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Abstract

The generalized supersymmetries admitting abelian bosonic tensorial central
charges are classified in accordance with their division algebra structure (over R, C,
H or O). It is shown in particular that in D = 11 dimensions, the M -superalgebra
admits a consistent octonionic formulation, involving 52 real bosonic generators (in
place of the 528 of the standard M -superalgebra). The octonionic M5 (super-5-
brane) sector coincides with the octonionic M1 and M2 sectors, while in the stan-
dard formulation these sectors are all independent. The octonionic conformal and
superconformal M -algebras are explicitly constructed. They are respectively given
by the Sp(8|O) (OSp(1, 8|O)) (super)algebra of octonionic-valued (super)matrices,
whose bosonic subalgebra consists of 232 (and respectively 239) generators.

1 Introduction.

The generalized supersymmetries going beyond the standard H4LS scheme [1] admit the

presence of bosonic abelian tensorial central charges associated with the dynamics of

extended objects (branes). Classification schemes for generalized supersymmetries are

now available [2]. It is worth mentioning that they are based on previous mathematical

classifications [3, 4] for spinors and Clifford algebras, in terms of the associative division

algebras (R, C, H).

Recently, we investigated [5, 6] the possibility of realizing general supersymmetries in

terms of the non-associative division algebra of the octonions. Our work was the first

one to suggest a possible octonionic version of the M-theory, with the explicit construc-

tion of its corresponding M-superalgebra. In the past, algebras of (super)-matrices with

octonionic-valued entries have been introduced in the context of the ten-dimensional su-

perstring theory [7, 8].

Due to the non-associative character of the octonions, the octonionic-valued general-

ized supersymmetries have peculiar and very surprising features which will be discussed

at length in the following. Perhaps the most remarkable and the most unexpected of

such features consists in the fact that the different bosonic sectors expressed by the ten-

sorial abelian central charges are no longer independent, as for the standard generalized
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supersymmetries admitting associative realizations, but they are all inter-related. This

phenomenon is a peculiar characteristic of the octonionic construction.

It is worth noticing that the Minkowskian 11-dimensional spacetime supports two in-

equivalent structures, the real structure and the octonionic one. Therefore, besides the

standard M-algebra leading to the OSp(1|32) superalgebra [9] (and its OSp(1|64) super-
conformal algebra), a different M-algebra can be introduced in terms of the octonionic

structure and consistently defined as a closed algebra. This is the octonionicM-algebra (it

will also sometimes be referred to asM-superalgebra) which will be discussed in this talk.

Of course, it is too early to say whether this octonionicM-algebra can be of any relevance

for physics. On the other hand, the mere fact that it exists, side by side with the standard

M-algebra (not to mention its puzzling features) justifies a thorough investigation of this

and its related mathematical structures.

The plan of this talk is as follows. In the next section the classification of Clifford

algebras and spinors (i.e. the necessary ingredients to introduce supersymmetry) is re-

called. Later, in section 3, the connection of division algebras with the classification

of Clifford algebras will be elucidated. In particular the octonionic-valued realizations

(which are usually disregarded in the literature) of the Clifford algebras and their corre-

sponding spinors will be introduced. This paves the way for the construction, in Section

4, of the generalized supersymmetries based on the division algebras and, in Section 5, of

the octonionic M-algebra. A detailed discussion of its properties will also be given. In

particular a table, based on the octonionic structure constants, expressing the equivalence

of the different brane sectors in the octonionic description, will be furnished. In Section 6

the octonionic superconformal M-algebra will be introduced. Finally, in the Conclusions,

the relation of the octonionic M-algebra with other algebraic structures such as Jordan

algebras will be elucidated. Some possible geometrical interpretations underlining the

octonionic description will be pointed out and the outline for further future investigations

will be given.

2 Classifying Clifford algebras and spinors.

The generalized space-time supersymmetries are the ones going beyond the standard H4LS

scheme [1]. This implies that the bosonic sector of the Poincaré or conformal superal-

gebra no longer can be expressed as the tensor product structure Bgeom ⊕ Bint, where

Bgeom describes space-time Poincaré or conformal algebras and the remaining generators

spanning Bint are Lorentz-scalars.

In the particular case of the D = 11 dimensions, where the M-theory should be

found, the following construction is allowed. In the D = 11 Minkowskian spacetime with

signature (10, 1) the spinors are real and have 32 components.

