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Abstract

The semiphenomenological model introduced in Part I is wused
to investigate the role of steric forces on the dynamics of black
lipid films. We perform a linear stability analysis of hydrody-
namic fluctuations for lipid films submitted to an applyed elec
tric field. By neglecting dissipation, we concentrate our analy
sis on the competitive effects of electrostatic, van der Waals
and steric forces. In the long wavelenght limit we show that
the stability of the film against bending deformations is governed
by the total film tension. Similarly, for periodic thickness fluc
tuations the stability is determined by the film elasticity. In both
cases we met a stabilizing positive contribution of steric forces
produced by the overlap of lipid chains at the center of the
film. The stability diagram shows a region, for sufficiently small

thickness, where only bending modes are unstable.

Key-words: Black lipid films, stability analysis; Film thick-
ness and shape fluctuations; Dynamics of lipid films, steric re

pulsion.



I. Introduction

In Part I 1 of this series we have developed a semiphenomeno-~
logical theory of steric repulsion in solvent-saturated black
lipid films (LF). This approach enable us to calculate the mac-
roscopic stress resulting from the anisotropic interactions of
ordered hydrocarbon segments inside the f£ilm. The results of
Ref. (1) are used here to study the dynamic stability of black
lipid films against thermally induced hydrodynamic  fluctuations.

The relevance of this study is primarilly related to the for-
mation and stabilization of solvent saturatedlﬂaﬁk]ipnifihmg’%
In particular films submitted to an applied electric field>. Second,
but a less strictelly application, consernes the mechanical de-
formation and rupture of lipid membranes in biological symxms4.
Finally, the present results apply also to study the frequency
of propagating modes of stable lipid films as detected by ligth
scattering mesurementss’6 .

Previous attempts to treat dynamics and stability of lipid

films were restricted to coloured films7’8’9

10,11

and biological vis
co-elastic membranes . The former models we already criti-
cally reviewed in Part I]'; the latter models aimed high in
trying to describe actual membranes with their detailed morphol
ogy beign unknown up to date. Thus to our opinion these models
had to fall short; they introduced only additional adjustable pa-
rameters into the problem without gainning further insight. Also
none of models above is suited to treat coloured and black LF

on the same framework. They generate then, an artificial distinc

tion which is not justified according to observed experimental
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fact of a continuos transition from coloured to black filmsz.

In Ref. (12) we sketched a semi-phenomenological model which
unifies colored and black lipid films also from a  theoretical
point of view. This model is being detailed in the present series.
of papers. Recently Gallez 13, following the lines of Ref. (12),
have proposed an alternative purely phenomenological model to
treat steric repulsion. Unfortunately the microscopic origin of
the repulsive forces cannot be traced. in this last theory. Fi-
nally, a static analysis for thickness fluctuations of lipid films
was performed by Hladky and GruenlA, but using also a pure phe
nomenological model without any wevelength dependence of fluctua
ting forces.

In this paper we consider a solvent saturated lipid film sub-
mitted to an electric potential difference with negligible sur-
face charge'7. Following the lines of our previous studies on

coloured films7’8’9

, we start from the simplest situation by
neglecting any dissipative effect7. We are mainelly interested
here in the competition between the destabilizing forces of van
der Waals and electric origin and the stabilizing effect of the
steric repulsion. Our purpose is to derive stability criteria
for both squeezing (SQ) and bending (BE) deformation modes 12.
Besides the simplifications, this approach can be used, as a
first attempt, to describe the linear dynamics of stable black
lipid films.

In Section II we describe the model adopted by us and the de-
composition of forces acting in the film system. Section III is

devoted to discuss the film at mechanical equilibrium, take as

the reference state in the following dynamic studies. Especial
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attention is payed to evaluate the film elasticity and the film
tension; the later being calculated in detail in Appendix. In
Section IV we performe a linear dynamic analysis of fluctuations.
We neglect any viscous effect and restrict the analysis to the
slow regime; i.e. instantaneous restored "chemical" equilibrium
by diffusion and molecular reorientation. Based on this dynamic
study, in Section V we derive the stability criteria in the long
wavelenght 1l1imit. We draw stability diagrams as a function of
the applied potential difference and the film thickness. Finally,

Section VI is devoted to the concluding remarks.
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ITI. Film Forces

In this Section we briefly describe the formal film model which
is employed in the following. We argue how this model imposes a
natural division of the forces involved and we discuss these forces
in detail.

