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Abstract

We model the effect of carioca’s ĺınguas negras on the coastal waves (beaches)

by means of a fluid with an effective viscosity νsh ≡ νshear
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One of the most interesting problems in Fluid Waves Physics with a large spectrum

for applications is that one related to the propagation of waves on surface fluids ([1]).

Although its intrinsic mathematical difficulty to solve the associated motion equations,

it is very fortunate for hydrodynamicist to have few models exactly soluble ([1]). Another

point worth remark is that among these fews exactly soluble models, one never considers

the existence of internal friction on the fluid motion of the form of usual mechanical rigid-

body linear damping proportional to velocity; a experimental fact relevant for irrotational

fluid motions at very low frequencies, like water in reservoirs, bays, oceans, etc...

Our aim in this note is to re-analyze the surface waves on fluids in the presence of the

above cited mechanical damping ([2]).

A word for applications: It is well known that contaminents of biological origin, like

the famous “ĺınguas negras” (plumes) on the Carioca’s beaches, can be heavily spread in

the fluid medium, and, thus being an ecological candidate for our study ([3]).

Let us start our analysis by considering the usual (irrotational and incompressible) two-

dimensional Navier-Stokes for very low fluid velocities (the so called Bernoulli-equation!)

in the presence of the gravity and a (small) viscosity parameter νsh

grad

(
∂σ(x, z; t)

∂t
+

1

ρ
ρ(x, z; t) + νsh σ(x, z; t) + gz

)
= 0 (1)

Here σ(x, z; t) is the hydrodynamical potential. The incompressibility condition on

the fluid is taken as a realistic assumption, since the carioca’s ĺınguas negras do not have

any sensible thermodynamical behaviour on the fluid

∂2σ(x, g; t)

∂2x
+

∂2σ(x, z; t)

∂2z
= 0 (2)

Finally, the elevation fluid surface η(x, t) at a time t > 0 (for small fluid oscillations)

is given by the wave equation at z = 0

0 = −ρ
∂σ(x, z; t)

∂t

∣∣∣
z=0

− pg η(x, t) (3)

As a last very important hypothesis, we consider our fluid surface ilimited

(−∞ < x < ∞) and the fluid volume has a finite depth h(−h ≤ z ≤ 0).

In order to solve the Wave’s fluid systems eq. (1)-eq. (3) we consider the “ansatz”

σ(x, z; t) = exp(−νsh · t)σ(x, z; t) (4)
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It is straightforward to see that the Fourier transformed fluid velocity potential satisfies

the following ordinary differential equation

Φ̂(k; z, t) =
1√
2π

∫ +∞

−∞
dx eikxσ(x, z; t) (5.a)

Φ̂(k, z; t) = A(k, t)cosh[k(z + h)] (5.b)

d2A(k; t)

d2t
− νsh

dA(k; t)

dt
+ w2(h)A(k, t) = 0 (5.c)

with the depth-dependent dispersion relation

w2(h) = g tgh[k(z + h)] (6)

At this point we point out that the modulation wave factor (see eq. (4)) A(k, t) =

exp(−νsht)A(k, t) is given explicitly by the following formulae

A(k; t) = e−(
νsh
2 )t [α(k)eiΩ(h,kqνsh)t + β(k)e−iΩ(h,k,νsh)t

]
cosh(k(z + h)) (7)

where

Ω(h, k, νsh) = (
√

4w2(h)− (νsh)2)
/
2 (8)

The coefficients α(k) and β(k) are given by means of the initial conditions

σ(x, 0, 0) = 0 ↔ α(k) + β(k) = 0 (9)

∂

∂t
σ(x, z, t)

∣∣∣
z=0;t=0

= gf(x) ↔ α(k) =
g

2iΩ(h, k, νsh)

f̃(k)

cos(kh)
(10)

here

f̃(k) =
1√
2π

∫ +∞

−∞
eikxf(x)dx (11)

By grouping together all the results above obtained, we get our final formulae for the

hydrodynamical potential given as a Fourier Integral

σ(x, z; t) =
ge−(

νsh
2 )t

√
2π

∫ +∞

0

2f̃(k)√
4Ω2(h, k, νsh)− ν2

sh

cosh[k(z + h)]

cos(kh)
{sen(kx + Ω(h, k, νsh)t)− sen(kx − Ω(h, k, νsh)t)} (12)

As an important application of eq. (12), let us take the initial profile, a periodic pulse

f(x) =
∑+∞

n=−∞ fn exp{2πn
L

x}. We have, thus, the following leading profile for t > 0 and
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νsh small

n(x, t) ∼= − 1√
2π




+∞∑
n=−∞

e−(
νsh
2 )t√

4Ω2(νsh, h, 2πn
L
)− (

νsh

2

)2
Ω(νsh, h,

2πn

L
)

(
cos

[
(
2πn

L
)x + Ω(νsh, h,

2πn

L
)t

]
− cos

[
(
2πn

L
)x − Ω(νsh, h,

2πn

L
)t

])}
(13)

As a consequence of the above formulae, one can make the following sad conclusion for

the surf in Rio de Janeiro: the heavy presence of contaminants of the kind νsh · t (ĺınguas
negras) attenuates strongly the beaches’ waves.
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[2] L. Landau et Lifchitz, “Mécanique des Fluides”, Editions Mir, Moscow, 1971.

[3] A.R. Osborne et al., “Topics in Ocean Physics”, International School of Physics

Enrico Fermi, 1982.