By taking the anticommutator of two real spinors the most general result that we can

expect consists of a 32×32 symmetric matrix, which admits 32+ 32·31
2

= 528 components.
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On the other hand, the standard supertranslation algebra underlining the maximal su-

pergravity contains only the 11 bosonic Poincaré generators and by no means the r.h.s.

saturates the number of 528. The extra generators that should be expected in the right

hand side are obtained by taking the totally antisymmetrized product of k Gamma matri-

ces (the total number of such objects is given by the Newton binomial

(
D

k

)
). The most

general 32× 32 matrix can be constructed. The further requirement of being symmetric

implies that the total number of 528 is obtained by summing the k = 1, k = 2 and k = 5

sectors, so that 528 = 11+55+462. The most general supersymmetry algebra in D = 11

can therefore be presented as

{Qa, Qb} = (CΓµ)abP
µ + (CΓ[µν])abZ

[µν] + (CΓ[µ1...µ5])abZ
[µ1...µ5] (2.1)

(where C is the charge conjugation matrix).

Z [µν] and Z [µ1...µ5] are tensorial central charges, of rank 2 and 5 respectively. These

two extra central terms on the right hand side correspond to extended objects [10, 11],

the p-branes. The algebra (2.1) is called the M-algebra. It provides the generalization of

the ordinary supersymmetry algebra recovered by setting Z [µν] ≡ Z [µ1...µ5] ≡ 0.

For the purpose of the classification of generalized supersymmmetries in any given

signature space-time, we need at first to have at disposal the mathematical classification

of Clifford algebras and spinors (see [3, 4], while a very convenient reference for connection

with physics is [12]). In the rest of this section we introduce the fundamental results

which will be used in the following. Such results can be very conveniently expressed in

terms of the recursive algorithm given below. Two remarks are in order. The first one:

despite the fact that a quantum theory is described by complex numbers, without loss of

generality (complex numbers can be considered as points in the real plane) it is preferable

to work with Clifford algebras expressed by real-valued matrices. The structure of Clifford

algebras is much clearer in such a framework (e.g. its connection with division algebras

properties). A second comment: the algorithm furnished below permits in individuating

a single representative for each irreducible class of representations of Clifford’s Gamma

matrices.

The construction is as follows. Let us prove at first that a recursive construction

of D + 2 spacetime dimensional Clifford algebras is available, when assumed known a D

dimensional representation. Indeed, it is a simple exercise to verify that if γi’s denotes the

d-dimensional Gamma matrices of a D = p + q spacetime with (p, q) signature (namely,

providing a representation for the C(p, q) Clifford algebra) then 2d-dimensional D + 2

Gamma matrices (denoted as Γj) of a D + 2 spacetime are produced according to either

Γj ≡
(

0 γi

γi 0

)
,

(
0 1d

−1d 0

)
,

(
1d 0

0 −1d

)

(p, q) 	→ (p + 1, q + 1). (2.2)
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or

Γj ≡
(

0 γi

−γi 0

)
,

(
0 1d

1d 0

)
,

(
1d 0

0 −1d

)

(p, q) 	→ (q + 2, p). (2.3)

Some remarks are in order. The two-dimensional real-valued Pauli matrices τA, τ1, τ2
which realize the Clifford algebra C(2, 1) are obtained by applying either (2.2) or (2.3) to

the number 1, i.e. the one-dimensional realization of C(1, 0). We have indeed

τA =

(
0 1

−1 0

)
, τ1 =

(
0 1

1 0

)
, τ2 =

(
1 0

0 −1

)
. (2.4)

All Clifford algebras are obtained by recursively applying the algorithms (2.2) and (2.3)

to the Clifford algebra C(1, 0) (≡ 1) and the Clifford algebras of the series C(0, 3 + 4m)

(m non-negative integer), which must be previously known. This is in accordance with

the scheme illustrated in the table below.

Table with the maximal Clifford algebras (up to d = 256).

1 ∗ 2 ∗ 4 ∗ 8 ∗ 16 ∗ 32 ∗ 64 ∗ 128 ∗ 256 ∗

(1, 0) ⇒ (2, 1) ⇒ (3,2) ⇒ (4,3) ⇒ (5,4) ⇒ (6,5) ⇒ (7,6) ⇒ (8,7) ⇒ (9,8) ⇒

(1,4) → (2,5) → (3,6) → (4,7) → (5,8) → (6,9) →
↗

(0,3)

↘

(5,0) → (6,1) → (7,2) → (8,3) → (9,4) → (10,5) →

(1,8) → (2,9) → (3,10) → (4,11) → (5,12) →
↗

(0,7)

↘

(9,0) → (10,1) → (11,2) → (12,3) → (13,4) →

(1,12) → (2,13) →
↗

(0,11)

↘

(13,0) → (14,1) →

(1,16) →
↗

(0,15)

↘

(17,0) →

(2.5)

Concerning the previous table, some remarks are in order. The columns are labeled

by the matrix size d of the maximal Clifford algebras. Their signature is denoted by
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the (p, q) pairs. Furthermore, the underlined Clifford algebras in the table are called

the “primitive maximal Clifford algebras”. The remaining maximal Clifford algebras

appearing in the table are the “maximal descendant Clifford algebras”. They are obtained

from the primitive maximal Clifford algebras by iteratively applying the two recursive

algorithms (2.2) and (2.3). Moreover, any non-maximal Clifford algebra is obtained from

a given maximal Clifford algebra by deleting a certain number of Gamma matrices. It

should be noticed that Clifford algebras in even-dimensional spacetimes are always non-

maximal.