Here we are interessed in the long time and large scale dynamics

of a lipid film well above its gel-liquid transition tempera-
ture. Thus our formal model assumes the hydrocarbon segments of
both 1ipid chains and organic solvent to be distributed such as
to form a dielectric fluid film with its bulk phase displaying uniform

mass density P and uniform dielectric constant ¢ The film

¢
(bulk) does not exhibit any free electric charge, yet, it dis-
plays an order parameter density profile n (T) reflecting the o-
rientational order of the hydrocarbon segments. The film is sand
wiched between two electrolytes each with uniform mass density
Pl and uniform dielectric constant €y - The electrolytes give rise
to a charge distribution 7T (r). Here they are also supposed to be

biased on different electric potentials causing thus an electric

field across the film. The film boundaries are thought to be

made up of the hydrophilic lipid head groups. In our present
treatment we assume the heads to be dissociated only very weakly
such as to justify the assignment of a vanishing surface charge.
In the film boundaries, the chemical composition changes fast in
a transition zone whose width is small compared to h . Thus the
zone is modeled as a singular two dimensional surface phase with
intrinsic physico-chemical variables8 which in the present pa-

per reduce to the surface tension GS only.



This model leads immediately to distinguishing three types of
forces: i) Isotropic forces due to short range interactions in
a quasi uniform environnement; these forces are globally ac-
counted for by the isotropic pressure: ii) Forces arising due
to interactions which couple to densities varying on a scale
shorter than the one set by the spacial extension of the inter
face; these forces arise in the interfacial region and are thought
to be taken care of by the parameters describing the surface
phase. 1iii) Forces caused by interactions coupling to densities
varying on the scale of the interfacial width or on a larger
scale; they with be modelled explicity and include forces of
the van der Waals type and of electrostatic origin. They also
comprise the part of the anisotropic forces of orientational
origin which arises from the ("slowly" varying) pseudo order
density coinciding with the real order density in some region
around the film center (cf. Part I). The forces of type iii)
are treated explicity in the equations describing the bulk prop
erties of the film or external phases, respectively.

The bulk force acting in a volume element of the system reads

then,

) (1)
—).

The potential W(r) accounts for isotropic interactions of wvan

der Waals-London type; it is determined self-consistent by the

£fluid density p (r)

W(r) = ( w(r-r') p (r')dr (2)



where w(?) is the long-range part of the two body potential acting
between molecules, i.e. w(?):-ﬁ% for large r.
The electrostatic forces due to free charges or external ap-

plied fields are given by the Maxwell stress tensor

4y

L
8t

H¥¥

E? (3)

£ B -
4T

z

where I is the unity tensor, € is the dielectric constant and
—).

E=-V ¥ is the electric field. The electric potential ¥ is de-

termined by the Poisson equation

.(egw)

<}

4T T (4)

The charge density T vanishes in the film. In the external a-
queous solution T is given by the equilibrium Boltzmann distri

bution for free ions, i.e.
T(Y) = n_e exp[-ew(B/KT]-noe exple ¥ (¥) /KT] (5)

where n, is a given number density, e is the ionic charge, K
is the Boltzmann's constant, and T the absolute temperature.
Equation (4) is supplemented by the electrical bondarie condi-
tions at the film surfaces, where we neglect dipole moments and
take into account that surface is uncharged.

