals of the solutions.

In xII we discuss the displacement of the solution with the dimension or with the
power of the D'Alembertian; i.e.: with the change of dynamics in the same number of
dimensions, when derivations are taken with respect to r2 in dimension d.

In xIII we give some examples for the w.e. and show how the intrinsic multipole appear
in the Schroedinger equation.

In xIV we discuss relations among Green functions of w.e.
In xV we discuss similar problems with Klein Gordon equation.
Finally, in the discussion, we show the relevance of these relations in the interrelation

of analytic and dimensional regularization.

II. Relating di�erent dimensions

We start with the well known formula

I�(�) =
1

�(�)

Z 1

u
(u0 � u)��1�(u0)du0 (1)

which, when � is an integer > 0 represents the � iterated integration.
According to ref. [1] p.49 the distribution

x�+ =
x� when x > 0
0 otherwise

(2)

has, as analytic function of �, poles for � = �k with residue

(�1)k�1 Æ
k�1(x)

�(k)
(3)
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when using this property with form 1 we see that for � = �n (1) gives the n the derivative

I(�n)� =
dn�(u)

dun
(4)

For � real > 0 (1) gives then a de�nition of functional integration or for � < 0
fractional di�erentiations.

Let us prove now that I�(�) gives a solution of w.e. in a dimension n� 2�.
For functions depending only on r and t the homogeneous w.e. reads:

@2�

@r2
+
(d� 1)

r

@�

@r
� @2�

@t2
= 0 (5)

If we write it for the variables u0 = r2 (5) reads

4u0
@2�

@u02
+ 2d

@�

@u0
� @2�

@t2
= 0 (6)

Multiplying by (u0 � u)��1 1
�(�)

and integrating we get

1

�(�)

Z 1

u
4u0(u0 � u)��1

@2�

@u02
du0 +

2d

�(�)

Z 1

u
du0(u0 � u)��1

@�

@u0
� @2

@t2
I�(�) = 0 (7)

Adding and substracting the �rst term multiplied by u we obtain

1

�(�)

Z 1

u
du04(u0 � u)�

@2�

@u02
+

4u

�(�)

Z 1

u
(u0 � u)��1

@2�

@u02
du0 +

+
2d

�(�)

Z 1

u
(u0 � u)��1

@�

du0
du0 � @2

@t2
I�(�) = 0 (8)

with obvious de�nitions for I1I2I3 we can write (8) as

I1 + I2 + I3 � @2I�(�)

@t2
= 0 (9)

Comparing the de�nitions of I1I2I3 with (1) we can write:

I1 = �4�@I
�(�)

@u
; I2 =

4u@2I�(�)

@u2
; I3 = 2d

@I�

@u
(10)

which can be veri�ed by partial integration and � > 2. For other values of � use is made
of analytic continuation.

With (10), (8) can be written

4u
@2I�(�)

@u2
+ 2(d� 2�)

@I�(�)

@u
� @2I�(�)

@t2
= 0 (11)

to be compared with form (6).
For any � real (11) means that I�(�) gives a solution in dimension d� 2�.
For � an integer we have the following results:
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A: If � = n > 0, this means that n-iterated integration leads to a solution in dimension
d� 2n.

B: If � = �n nth di�erentiation shifts to a space of dimension d+ 2n.

If � = �1
2
(non local di�erentiation) we obtain the solution in d+ 1.

The same arguments applies if we look for a solution  (�) with

� = t2 � r2 (12)

Then, the w.e. can be written as

d2 

d�2
+

n

2�

d 

d�
= 0 n = d+ 1 = space-time dimension (13)

The solutions for lowest dimensionality are:

n = 2  = `n�

n = 3 1p
�

n = 4 1
�

n = 5 1
�3=2

; :::etc (14)

Then, it can be immediately veri�ed that if  n(�) is a solution in dimension n, then

 n+2
�
=
d u

d�
(15)

 n+2k
�
=

dk

d�k
 u; etc: (16)

The same applies for integration

 n�2k ' Ik( ) (17)

and (17) is generalized (when k is not an integer)

 n�2�(�) ' I�( u) (18)

This is a non local relation, which reduces to a local one when � is a negative integer.