Let us discuss concretely a given example, namely the explicit construction of the

D = p + q spacetime dimensional Clifford algebras for D = 11 (the dimensionality of

M-theory). We obtain

(p, q) type d

(11,0) ⊂ (11,2) 64

(10,1) M 32

(9,2) ⊂ (11,2) 64

(8,3) M 64

(7,4) ⊂ (7,6) 64

(6,5) M 32

(5,6) ⊂ (7,6) 64

(4,7) M 64

(3,8) ⊂ (3,10) 64

(2,9) M 32

(1,10) ⊂ (3,10) 64

(0,11) M 32

where the maximal Clifford algebras are labeled by M (the remaining non-maximal al-

gebras are recovered from the maximal ones given on the second column, after deleting

a certain number of Γ-matrices). The size of the matrix representation is given by the

number on the right (d).

For what concerns the construction of the primitive maximal Clifford algebras of the

series C(0, 3 + 8n) (also known as quaternionic series, due to its connection with this

division algebra, as we will see later), as well as the octonionic series C(0, 7 + 8n), the

answer can be provided with the help of the three Pauli matrices (2.4). We construct

at first the 4 × 4 matrices realizing the Clifford algebra C(0, 3) and the 8 × 8 matrices

realizing the Clifford algebra C(0, 7). They are given, respectively, by

C(0, 3) ≡
τA ⊗ τ1,
τA ⊗ τ2,
12 ⊗ τA.

(2.6)
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and

C(0, 7) ≡

τA ⊗ τ1 ⊗ 12,

τA ⊗ τ2 ⊗ 12,

12 ⊗ τA ⊗ τ1,
12 ⊗ τA ⊗ τ2,
τ1 ⊗ 12 ⊗ τA,
τ2 ⊗ 12 ⊗ τA,
τA ⊗ τA ⊗ τA.

(2.7)

The three matrices of C(0, 3) will be denoted as τ i, = 1, 2, 3. The seven matrices of C(0, 7)

will be denoted as τ̃i, i = 1, 2, . . . , 7.

In order to construct the remaining Clifford algebras of the series we need at first to

apply the (2.2) algorithm to C(0, 7) and construct the 16× 16 matrices realizing C(1, 8)

(the matrix with positive signature is denoted as γ9, γ9
2 = 1, while the eight matrices

with negative signatures are denoted as γj, j = 1, 2 . . . , 8, with γj
2 = −1). We are now in

the position to explicitly construct the whole series of primitive maximal Clifford algebras

C(0, 3 + 8n), C(0, 7 + 8n) through the formulas

C(0, 3 + 8n) ≡

τ i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,

14 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,

14 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,

14 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,

. . . . . . . . . ,

14 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(2.8)

and similarly

C(0, 7 + 8n) ≡

τ̃i ⊗ γ9 ⊗ . . . . . . . . .⊗ γ9,

18 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,

18 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,

18 ⊗ γ9 ⊗ γ9 ⊗ γj ⊗ 116 ⊗ . . . . . . . . .⊗ 116,

. . . . . . . . . ,

18 ⊗ γ9 ⊗ . . . . . . ⊗γ9 ⊗ γj,

(2.9)

Please notice that the tensor product of the 16-dimensional representation is taken n

times. The total size of the (2.8) matrix representations is then 4 × 16n, while the total

size of (2.9) is 8× 16n.

The formulas given above provide quite a practical and efficient tool to operatively

construct the irreducible Clifford algebras.

It should be noticed that all Clifford matrices are even-dimensional (power of 2).

An important subclass of Clifford Gamma matrices is obtained by the matrices which are

decomposable in 2×2 blocks and are non-vanishing only in the anti-diagonal blocks. Such

matrices can be named as (generalized) Weyl-type matrices (they can also be regarded of



CBPF-NF-043/02 7

“supersymmetric type” since they can be promoted to be fermionic matrices associated

with the representations of the extended supersymmetries, see [13]). An inspection of

the previous tables shows that the set of the (generalized) Weyl matrices is found in

special signature dimensions. All primitive Clifford algebras are not of (generalized) Weyl

type. However, all the derived Clifford algebras, through the two lifting algorithms, are

of Weyl-type, once deleted the

(
1d 0

0 −1d

)
matrix to produce a non-maximal Clifford

algebra.