>
Finally, the stress tensor i describing the anysotropic short
ranged interactions; was derived in Part I as
l ->

=A{VnVn- =(Vn) 21} (6)
2

=
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n is the order parameter density associated with the orienta-
tional order of hydrocarbons segments of both lipids and sol-
vent molecules. The constant A mesures the relative strenght
of the spacial correlation of the order parameter (see Part I).
The order parameter n is determined through the condition of
thermodynamic equilibrium. For small variations ﬁ:upq%y<<l(0571§l),

we have
(V2 -6%)n=0 (7)

where Ny, is the value of n in the reference bulk phase and

Bz_auo (T]) l
L n

ical potential (see part I). The order parameter 71 is identi-

b/A(nb), L%(n) being the homogeneous part of the chem

cally zero in the external phases. Inside the film its maxirmum,

il is reached at the film surfaces. Besides the jump of the

s’
mass density p at the film surfaces, the inhomogeneities of the
bulk phases are associated with the variations of charge den-
sities and electric potential, and also with the variation of
the order parameter n inside the film. Egs. (6) and (7) are
valid in the region near the center of the film, and for small
deviation of its bulk value, Npe Indeed for our purposes only
the overlap region in the center of the film matters. Any de-
viation further away from the center is formally incorporated

in the properties of the surface layers and results in a con-

tribution to the surface tension
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ITI. Mechanical Equilibrium

We consider a flat 1lipid film in mechanical equilibrium with
the film forming phase and surrounded by two aqueous solutions
(cf. Fig. 3, Part I). In mechanical equilibrium the total force
(Eg. (1)) vanishes at any point and in any direction. Thus fol
lowing along the lines of Section II of part I one demonstrates
that the (normal) stress difference between the external and

the film phase 1is
s

Here pl‘is the isotropic pressure prevailing in the bulk of the

electrolyte, Py is the total normal stress in the film. wS
2

represents the value of the van der Waals potential at the film

surfaces. From Eg. (2) it holds

s H
(pq=p,) W = - (9)
1 72 6Trh3

: 2 2 2 _ .
with H=7 (Xll(pl) +x22(p2) 2%12 plpz) being the Hamaker con
stant.

We now use the fact that the electric and steric forces defined

in Section 2 derive from a potential, i.e.,
+T) = V¢ (10)

with



- - . -
6 ==L (E)? + Lag2@2. (11)
8m 2 ’
Then the mechanical equilibrium in the x-direction (film phase)

asks for
pNz_Pz = —[Tzz(%z) + sz‘;z"'¢(§2’]' (12)

Here ?2 is a point in the film phase, and P, represents the i-
sotropic pressure in the bulk of the film forming phase. In de
riving Eg. (11) we used that the electric field E and the order pa

rameter fi vanish in the meniscus. From Egs. (3), (4) with t=0, (6), (7)

and (l1) we get

> -> - & A Bz
T, (Fy) + 1 (F,) -6 (F,) = g% (By) * = ——(ng) " fcosh’ (6h/2)

(13)

where E2 is the constant electric field inside the film.

The disjoining pressure is then obtained from Egs. (8), (9), (12)
and (13);
2 2
q e,(e,)"  AB

= Py-P, = ~ - + (n_)2/cosh?(8h/2) (14)
D 1 =2 6Th3 81 2 S

As in the soap films (see ref.15) the disjoing pressure accumu-
lates pressure jumps both across the external phase/film inter-
face (Eg. (8)) and across the film/meniscus transition zone
(Eq. (12)). The physical origin of the jump in the film phase
is however quite different in the lipid film. There are two con

tributions (Eg. (13)), one due to the variations of the applied



- 10 -

field E, which varies from zero at meniscus to Ezﬂn at the film.
The other comes from the increasing order of hidrocarbon chains going
from the meniscus to the film phase., This contribution is dis-
cussed in detail in Ref. (1l6). In the case of a lipid film
submitted to an external electric field, both the van der Waals
and the electric terms are negative and these forces tend to com
press the film. If we consider only these two contributions the
pressure at the meniscus has to be larger than the pressure in
the external phase to equilibrize the film. The only positive term
comes from the ordering of hidrocarbon segments at the center of
the film. This disjoing action comes from the reduction of con-
figurational entropie of hidrocarbon chains, due to the superpo
sition of the two lipid layers.

In the case of an external applied field and negligible surface
charges, and for sufficiently concentrated solutions Gké/elggx<l,

1/2

where l/K=(€lKT/8nno) is the Debye screening length) the e-

lectric field inside the film reads.

E, = A/h (15)

where A is the total potential drop between the external phases.

