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The investigation of chains involving continuous és
well as finite groups has become very familiar to physi-
cists and chemists during recent years. Group chains turn
out to be particularly useful in the study of broken symme-
tries arising either via descent in symmetry or via sponta-
neous symmetry breaking. Moreover, the consideration of a
group-subgroup chain throws light on the structural signifi
cance of the system under consideration and, if a suitable
chain of groups was chosen, it leads to the elimination of
the multiplicity problem, thereby solving the problem of la
belling the basis states unambigously.

In this work, the chains of the non-crystallographc

point group D4d(1)

are given in a form that simplifies sym-
metry adaptation and its application to molecular and solid
state spectroscopy (calculation of symmetry adapted func -
tions, representations, Clebsch-Gordan coefficients, etc.).

Using direct and semidirect products of subgroups
of D4d we can expand the chains in terms of the generators_
defined as follows.

Let <p> and <e> be two groups which are genera-
ted by some arbitrary operations p and € . Let n be any in

n 2

teger with n > 2 . If p =¢€¢° =E , ep = p—le

and
<p> M <eg> = E , (where E is the identity element), it is
well—known(z) that p and € are the generators of a group

<p,e> with elements {E,p,pz,...,pn—l,e,pe,pze,...,pn_1€}.

It can be easily verified(s) that if n is even,



<p,e> <p> @ <e>

(<p*> @ <p?> p) O <e>

<p?.,e> O <pe> . (1)

In the case when n = 2" (m > 2 , integer), we obtain

the recursion formulae
b (!2+1) k
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<p? se> = <p ,e> @O <p? e> , k =0,1,2,... (2)
>
In particular, let Cg be a rotation by 2m/v around the
i) 1
n axis. If we take p = IC81 , €E = ICZZ with 31'32 = 0 and

2
n% =n, = 1 , then <p,e> = D4d

Now, using equation (2) it is immediate that
<p,e> = {(<p"> ® <e>) @ <p*e>} B <pe> , (3)

where every group appearing in this equation is a cyclic gro-
up of order 2

Equation (3) can conveniently be rewritten as

Dyq(p.e) = {(C,lp%) ® C_le)) © C_lp%e)} @ Cjloe)

Dyglp*.e.0%e,p0e) (4]
and using, for example, table 19.6 of reference (3),
Dyglp.€) = (Cyplp",e) ® C lp*e)) @ Cjlpe]
= Cyy(p*,e,p%e) @ C5(pe) . (5)

Relations between multiple direct and semidirect pro-
ducts allow us to obtain alternative forms of equations (4)

and (5)



Dyglpse) = {(Cyl0%) ® C_lp*e)) © C le)} © Cjlpe)
(CZV(p“,pze) ® Cs(el) ® Cé(pe)

- 4 2
= D4d(p 1p €9€sp€) [ (6)

where we have used the fact that p* € Z(D4d), i.e. p* belongs

to the centre of D4d
Equations (4), (5) and (6) give the right hand side

.

chains of the lattice shown in figure 1. The map : oj > pd

:pje -+ pj+7e (f integer), acting on those chains, gives the

left hand side members of the lattice. The central chain

D4d D) 58 , corresponds to the first term in equation (1).
From figure 1 we observe that the structure of the se

quences of D,; is of the type G1:)G2:)G3:>G4 , where

G,p7 <G; since (|GL|/|GL+II) = 2 . This allows us to ex -

haust the subgroups and the chains of D4d since we are able

to use the theorem establishing that it is possible to gene -

rate an invariant subgroup of a finite group G, by using the

class elements of G as a set of generators(4). Thus,

when G = D4d(p,e)

<p> @ <e> ,

we have,
<p*> = 2(Dyy) (7.1)
<p,p’> = <p?,p%> = Sg(p) (7.2)
<p*,0%> = C,(p?) (7.3)
<e,p’e,p'e,p®e> = C, (p%e.,c,0") (7.4)