To give a concrete example, the two-dimensional Euclidean space (2, 0) is not of Weyl

type, while the two-dimensional Minkowski spacetime (1, 1) is of Weyl type. Indeed, the

first one is obtained from the (2, 1) Clifford algebra by deleting a space-type Gamma

matrix, while the second one is obtained from the same (2, 1) Clifford algebra by deleting

one of the two temporal-type Gamma matrices. Without loss of generality this Gamma

matrix can always be chosen to be given by

(
1d 0

0 −1d

)
.

The importance of the Weyl realization of Clifford algebras is of course related with the

possibility of introducing a Weyl projection for Dirac spinors. The commutator between

Gamma matrices, Σµν = [Γµ,Γν ], can be regarded as the generator of the Lorentz group

corresponding to the given signature space-time. The product of two Gamma matrices,

both admitting non-vanishing blocks only in the antidiagonal, correponds to a 2×2 block

matrix whose only non-vanishing components are in the diagonal blocks. Since both the

Gamma matrices, as well as the Lorentz generators Σµν , act on spinors, the fact that

the Lorentz generators are block-diagonals means that we can consistently set, under

these conditions, equal to 0 half of the components of the column vector spinors (either

the upper half or the lower half), to produce the so-called Weyl spinor, admitting half

of the degrees of freedom expected by the original Dirac spinor. This reduction of the

components can be operated acting on a Dirac spinor with a projector P± (P±P∓ = 0 and

P±2 = P±), given by

P± =
1

2
(1± Γ) (2.10)

where Γ =

(
0 1d

−1d 0

)
.

In even-dimensional space-times the matrix Γ is always given by the product of all the

other Γ matrices (it corresponds to Γ5 when we specialize to the standard 4-dimensional

Minkowski space-time).

In order to construct lagrangian terms which are scalar under Lorentz transformations

and are given by bilinear products of spinors, we need to introduce the notion of barred

spinors Ψ, given by ΨT ·A, where T denotes transposition (remember that in our conven-

tions spinors are without loss of generality assumed to be real) and A is a matrix, given by

the product of all temporal Gamma matrices, i.e. the generalization of the Minkowskian

4-dimensional Γ0 matrix.
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3 Division algebras and Clifford algebras.

So far we have shown how to construct the irreducible representations of Clifford algebras,

and not yet elucidated their relations with division algebras. Such a relation can be

expressed as follows. The three matrices appearing in C(0, 3) can also be expressed in

terms of the imaginary quaternions τi satisfying τi · τj = −δij + εijkτk. As a consequence,

the whole set of maximal primitive Clifford algebras C(0, 3+8n), as well as their maximal

descendants, can be represented as quaternionic-valued matrices, acting on spinors, which

have to be interpreted now as quaternionic-valued column vectors.

Similarly, there exists an alternative realization for the Clifford algebra C(0, 7), ob-

tained by identifying the seven generators with the seven imaginary octonions satisfying

the algebraic relation

τi · τj = −δij + Cijkτk, (3.11)

for i, j, k = 1, · · · , 7 and Cijk the totally antisymmetric octonionic structure constants

given by

C123 = C147 = C165 = C246 = C257 = C354 = C367 = 1 (3.12)

and vanishing otherwise. This octonionic realization of the seven-dimensional Euclidean

Clifford algebra will be denoted as CO(0, 7). Due to the non-associative character of

the (3.11) octonionic product (the weaker condition of alternativity is satisfied, see [14]),

the octonionic realization cannot be represented as an ordinary matrix product and is

therefore a distinct and inequivalent realization of this Euclidean Clifford algebra with

respect to the one previously considered (2.7). Please notice that, by iteratively applying

the two lifting algorithms to CO(0, 7) we obtain matrix realizations (with octonionic-

valued entries) for the maximal Clifford algebras of the series C(n, 7+n) and C(8+n, n−1),

for positive integral values of n (n = 1, 2, . . .). The dimensionality of the corresponding

octonionic-valued matrices is 2n × 2n. For completeness we should point out that the

construction (2.9) leading to the primitive maximal Clifford algebras C(0, 7 + 8n), can

be carried on with the help of an octonionic-valued realization of the γ9 matrix. As a

consequence, realizations of C(0, 7 + 8n) and their descendants can be produced acting

on column spinors, whose entries are tensor products of octonions. In any case, in the

following, we will focus on the single octonionic realizations CO(n, 7+n) and CO(9+n, n)

(here n = 0, 1, 2, . . .) which are of relevance in the context of the M-theory.

One should be aware of the properties of the non-associative realizations of Clifford

algebras. In the octonionic case the commutators Σµν = [Γµ,Γν ] are no longer the gen-

erators of the Lorentz group. They correspond instead to the generators of the coset

SO(p, q)/G2, being G2 the 14-dimensional exceptional Lie algebra of automorphisms of

the octonions. As an example, in the Euclidean 7-dimensional case, these commutators

give rise to 7 = 21− 14 generators, isomorphic to the imaginary octonions. Indeed

[τi, τj] = 2Cijkτk. (3.13)
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The alternativity property satisfied by the octonions implies that the seven-dimensional

commutator algebra among imaginary octonions is not a Lie algebra, the Jacobi identity

being replaced by a weaker condition that endorses (3.13) with the structure of a Malcev

algebra (see [14]).