For this condition, Eq. (14) simplifies to

e A2 S
Moo= --2___H _AB (M), oeh?(gh/2) (16)

87h? 6mh? 2

This expression is useful for interpreting electro-compression

experiments on solvent saturated lipid films as performed by

3 1. Y7

Andrews et al.”, As argued by Fettiplace at a , for this ex-

perimental set up the total disjoing pressure 1IN is nearly equal
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to zero. This mean, the compressive action of electric and van
der Waals forces is compensated by the steric repulsion given by
the last term in (l€é). In fact this expression, with HD=0, was
used in part I to fit the experimental results (cf. discussion
in section III of part I).

As will be discussed in the following sections the stability
of the film against small shape fluctuations is mainly related
to the film tension and to the variation of disjoining pressure
with film thickness, i.e. the film elasticity. With the reference
state being in mechanical equilibrium, the film tension is ob-
tained from the Bakker integral18

+
TP (Py—Pp) dz (17)
-
where Py and pp are the normal and transversal components of the

total stress. The explicit form of Yp is derived in the Appendix,

it reads
2
A €x0
Yp = 2Yg - B
4th? Ath
+ (ns)25[1+@/cosh2(@1—) - tanh(g—l-)] (18)
2 2 2
The film elasticity is defined by
e = - (- I_) h? (19)
= D

F 5h

The explicit form is obtained directly as the first derivative

of Eq. (16). We get
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2
B %28 A (n%)? 420 tanh(8h/2) (20)

2th? 4zh 2 cosh? (Bh/2)

£ = -
F

The physical significance of the various contributions to the
film tension and to the film elasticity is presented in section

V together with the discution of the film stability.



IV. Linear Dynamics

In the following we perform a linear stability analysis of the
dynamic fluctuations of the film system. Starting from the ref-
erence state of a plane film with parallel surfaces, we study
shape disturbations on the hydrodynamic scale. Yet, we restrict
ourselves. to the analysis of sufficiently slow perturbations
such that "chemical" equilibrium is maintained during the mo-
tion. This means that diffusion and molecular reorientation are
sufficiently fast such that Equations (5) and (7) are still wvalid
for the perturbed state. For the surface layer this approach cor
responds to neglecting any viscous or elastic effects due to the
transport of mass and charge (see slow regime in Ref. (19)), or
due to the molecular reorientation. Further we neglect any in-
trinsic viscous effects in the bulk phase and in the surface layers.
For the case of vanishing surface charges, discussed here, this
amounts to considering only transversal motion of the surfaces
as discussed in Ref. (7).

The assumptions above impose restrictions on the time and length
scales the model can deal with. Yet, these limitations have no
impact on the study of low frequency modes, on the determina-
tion of marginal states, and on the stability diagram been the
major gool of this paper (Section V). The generalization of these
investigations which especially also includes dissipative ef-
fects follows along the lines of Ref. (8) and is subject of separate study.

In the perturbed state the velocity field is obtained from the

dynamical equation,
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o & - _F (21)

and from the imcompressibility condition

<l
<l
il

(]

(22)

The bulk force F defined in Eqg. (1) is explicity evaluated from
equations (1) to (7). This set of equations is supplemented by
the following boundary conditions: i) continuity of velocities

at the film surfaces,
AS[V] =0, (23)

ii) surface balance of the normal stress

Alp-T, -7 1 = o (< +2) (24)

V4 22 S
Ry Ry

where Og is the surface tension and R R, are the principal

17
radii of curvatures of the surface. iii) continuity of electric
potential and electric displacement at the film surfaces. iv)
the conditions of constant surface potential and of constant
density ns, arising from the slow regime assumptions. V) The
condition of vanishing perturbations in the external phases far
from the film surfaces.