III. Examples

Suppose we start from a solution of the homogeneous, w.e. in 3+1 of the form

�3 =
f(t� r)

r
(19)
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Taking
d�3

dr2
� 1

r

d�3

dr
= �5

so

�5
�
=

1

r3
f(t� r) +

f 0(t� r)

r2
(20)

is a solution in 5+1. Again

�7 '
3f(t� r)

r5
+
3f 0(t� r)

r4
+
f 00(t� r)

r3
(21)

�9 = 15
f(t� r)

r7
+ 15

f 0(t� r)

r6
+ 6

f 00(t� r)

r5
+
f 000(t� r)

r4
(22)

and so on.
In particular, if we choose f = Æ(t� r) then (20), (21) and (22) shows us that a pure

outgoing wave i.e., a Æ(t�r)
r

is not a solution of w.e. for dimensions greater than 3.
In fact, eq. (20) tells us that for large r in �ve dimensions, the dominant wave

(radiation part) is that of a dipole (21) says that for seven dimensions, the radiation part
is a quadrupole, etc.

In general, for dimension d, the radiation wave is given by a multipole

` =
d� 3

2
(d = odd) (23)

It is interesting to observe (as is well known, ref. [2]) that the same intrinsic multipole
appears if you consider Schroedinger equation for a potential V (r) in dimension d and
look for the ground state (see ref. [3]).

This state has the maximum symmetry and is a function only for r. The Schroedinger
equation can be written. (

d2

dr2
+
d� 1

r

d

dr
+ V (r)

)
 = E (24)

Making now the usual change to eliminate the �rst derivative

 =
�

r
d�1
2

we get for the ground state (25)

d2�

dr2
+ V (r)�� `(`+ 1)

r2
� = E� (26)

where ` = d�3
2

and represents an intrinsic multipole of dimension d.
This is the same multipole which appears as \radiation multipole in w.e. in dimension

n" in form (23) for f = Æ(t� r).
Observe also that if we look for the Green function of the Laplacian in dimension d

we get

G(d; r)
�
= �

 
d� 2

2

!
(r2)

2�d
2 (27)
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By performing:

�dG(d; r)
dr2

' �

 
d

2

!
(r2)�

d
2
�
= G(d+ 2; r) (28)

This result is valid for an euclidean theory of dimension d, but it is also valid for
the quantum wave equation when we change d by n and r2 ! � + i0, which is obtained
when doing �rst a dilatation (x4 = �t; � >) and then performing analytic continuation in
� = i+ " (See ref. [5]).

So we have
dk n(�)

d�k
'  n+2k (29)

The extension of this result for a continuous real k can be immediately obtained by using
(see ref. [4], p.284).

Z 1

�
�0��(�0 � �)��1d�0 =

�(� � �)�(�)

�(�)
���� (30)

See ref. [4] p.284.
Observe that the Green function of �� is (See ref. [1])

G(�; d; r) ' �(
d

2
� �)(r2)��

d
2 (31)

A displacement in d, can also be interpreted as a displacement in �.

IV. Green Functions

In order to discuss relations among Green functions of arbitrary powers (or di�erent
dimensions) of 2, let us recall the de�nition of 2� (see ref. [6]).

2
�
R

A
=

22�+1(t2 � r2)
���u

2

+ �(�t)
�
u
2
�1�

�
1� �� u

2

�
�(��)

(32)

where

(t2 � r2)+ =
(t2 � r2) when t2 > r2

0 otherwise
(33)

�(t) is the usual step function. R and A stands for advanced and retarded. Similar
de�nitions can be given for Feynman D'Alembertians (2+) or antiFeynman (2�) see ref.
[6].

The corresponding Green functions, such that (�means convolution)

2
�
R
A
�G� = Æ(x): see ref. [6] from (22) (34)

are

G�
R

A
=

2(1�2�)(t2 � r2)
��u

2

+ �(�t)
�
u
2
�1�

�
1 + �� u

2

�
�(�)

(35)
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and a similar one for 2� in which we change (t2 � r2)+ by (t2 � r2 + io).
Then, it is easily veri�ed

dG�
R

A

d�
' G(n+ 2; �) (36)

but as the dynamical part of (34) depends on � � n
2
we can also say that increase the

dimension by 2 is the same as taking �� 1 i.e. G(u+ 2; �) ' G(n; �� 1)
And using the same formula (30) we can easily prove

I�(G�) ' G(n + 2�;�) ' G(n; �� �) (37)

We see that as in the dynamics of the whole thing it appears the combination � � n
2

we can say that either n is shifted by 2� or � is decreased by �. So, we get the Green
function of either of them.

V. Klein Gordon Equation

We can extend the previous considerations to the Klein Gordon equation (K:G) consider-
ing, just as was the case with the w.e. - only solutions depending on r.t. (no dependence
on angles) K:G reads.