Such an algebra admits a nice geometrical interpretation [15, 16]. Indeed the normed 1

unitary octonions X = x0 +xiτi (with x0 and xi, for i = 1, . . . , 7, real and the summation

over repeated indices understood), i.e. restricted by the condition

X† ·X = 1, (3.14)

describe the seven-sphere S7. The latter is a parallelizable manifold with a quasi (due to

the lack of associativity) group structure. Here X† denotes the principal conjugation for

the octonions, namely X† = x0 − xiτi.

On the seven sphere, infinitesimal homogeneous transformations which play the role

of the Lorentz algebra can be introduced through

δX = a ·X, (3.15)

with a an infinitesimal constant octonion. The requirement of preserving the unitary

norm (3.14) implies the vanishing of the a0 component, so that a ≡ aiτi. Therefore,

the above commutator algebra (3.13), generated by the seven τi, can be interpreted as

the algebra of “quasi” Lorentz transformations acting on the seven sphere S7. At least

in this specific example we discovered a nice geometrical setting underlining the use of

the octonionic realization of the CO(0, 7) Clifford algebra. While the associative (2.7)

representation of the seven dimensional Clifford algebra is required for describing the

Euclidean 7-dimensional flat space, the non-associative realization describes the geometry

of S7.

4 Division algebras and generalized supersymmetries.

It is clear that extra-conditions on the generalized supersymmetries such as (2.1) can be

imposed if we assume the fundamental spinors being division-algebra valued (over C, H

or O) and not just real. A division algebra analog of the supertranslation algebra can be

introduced through the position

{Qa, Qb} = {Q†
a, Q

†
b} = 0,

{Qa, Q
†
b} = Zab. (4.16)

where † denotes the principal conjugation in the given division algebra and, as a result,

the bosonic abelian algebra on the r.h.s. is constrained to be hermitian

Zab = Zba
†. (4.17)
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Division-algebra structures for spinors can be consistently imposed only in specific signa-

ture space-times. As already recalled, in D = 11, either a real or an octonionic structure

can be defined for the Minkowskian C(10, 1) case, while a quaternionic structure can be

imposed for the Euclidean C(0, 11) Clifford algebra (from formula (2.8), constructed in

terms of the quaternions). The 32 real components spinors can be re-expressed in (10, 1)

as 4-component octonionic-valued spinors and, for (0, 11), as 8-component quaternionic-

valued spinors. In the Minkowskian (10, 1) case, the hermiticity condition imposed on the

4× 4 octonionic-valued hermitian matrix Zab leaves it with 52 independent components,

while in the Euclidean (0, 11) case the same hermiticity condition, applied this time on the

8× 8 quaternionic-valued Zab matrix, leaves only 120 surviving bosonic components. Not

surprisingly, in both cases this number is less than the total number of 528 independent

components obtained from the real structure. This is already a first indication of the

constraint produced by the division algebra structures (especially the octonionic one).

It is worth concluding this section with a comment concerning the reconstruction of

the division algebra-valued matrix realizations of algebraic structures in terms of their

component fields. This is better illustrated with a specific example. Let us discuss the

simplest case, the 1-dimensional octonionic N = 8 supersymmetry (the considerations

below trivially applies to the quaternionic N = 4 supersymmetry as well).

Let us specialize (4.16) to the two one-dimensional octonionic-valued fermionic oper-

ators Q, Q, satisfying the N = 8 superalgebra

{Q,Q} = {Q,Q} = 0, {Q,Q} = H. (4.18)

where H = H is real-valued and represents the hamiltonian.

Q, Q = Q† contain a total number of 8 components and we should expect they define

an algebra with a total number of 8 + 8×7
2

= 36 anticommutation relations. On the other

hand, the r.h.s. of (4.18) provides us at most of 3× 8 = 24 relations, so that it looks like

something is missing. Furthermore, when expanding in terms of components (i = 1, . . . , 7)

Q = Q0 +
∑

i

Qiti,

Q = Q0 −
∑

i

Qiti (4.19)

and taking into account the (3.11) algebraic relations for imaginary octonions, we end up

with the following set of relations for the component fields Q0, Qi (the convention over

repeated indices is understood)

{Q0, Q0} − {Qi, Qi} = 0,

{Q0, Qi} = 0,

Cijk[Qj , Qk] = 0,

{Q0, Q0}+ {Qi, Qi} = H, (4.20)
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These relations are odd since, in particular, the third one involves a commutator, instead

of an anticommutator as we should expect. However, there is nothing wrong with (4.20)

and this algebra can be re-expressed in terms of its component fields when correctly

interpreted. The correct interpretation for (4.20) consists in setting

Q0 = q,

Qi =
iλ√
7
for any i = 1, . . . , 7. (4.21)