The perturbed quantities are decomposed, then into normal modes
characterised by a complex frequency w (ewt is the time factor)

and a wave vector K parallel to the unperturbed surfaces. In

solving the linearized equations we decompose the velocity field
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into symmetric and antisymmetric components, giving rise to two

*
modes of the film, a bending mode (BE) with the two surfaces of

the film moving in phase and a squeezing mode (sQ) in which the

two surfaces move out of phase. In linear order, the two motions
7

decouple, due to the symmetry of the reference state . The

condition for non trivial solutions yields the following dis-

persion relation for the BE -~ modes

9] P )
w2 tanh ((B) + L] = (k20 +H(a+b)
k 2 K
e, (EJ)? € e,lg-k*) —e. g
2 2 [(k¥-gqg) (2-1-—2 L )
4T €1 elg+82ktanh(kh/2)
, €,(g-k*) - e, g
v k(—2 L )
€1 gcoth(kh/2)+€2k
_A(nS)? 82 tanh (E2) [p tanh (B2) cotn (B) - g1} (25)
2 2 2

For the SQ - modes we obtain

e o
w2 (=2 coth (1) + L1 = (k20 - A(b-a)
k 2k
£, (E2)?2 5 e lg-k*) - ¢ g
vy 22 (krog) (21— 1=
4m €1 €19+ ezkcoth(kh/Z)

e,(g-k*) -c. g
2 1 )1

+ k(
kh
€, 9 tanh(?) + ezk)

+ A (n%)2 82 tanh (B%) [p tanh (BB) tann (BR) - g1} (26)
2 2 2

* We have used the word "stretching”" in our previous articles. By now we
are convinced that "bending" describes better the picture of this mode.
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In these equations we have used

1 1 k.»

27h 27 2h

where Kz(x):is a modified Bessel function of second order. Further

l+y 2
k* = Xo
2
l—XO
4 KZ 2
g = (K2+k2)l/2 + Yo
[k +(K2+k2)l/2](l—X02)2+2KX02(1—X02)
en
X, = tanh{—=(Egh - 4)}
4RT
p = [B2 +k2]1/2 (28)

The dispersion relations (25) and (26) show how the various in-
teractions generate very specific k~dependences in w. In partic
ular we draw attention to terms related to the variations of the
interfacial order parameter n. They are new compared to our pre
vious work7’8’9. For h-»», corresponding to two infinitely dis-
tant interfaces; kh >>1, ph>>1 and tanh(%?), coth(%?),'unﬁﬂg?),
coth(%?)—>l; and the van der Waals contributions H (b-a) and
H(b+a) vanish. In this limit Egs. (29) and (30) become identical
to each other, and represent the disPersion relation of a single
non-interacting interface. The long wavelenght limit (kh) > 0
is discussed in detail in the next section. The intermediate do

main k s 1/h, needs a complex numerical study of the k-dependen-

cy and is beyond the scope of this paper.
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V. Stability of Long Wavelenghts

In previous studies7'9

of coulored lipid films the in-
stability of the SQ-mode was emphasied for wave-lenghts large in
comparison with the film thickness. The purpose of this section
is to show that the SQ-modes of black LF are stabilized in the
long wavelenght 1limit, due to the overlap of the lipid inter-
faces. Further, we discuss the complete stability diagram demon
strating the possibility of an exclusive instability of the BE
-modes. We restrict ourselves to the long wavelenght limit, a
detailed analysis in the whole domain of wavelenghts will be
the subject of a forthcoming paper.

In studing the domain of stability the wavelenght of fluctua
tions (2m/k) has to be compared with the characteristic lengths
of the system; i.e. the film thickness h, the Debye screaning
length 1/x and the length 1/8 mesuring the interaction range be
tween oriented hydrocarbon bonds. The film thickness is typical
ly of order 50~100 g for black lipid films. For concentrated so
lution n > 0.01M, thus 1/k <100 g, i.e., Khz 1. Since the ratio
ez/el between the dielectric constants in the film phase and in
the water is much less than unity, it is also true that Ziez/elKh«l.
This fact implies that enO(A—Egh)/4kT goes to zero, allowing us
to neglect terms proportional to on in Eq. (28). Finally, the
fitting in part I confirms the assumption of small overlap be-
tween adjacent lipid layers i.e., h>>1/8. The long wave lenght

limit corresponds then to take

1/k >> h, 1/x, 1/8 (29)
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In this limit, the dispersion relations (24) and (25) reduce to

3
w? = - =y (BE) (30)
2 P
P
and
2
MR S (SQ) (31)
hp2 F

where Yp and e, are given by Egs. (18) and (20) respectively.