<pe,p’e,p’e,p’e> = D,(p%e,pe,p*) . (7.5)



1f G = Cy, (p*e,e,p")
= <p?> O <e>
we have
<p*> = 7(C4,) (8.1)
<p?,p®> = Cy(p?) (8.2)
<g,p'e> = CZV(e,p“) (8.3)
<p?e,p®e> = CZV(pze,p“) . (8.4)
Finally,
if G = D4(p3s,p€,p“)
= <p2> ©Q <pe> ,
we have,
<p*> = Z(D4) (9.1)
<p?,p%> = C4(p?) (9.2)
<pe,p®e> = D, (pe,p") (9.3)
<pe,p’e> = D,(p%e,p") . (9.4)

The set of equations (7), (8) and (9) clearly exhausts all po

ssible sequences of D4d‘

(1)

(ii)

Some comments about these sequences are pertinent

The choice p = ICé , € = IC§ is a convenient realiza -
tion of D,y because plZ,m> = X, |&,m> and el|&,m> =
= Ap|2,-m> , where A= exp{i(4£-m)/4}, 2,=1 . Then,the

resulting irreducible representations(IR) are symmetry

adapted to the sequence D, Sg

It must be pointed out that in spite of the groups <e>

and <p%e> being related by the internal automorphism



p ep = p2e , they are presented as different final sub

()

groups because they define different quantization axes
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(C2 and C2 respectively).

(iii)It should be observed that the structure of figure 1 can
obviously represent the sequences of subgroups of the gro
X

up D8 if p = Cg and € = C2

(iv) We have already remarked the importance of giving a chain_
in terms of appropriate generators. This is shown most_
conveniently by calculating, for instance, the IR adapted

in symmetry to one of the sequences, say

Dyq(pe,p?e,p",e) D Cy (p%e,p*,e) D Cy (p*,e) D C (€) (10)
from the IR adapted to the sequence D4dﬁD Sg - These
(6)

IR are well-known and they can be written in terms of

Pauli matrices as

Ek (p)

Ek(e) =0, k=1,2,3 R

cos (km/4) o9 + 4 s4in(knw/4) o, (11)

where oo is the unit 2x2 matrix and k 1labels the three
two-dimensional IR of D4d . Table 1 shows the matrix re-
presentation of the generators appearing in the sequence_
given by equation (10), calculated from equation (11),
i.e., adapted in symmetry to D4d ) 88

In order to obtain from table 1 the IR adapted to the
sequence given by (10), we must transform o, into o,
This can be done by a rotation in an angle 7 around the

(101) axis, which transforms the vector (ox,c ,oz) into

y



(oz,—oy

representations corresponding to C4v(pze,p“,e). The

,ox) and separates E2 into two one-dimensional

remaining two-dimensional representations E, and E

1 3
of D4d correspond to E in C4V since a rotation by T
around the z axis acting on one of them transforms o

y

into -oy . Now, if we consider a clockwise rotation
by m/2 around the z axis, it transforms every repre -
sentation into a real matrix. Table 2 shows the re -
sulting IR for Dsg after transformation.

This method could have been applied to every chain in

figure 1 and it is so easy that saved the use of cha-

racter tables.
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pe p“e p* €
E1 (1//2)(cx - Gg) —oy -0 oy
E3 —(1//2)(ox + oy) Gg -0y oy
EZ —oy —ox To o,
Table 1 . D4d generators

pe p?e p* €
E1 (1//2)(02 - cx) -0, -0, o,
E3 —(1//2)(0Z - ox) -0, -0, o,
Ez cx -0, Co g,

Table 2 , D4d generators after transformation




SYMBOLS AND NOTATION

A B Intersection (common elements) of A and B
€ Dbelongs to

H< G H is an invariant subgroup of G

Z(G) centre of G

® direct sum

@ semidirect product

@ direct product

AD B B contained in A

| G| order of G
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