In particular this implies that the ordinary component Qi fields are not extracted from

the Qi coefficients of ti, rather they have to be identified with the product λti

Qi ≡ λti. (4.22)

With the above position the set of “odd” relations (4.20) is now reduced to the set of

ordinary relations

{q, λ} = 0,

{q, q} = −{λ, λ} =
1

2
H. (4.23)

It should be noticed that the fermionic operator λ is antihermitian (λ = −λ†) in order to

provide the consistent hermiticity condition on Qi. It is worth mentioning that all these

relations are explicitly realized in the octonionic matricial N = 8 supersymmetry algebra

which can be recovered from the octonionic 2× 2 realization of CO(9, 0). We recall that

this octonionic N = 8-supersymmetry [13] is constructed with the set of the hermitian

2×2 octonionic-valued matrices of Weyl type non-vanishing only in the antidiagonal (i.e.

the additional Γ9 matrix in CO(9, 0) is discarded), given by

(
0 ti
−ti 0

)
≡ ti ·

(
0 1

−1 0

)
,

(
0 1

1 0

)
. (4.24)

We can identify

q ≡
(

0 1

1 0

)
,

λ ≡
(

0 1

−1 0

)
, (4.25)

which satisfy the correct properties.

The reconstruction of the division-algebra structures in terms of its component fields

is more elaborated in the more complicated examples discussed in the following. Never-

theless, even in these cases, it can be performed following the procedure here outlined.
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5 The octonionic M-algebra.

The octonionic M-algebra [5] is defined by specializing (4.16) to the (10, 1) case. The

needed octonionic-valued Clifford matrices are immediately obtained with the help of the

lifting algorithm introduced in section 2 (e.g through the procedure (0, 7) → (9, 0) →
(10, 1), while the C matrix introduced below coincides in this case with the unique space-

like Gamma matrix). It must be said that two equivalent ways exist of introducing theM-

algebra, either in terms of the 4-componentD = 11 spinors, or in terms of the Weyl spinors

in (10, 2) dimensions (the latter construction leads to the F -algebra interpretation). Here

we just limit ourselves to consider the first case.

The only non-vanishing (anti)-commutator of the octonionic M-algebra is given by

{Qa, Q
†
b} = Zab, (5.26)

where, in this case, the 52 independent components of the hermitian Zab matrix can be

represented either as the 11 + 41 bosonic generators entering

Zab = P
µ(CΓµ)ab + Z

µν
O (CΓµν)ab, (5.27)

or as the 52 bosonic generators entering

Zab = Z
[µ1...µ5]
O (CΓµ1...µ5

)ab . (5.28)

The reason for that lies in the fact that, unlike the real case, the sectors individuated

by (5.27) and (5.28) are not independent. This is a consequence of the non-associativity

of the octonions. Indeed, one has to point out that, when multiplying antisymmetric

products of k octonionic-valued matrices, a certain number of them are redundant. For

k = 2, due to the G2 automorphisms, 14 such products have to be erased. In the general

case [17] a table can be produced. We write it down for D odd-dimensional spacetime

octonionic realizations of Clifford algebras. The case suitable for M-theory is recovered

for D = 11. The following table can be easily constructed from the D = 7 results (which

are easily computed), by taking into account that out of the D Gamma matrices, 7 of

them are octonionic-valued, while the remaining D − 7 are purely real.

The following table, up to D = 13, is easily obtained:

0 1 2 3 4 5 6 7 8 9 10 11 12 13

D = 7 1 7 7 1 1 7 7 1

D = 9 1 9 22 22 10 10 22 22 9 1

D = 11 1 11 41 75 76 52 52 76 75 41 11 1

D = 13 1 13 64 168 267 279 232 232 279 267 168 64 13 1

(5.29)



CBPF-NF-043/02 13

where the columns are labelled by k, the number of antisymmetrized Gamma matrices.

To reproduce the above formulas one has to be careful in defining the antisymmetric

product for k > 2 octonionic Γ-matrices. Due to the non-associativity of the octonions

the order of multiplications must be correctly specified. The correct prescription is the

following one. The antisymmetrized product of k octonionic matrices Ai (i = 1, 2, . . . , k)

is given by

[A1 · A2 · . . . · Ak] ≡ 1

k!

∑
perm.

(−1)εi1...ik (Ai1 · Ai2 . . . · Aik), (5.30)

where (A1 · A2 . . . · Ak) denotes the symmetric product

(A1 · A2 · . . . · An) ≡ 1

2
(.((A1A2)A3 . . .)Ak) +

1

2
(A1(A2(. . . Ak)).). (5.31)

This prescription is consistent and produces the correct result. As an example, in D = 11

the three-fold antisymmetric product of octonionic Γ-matrices C[Γi ·Γj ·Γk] furnishes the

75 antihermitian matrices, appearing in the table above, describing together with C an

arbitrary 4×4 octonionic antihermitian matrix. The definition (5.30), applied to the five-

fold products of the D = 11 octonionic Γ-matrices, provides their octonionic hermiticity.