F

Depending on the sign of the L.H.S. of Egs. (30) and (31) the
roots ® are two pure imaginary numbers or two real roots with op
posite sign. The first situation corresponds to propagating modes
whithout damping (marginal stability). In the second case the pos
itive root leads to a growth of perturbations, corresponding to
an unstable situation. Physical arguments and experience sug-
gest that dissipation, neglected here, renders the propagating
modes assymptotically stable. Thus we adopt the following stabil
ity critenia; negative r.h.s. of Egs. (30) or (31), vrespectively,
correspond to stable solutions, positive r.h.s. implies unstable
mode, zero values corresponds to the transition between stable
and unstable regimes.

Equations (30) and (31) show that in the longwave-length limit
the stability of BE and SQ modes depend on the sign of the film
tension and of the film elasticity respectively. Indeed, the film
tension represents the mechanical resistence to bending the film,
and film elasticity is related to the restoring forces opposing
thickness changes. If the film tension is negative the film has

the tendency to be bent and consequentially the planar configura
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tion is unstable., Similarly, negative film elasticity describes
the tendency of the film to shrink,

For Rh >>1 the film tension reads

H LI
= 2y, - - + 2 (n®)? B(Bh)exp(-Bh) (32)

47h? 4Th

Yr

where Yg is the interfacial tension of a single non-interacting
interface, which is positive. The van der Waals interactions pro
duces a decrease of the free energy (-H/47h?) as the film sur-
faces approach each other. The increase of the negative strored
energy (—E2A2/4ﬂh) corresponds to an increase of electric capac
itance as the film becomes thinner. Finally the last term in
(33) corresponds to an increase of free energy due to the in-
crease of order in the center of the film as the two lipid layers
are superposed. The various contributions to YF—ZYS, as a func-
tion of h are shown in Fig. 1. The resulting curves for A=0, and

A=100 mV are also shown. In Fig. 1 we have take A=3.48x10—l4erg

and €2=2.l 3, For the constants 2A(ns)28 and B, we chose the
values obtained in Part I, by fitting the experiments by Andrews
et al. 3 on lipid films saturated with hexame. This figure shows
that the BE modes can be stabilized in the whole domain of h
even for small values of YS(YS> 0.003 dyn/cm for A=0, and ys>0.03
for A=100mV). For increasing applied potential, however, the
BE mode becomes unstable. The critical value of A above which
the BE mode becomes unstable is plotted in Fig. 2. For realistic

values of Yg of onkg~§;§zﬁ this potential is of order of 190mV,.

2 cm
The film elasticity reads (Bh>>1)



e A%
e, = - 2 _ 2, 2ag(nS)2(Bh)?

2th 4th?

e—Bh/Z (33)

The response to the changes of film thickness has the negative
contributions due to the van der Waals attraction and to the e-
lectric compression. The repulsive (positive) contribution comes
from the overlap of the lipid chains at the center of the film,
and increases exponentially as h decreases. This various contri
butions are plotted in Fig. 3. The resulting curve shows that
the film is unstable againsts SQ deformation for sufficiently
large h for which repulsive forces vanishe, in accordance With
previoussﬁmdiesg. The new result, however, 1is that for small
h(hﬁ€L7 for A=0, h<59.2 for A=100mV) the SQ modes are stable due
to the action of the repulsive forces. More, interesting, is
that for certain values of h(40<h<60) the SQ mode is stable and
the BE mode is unstable. This means that in a certain domain of
h the film will become unstable not due to the changes of thick
ness but through a bending deformation. This bending of 1lipid
membranes is already observed in experiments which heated ery-
trocites, as described by Cockley et al. 4. It is also in
teresting to note that such kind of phenomena occurs, although
less understanding, in many biological process like phagocytosis.
The complete stubility diagram for the SQ and ST modes is pres
ented in Fig. 4. It can be see that above a critical value of

A, after which the BE mode becomes unstable, there is a region

where only ST perturbations are unstable.
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VI. Conclusions

In studying the formation of solvent-saturated lipid films a
central question arises concerning the mechanism responsible for
the stabilization of black films as experimentally observed 2.
The steric repulsion model introduced in Part I]' gives a simple
picture of this mechanism. Our theory is based on the microscaopic
orientational order of hydrocarbon segments inside the film, and
predicts an increase of order in the center of the film as the
film thickness decreases, resulting in a macroscopic disjoining
action. This positive contribution to the total disjoining pres
sure was explicitally calculated in Part I.