@2�

@r2
+

(d� 1)

r
� @�

@r
� @2�

@t2
�m2� = 0 (38)

The arguments that led from eq. (5) to (11) remain unchanged with the extra mass
term. So, instead of (11) we have now

4u
d2

du2
I�(�) + 2(d� 2�)

dI�(�)

du
� @2I�(�)

@t2
�m2I2(�) = 0 (39)

and the conclusions A;B remain the same and are valid for K:G eq. (K:G to the power
�).

We shall exemplify these results with the Green functions (to the power �). The
previous proof is valid only for � = 1. But, according to this example, the results are
more general.

The Green function satis�es:

(2 +m2)�G(n;m; �; �) = Æ (40)

with

G(n;m; �; �) =
21��m

n
2
��Kn

2
��

�
m�1=2

�
�(

n
2
��) 12

(41)

See ref. [1] p.362, with � = (x20 � x21 � x22 � :::x2u�1) + io. For simplicity we can think
everything in euclidean metric. When written in terms of �;KG(� = 1) reduces to

4�
d2 

d�2
+ 2n

d 

d�
�m2 = 0 (42)
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Exactly as in the case of form 6 we get for  the formula 39 for � (without the t-term).
If we take the derivative of (41) with respect to � = t2 � r2 + io and make use of the

recurrence relation.
z K�(z)� �K�(z) = �z K��1(z) (43)

we obtain:
dG(u)

d�
= �(2)��mn+2

2
��
Kn+2

2
��(m�

1

2
)

�
1

2 (n+2
2
� �)

�= �G(n+ 2) (44)

This formula is valid either for � being euclidean or hyperbolic distance.
It is interesting to observe that as the dynamical part of (41) depends on the combi-

nation n
2
� � we can say that unstead of getting G(n + 2; �) we get G(n; � � 1) as the

Green functions of both are equal (proportional).
For instance, K:G in n = 4 and � = 1, ordinary Klein-Gordon equation has the Green

function

G(4; 1;m2; r) ' K1(m
p
t2 � r2 + io)

(
p
t2 � r2 + io)2��

(45)

but for n = 10 and � = 4 we get exactly the same (up to a constant) function.
Observe that if instead of taking the derivative with respect to �, we take with respect

to m2 and proceed in parallel way, with the other sign in (43) we get.

dG

dm2
=

1

2m

dG

dm
�= G(n� 2) (46)

i.e., it decreases the n0 of dimension by 2 (or increase the value of � by 1).
These formula can be extended to an arbitrary order of integration or derivation, as

I�(G) = 1
�(�)

R1
� G(�0)(�0 � �)��1d�0 =

= 21��m
n
2
��
R1
�

Kn
2
��(m�

1
2 )(�0��)��1

�
0
1
2(n2��)

(47)

From ref. [4] p.209 formula 59 (Bateman Proj.) we get

I�(G) = 21+���m
n�2�
2
��
Kn�2�

2
��(m�

1

2 )

�
1

2
(n�2�

2
��)

(48)

If � is > 0 (integration) we shift to higher dimensions. If � < 0 (di�erentiation), we go
over to smaller dimensions.

Or, equivalently, integration with respect to � leads to higher values of � while di�er-
entiation takes us to smaller values of �.

Discussion

We have seen that very simple relations exists between solutions of w.e. andK:G equations
in di�erent dimensions or for di�erent powers of the D'Alembertian or the Klenian.
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Di�erentiation or integration on con�guration variables (t2 � r2 or r2) leads to higher
or smaller dimensions, rsp. The opposite occurs if we di�erentiate (K:G) with respect to
m2.

Relations between dimensions separated by 2 units (or multiple) are local (di�erenti-
ation with respect to � or r2) while relations between dimensions separated by one unit
are non local.

They imply 1
2
di�erentiation.

This fact is related to the Huygen's principle (for a complete bibliography on this
subject, see ref. [7]).

As was discussed in III and IV, instead of shifting the dimension, we can shift the
dynamics and instead of saying that the dimension is increased by two, we can say that
� is diminished by one, as the dynamics depends essentially on the combination n

2
��, as

we see from the expression of the K:G Green function.

G(n; �;m2; r) =
21��m

n
2
��

�(�)

8<
:
Kn

2
��(m�

1

2 )

�(
n
2
��) 1

2

9=
;

The dynamical part is concentrated in the brackett. It depends only on u
2
� �. There is

a factor independent of the coordinates which is � dependent.
This formula is intimately connected to the relations between dimensional regulariza-

tion (analytic continuation in n) and analytic regularization (analytic continuation in �).
Of course, the di�erence in �-dependent constant is responsible for the fact that ana-
lytic regularization is not gauge invariant before passing to the limit, while dimensional
regularization is.
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