The explicit computation above shows that precisely 52 independent real tensorial charges

describes the five-tensor sector of the octonionic M-algebra, which means that it spans

the arbitrary 4× 4 octonionic-hermitian matrices. We thus see that one can equivalently

write the octonionic M-algebra as (5.27) or as (5.28). In the latter case, out of the 462

real antisymmetric 5-tensorial charges of the standard M-algebra, only 52 are linearly

independent, due to the discovered relation

[Γµ1...µ5 ] = A[µ1...µ5]
νΓν + A[µ1...µ5]

[ν1ν2]Γ[ν1
Γν2], (5.32)

with constant c-number coefficients A[µ1...µ5]
ν , A[µ1...µ5]

[ν1ν2].

The octonionic equivalence of different sectors (which, at least for some spacetimes,

can be interpreted as branes sectors) can be simbolically expressed, in different odd space-

time dimensions, according to the table

D = 7 M0 ≡M3

D = 9 M1 +M2 ≡M4

D = 11 M1 +M2 ≡M5

D = 13 M2 +M3 ≡M6

D = 15 M3 +M4 ≡M0 +M7

(5.33)

In D = 11 dimensions the relation between M1+M2 andM5 can be made explicit as

follows. The 11 vectorial indices µ are splitted into the 4 real indices, labelled by a, b, c, . . .
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and the 7 octonionic indices labelled by i, j, k, . . .. We get, on one side,

4 M1a

7 M1i

6 M1[ab]

4× 7 = 28 M2[ai]

7 M2[ij] ≡M2i

while, on the other side,

7 M5[abcdi] ≡M5i

4× 7 = 28 M5[abcij] ≡M5[ai]

6 M5[abijk] ≡M5[ab]

4 M5[aijkl] ≡M5a

7 M5[ijklm] ≡ M̃5i

which shows the equivalence of the two sectors, as far as the tensorial properties are

concerned. Please notice that the correct total number of 52 independent components is

recovered

52 = 2× 7 + 28 + 6 + 4. (5.34)

6 The octonionic superconformal M-algebra.

In this section the superconformal octonionic M-algebra is introduced following [6].

The conformal algebra of the octonionic M-theory can be introduced adapting to the

eleven dimensions the procedure discussed in [8] for the 10 dimensional case. It requires

the identification of the conformal algebra of the octonionic D = 11 M-algebra with the

generalized Lorentz algebra in the (11, 2)-dimensional space-time. In such a space-time

the octonionic Clifford’s Gamma-matrices are 8-dimensional. The basis of the hermi-

tian generators is given by the 64 antisymmetric two-tensors CΓ[µ1µ2]Zµ1µ2 and the 168

antisymmetric three tensors CΓ[µ1µ2µ3]Zµ1µ2µ3 (or, equivalently, by the 232 antisymmet-

ric six-tensors CΓ[µ1...µ6]Zµ1...µ6). This is already an indication that the total number of

generators in the conformal algebra is 232. We will show that this is the case.

According to [8], the conformal algebra can be introduced as the algebra of transfor-

mations leaving invariant the inner product of Dirac’s spinors. In (11, 2) this is given by

ψ†Cη, where the matrix C, the analogous of the Γ0, given by the product of the two space-

like Clifford’s Gamma matrices, is real-valued and totally antisymmetric. Therefore,the

conformal transformations are realized by the octonionic-valued 8-dimensional matrices

M leaving C invariant, i.e. satisfying

M†C + CM = 0. (6.35)
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This allows identifying the (quasi)-group of conformal transformations with the (quasi-

)group of symplectic transformations. Indeed, under a simple change of variables, C can

be recasted to be of the form

Ω =

(
0 14

−14 0

)
. (6.36)

The most general octonionic-valued matrix leaving invariant Ω can be expressed through

M =

(
D B

C −D†

)
, (6.37)

where the 4× 4 octonionic matrices B, C are hermitian

B = B†, C = C†. (6.38)

It is easily seen that the total number of independent components in (6.37) is precisely

232, as we expected from the previous considerations.

It is worth noticing that the set of matrices M of (6.37) type forms a closed algebraic

structure under the usual matrix commutation. Indeed [M,M] ⊂ M, endowing the

structure of Sp(8|O) to M. For what concerns the supersymmetric extension of the

superconformal algebra, we have to accommodate the 64 real components (or 8 octonionic)

spinors of (11, 2) into a supermatrix enlarging Sp(8|O). This can be achieved as follows.