In the present paper we have investigate the role of steric
forces on the stability of the film against shape and thickness
thermal induced fluctuations. For that we have introduced a film
model which consist of a dielectric fluid phase surrounded by
two electrolytic aqueous solutions biased at different electric
potentials. The linear dynamic analysis was performed by ac-—
counting for the fluctuations of van der Waals, electric and
steric forces. We have then obtained dispersion relations for
both SQ and BE-modes, and finally used this result to derive a
stability criteria for the film system.

While neglecting dissipative effects this paper represents a
first, important, step to understend the black lipid film dy-
namics. Yet, the dispersion relations of section IV can be used,
as a first attempt, to describe dynamic fluctuations in stabi-
lized films as detected by light scattering experimentals 5’6.

The most important result of this paper is, however, the stabi-
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lity criteria derived in section V for long-wavelenghts. In this
limit we have shown that SQ-modes are stabilized by the posi-
tive contribution of steric repulsion to the film elasticity.

7:8,9 where SQ

This result contrast with our previous fiding
-instability was always met, drived by van der Waals and elec-
trostatic attractions. Further, we obtain also a positive con-
tribution of steric forces to the total film tension, acting to
prevent bending instability.

The parameters used to draw the figures in section V correspond
to realistic values take from the experiments performed by Andrews
et al. 3 in solvent-saturated lipid films. We show that for
small values of the single surface tension (YSZO.OS) the bending
modes are stable even for more or less strong applied potentials
(A< 200mV) . Further, the stability diagram (Fig. 5) shows that
both SQ- and BE-modes are stable for sufficiently small thick-
ness, predicting the formation of stable films as experimentally
observed.B. The unstable domain is separated into three dif-
ferent regions; i) only SQ-modes are unstable, ii) both SQ and
BE-modes are unstable, 1ii) only BE-modes are unstable. Although there are
no available systematic experimental studies on the unstable regimes of
lipid films, our results are in a qualitativelly agreement with some oOb-
served facts. For example, the thickness fluctuations preceding the shrink
of solvent-saturated lipid films submitted to an applied field as
reported by Andrews et al. 3 can be ascribed to the SQ-instabi-
lity as predicted by our theory. Also, bending deformation of
lipid membranes was observed in heated erythrocytes 4. Following
the authors the observed instability is caused by electric con-

straints, and occurs when the cytoskeletal proteins are ther-
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mally impaired. Although less strict, this example shows that
our theory could have an impact even on biological systems.

In conclusion, the extension of the present theory is under
investigation. Especial attention will be payed to the inter-
pretation of light scattering experiments. Also, further experi
mental developments will be suitable to check the stability di
agram as draw in Fig., 4 or to suggest new theoretical develop-

ments.
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Appendix:

The subject of this appendix is the explicit calculation of
the film tension (18). We start to divide the domain of inte-

gration as follows

-h/2-§8 - =h/2+6§
Yp = [ (PN—PT) dz + (PN—PT) dz
- ~h/2-§
+h/2-§ +h/2+6
+ (PN—PT) dz + (PN—PT) dz
-h/2+6 +h/2-8
+ (PN—PT) dz (A-1)
+h/2+8

where §<<h is a small distance from the mathematical f£ilm surfaces. Now,
we calculate separate each contribution;

A) Surface Layers: For symmetric films we have

-h/2+8 [+h/2+6
OF = (PN—PT) dz =

-h/2-¢ +h/2-¢§

(PN—PT) dz (A-2)