The two 4-column octonionic spinors α and β can be accommodated into a supermatrix

of the form 


0 −β† α†

α 0 0

β 0 0


 . (6.39)

Under anticommutation, the lower bosonic diagonal block reduces to Sp(8|O). On the

other hand, extra seven generators, associated to the 1-dimensional antihermitian matrix

A

A† = −A, (6.40)

i.e. representing the seven imaginary octonions, are obtained in the upper bosonic diag-

onal block. Therefore, the generic bosonic element is of the form

A 0 0

0 D B

0 C −D†


 , (6.41)

with A, B and C satisfying (6.40) and (6.38).

The closed superalgebraic structure, with (6.39) as generic fermionic element and

(6.41) as generic bosonic element, will be denoted as OSp(1, 8|O). It is the superconformal

algebra of the M-theory and admits a total number of 239 bosonic generators.
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7 Conclusions.

The octonions are at the very heart of many exceptional structures in mathematics. It

is very well known, e.g., that they can be held responsible for the existence of the 5

exceptional Lie algebras. Indeed, G2 is the automorphism group of the octonions, while

F4 is the automorphism group of the 3× 3 octonionic-valued hermitian matrices realizing

the exceptional J3(O) Jordan algebra. F4 and the remaining exceptional Lie algebras

(E6, E7, E8) are recovered from the so-called “magic square Tit’s construction” which

associates a Lie algebra to any given pair of division algebras, if one of these algebras

coincide with the octonionic algebra [18].

There is a line of thought [19] suggesting that Nature prefers exceptional structures.

Following this line of thought, in [20], the already recalled exceptional Jordan algebra

J3(O) was used to define a unique Chern-Simons type of theory in the loop quantum

gravity approach. In a different line of research, octonionic structures were investigated

in different works [7, 8] in application to the superstring theory.

In this talk we summarized the results recently obtained in a series of works, especially

[5, 6] concerning the possibility of introducing an octonionic structure for the M-theory

algebra. After briefly recalling the classification of spinors and Clifford algebras in terms

of division algebras (and more specifically their octonionic construction) we were able to

introduce at first the octonionic M-superalgebra and, later, its superconformal extension

presented in formulas (6.39), (6.41).

The features of the octonionic M-superalgebra are puzzling. It is not at all surprising

that it contains fewer bosonic generators, 52, w.r.t. the 528 of the standard M-algebra

(this is expected, after all the imposition of an extra structure, such as the complex,

quaternionic or octonionic structure, puts a constraint on a theory). What is really un-

expected is the fact that new conditions, not present in the standard M-theory, are now

found. These conditions, which can be symbolically represented in table (5.33), imply

that the different brane-sectors are no longer independent. The octonionic 5-brane con-

tains the same degrees of freedom and is equivalent to the M1 and the M2 sectors. We

can write this equivalence, symbolically, as M5 ≡ M1 +M2. This result is indeed very

intriguing. It implies that quite non-trivial structures are found when investigated the

octonionic construction of the M-theory. It also raises some questions, because it is not

yet clear how should we interpret it and which is its proper meaning. At least two different

viewpoints can be advocated. On one hand, sticking with the original defined octonionic

algebra, one should try to investigate its possible quantum-mechanical consistency, un-

derstanding whether and to which extent it is possible to adapt the procedure of [21] to

the present situation. On the other hand, another possibility can be contemplated. We

have discussed at the end of section 3 that the octonionic realization of the 7-dimensional

Euclidean Clifford algebra is related with the geometry of the seven sphere S7. There

is a possibility, which deserves being investigated, that the octonionic description of the

M-theory would correspond to a particular compactification of the 11-dimensional M-
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theory down to AdS4 × S7. This compactification corresponds to a natural solutions for

the 11-dimensional supergravity [22]. If this would be the case, the relations of equiv-

alence found in the octonionic construction should find a counterpart in the AdS4 × S7

special compactification geometry. Needless to say, this possibility is currently under

investigation.

We conclude with a last remark that perhaps deserves to be mentioned. We introduced

both the conformal and the superconformal extensions of the original M-algebra. They

are respectively given by Sp(8|O) and OSp(1, 8|O), see formulas (6.39), (6.41). Sp(8|O)

is outside the scheme of conformal algebras of a given Jordan algebra (such as Sp(4|O),

Sp(6|O), the latter the conformal algebra of J3(O)), usually investigated in the mathe-

matical literature, see [23, 24]. The reason for that is the fact that the bosonic sector of

the M-algebra is given by 4× 4 octonionic-valued hermitian matrices, and the maximal

Jordan algebra of octonionic-valued hermitian matrices is given by 3-dimensional matri-

ces. The construction of the conformal (and superconformal) algebra, however, as we

have proven, can be carried on in this case as well and it finally produces the closed and

consistent algebraic structures that we mentioned before.
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