Op has to be decomposed into two contributions

op = os-+l/2 o, (A-3)

where Og is the single surface tension accounting for the varia
tions, through the surface layer, of the tangencial component of
the stress as compared to a constant reference normal stress. The

second contribution Ow arrives from the variations of the normal
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stress as compared to the same reference pressure. This last con
tribution is due to the change of the van der Waals interac-
tions as the two surfaces are approached (see discution in Ref.
(20)) . We note that the choice of a reference pres-
sure makes these decomposition not unique. However we take here

0. independent of h and equal to the surface tension of non-interac-—

S
ting surfaces (h»»), fixing then an unique value for A

B) External phases. The anysotropy comes only from the electrical

interactions in the diffuse layers, then we have

=h/2 +00
Ogy = [ (PN—PT) dz = f (PN-PT) dz =
—00 +h/2
~h/2 €
_ £ 2 _ __1 o> 2
= —I e (Ez) dz = ~ (El) [l-xO 1 (A-4)
5 8rk
In deriving (A-4) we have used the solutions of Egs. (4) and
€
(5) . Ei:-é%Eg is the electric field in phase 1 taken at the
1 en
. 0 (.0
film surfaces and xo=tanh{Z§T(E2h—A)}.

C) Film phase: Inside the film the stress anysotropy comes both

from the constant electric field and from the short-ranged o-

rientational interactions.

+h/2-6 [+h/2

(Py-P) = | 2202 £(8% 2] a5z
NT ) dz ar 2
~h/2+§ - -h/2
= OR + 0E2 (A"5)
where
op = - (0512 8 [tanh (E}) - BB cosn? (BRy (A-6)

2 2 2



and

)
2 O, 2
Orn = ~ —= h(EZ) (A-7)
E2 an 2

The total film tension becomes

+ 0 (A-8)

= 20 -+ow + 20El + OEZ R

5z s
In order to get the contribution owxmahawato}qu'the single sur

face tension Yg when h»x, For zero surface charge both ¢ and

El

Om2 vanishes, since Eg+0 as h»~., Further the short-ranged inter

actions for a single interface gives
. _ B0 }
Opg = = 2[ﬂS] 8 (a-9)

Finally the contribution Ow is defined such that it goes to
zero when h+~ and Og remains constant. Therefore the single sur-

face tension reads:

YS = OS + ORS {A-10)

On the other hand the thermodynamic definition of the film ten-

sion is 18,20

. e
Yp = 2yg + HDh + J HD(h)dh (A-11)
h
where HD is the disjoining pressure of Eq. (16). For integrating

(A-11) we assume:



1) the value of the order parameter at the film surfaces, n®,

is a constant independent of h.

ii) the external aqueous solution is sufficiently concentrated
ne 0

such that 282/€lKh.<<l and’IET(A_Ezh)<<l’ Thus Egs. (A-11l) and

(16) yield

A
Yo = 2Ys + 20 + O + O0,-20 -
F S El E2 RT°°RS T
- 20, + 20, + O, + O, ——2 (A-12)
S El E2 R 47h?2
Comparing Egs. (A-8) and (A-12) shows that

o = - H (A-13)

41h?

Finally, by substituting Egs, (A-4), (A-6) and (A-7) into (A-12)

we get the expression (18) in Section IIT.
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Figure Captions

Fig. 1:

The various contributions to yo=2Yg (————):Yw=~H/4Wh2, YE:—E2A74nh
(A=100mVv) and YR=2(nS)28 (Bh) exp(-Bh); and the resulting curves

(——) for A=0 (Yl) and for A=100mV (YZ).

Fig. 2

Stable domain for BE-modes, i.e. positive Ypr @S @ function of

the single surface tension Yg and the applied potential A.

Fig. 3:

The various contributions to the film elasticity EF»(————):€w=—H/2Trhz,
ep=-E,A°/4rh (A=100mV) and €R=2(nS)B(Bh)2 exp(-Bh); and the re-

sulting curves (

)for A=0 (el) and A=100mvV (82).

Fig. 4:

Stability diagram for the film system; (

) separates stable
from unstable domains. The unstable region is separated (----)
into three domains; i) only SQ-modes are unstable, ii) both SQ

and BE-modes are unstable, iii) only BE-modes are unstable.
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