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Abstract. The axial anomaly is calculated for any number of svace
—~time dimension, using the dimensional regularization method.
Recently(l_h) some interest have emerged inlﬁghardimensionél
space-time axial anomalies. The motivation for studying these a.
nomalies comes from consideration that higher dimensional theo-
ries may underly unification of gravity with other elementary
forces.

We show in this paper that we can calculate the axial anomaly
in any space-time dimension using dimensional regularizatiods),
in a way similar to that already used to calculate the Adler
-Bell-Jackiw anomaly(% with the same method(7).

For simplicity we shall consider anomalies in Abelian theory
since the generalization to non-Abelian theory involves only an
overall group multiplicative factor(ZIB).

Since in odd space-time we have no axial anomaly(z'a) let wus
consider an e&en space-time with dimension n=23j for which the
relevant diagram(a) is a j+1 sided polygon. At one of its ver-
tices a pseudo-vector particle w%th rmﬁenban enters with coupling

YeYnal- Starting at this point we enumerate the remaining ver-

tices in clockwise direction from 1 to j; each one with a vec-
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tor coupling YU (£=1,...,3). From each of this j vertices a par
L

ticle emerges with momentum Pp and the fermionic loop carries an
integration variable r.

As the anomaly is mass-independent we take for simplicity m=0,
then the contribution from the above described diagram and from
all others obtained by permutation of the photon four momenta and

polarization indices is, in N-dimension (N>n):
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We use the following prescription for vy (the analog of Yg

n+l

in n-dimension) :
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where ui=0,...,N—l; C is a normalization factor and T 7 is
a totally antisymmetric tensor of n-th rank which is equal to

the totally antisymmetric Levi-Civita tensor when N=n.

Taking the divergence of (1) and noting that q:ipi,we<iﬁain:
i
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D = r2(r+pl)2...(r+pl+...+pj)2

The numerator of the integrand in (3) can be written as:

n+l
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The contribution of the last term in (4) to the integral (3) is

proportional to:
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note that p. have disappeared from (5). The fact that Try_ Y. ...Y
. | n+l ay a,
is antisymmetric in a; indices implies that the integral can

only depend linearly on each pi(i=1,...,j—1), and as the linear
term in r disappears after r-integration we see that (5) should
be zero. In the same way the second term in the right hand side

of (4).can be shown to give null contribution to (3). Then we

are left with
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If we use (see appendix) that Tr{Yn+l’¥1}Ya . is totally

a
- - - - . l n+l
antisymmetric in ay indices we obtain under a convenient change

of variables:
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In order to perform the last r-integral in (7) we pass to Eu-

clidean metric and replace

a r Ba
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Using now
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From (2) and straightforward y-algebra, it is easy to prove that

a
Yo¥pa1Y = (N=2n) vy .

a

so that

o ,
yprvety = 20-n) v



Then
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As the expression (9) is now finite we can take the limit N-n.

Then using
- 27
(10) . Tr Yn+1Yal"'Ya =12 €a ceea

where we have chosen the constant ¢ in order to obtain Y;+l =4 '

we obtain for the anomaly -
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(11) a Lo =BT s e Ll
Moo My 2370 4] I Moy B9y

which gi?es the usual value for n=4 and equal values to those ob
tained in reference [1] for n=6,8,10. We finally point out that
for this deduction (see reference [7]) it is essential to note
that Y41 does not anticommute with Yo when the space-time di-

mension is N>n.
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APPENDIX

Antisymmetry of Tr{y_ . .,y.}Y..
7 n+l’'a”'a

el Y
- 1 . @

n+l

Let us take the following trace:
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If in the first term of the right hand side of (A.l) we pass the

Yq matrix from its position through the Y, » as we have an odd
i
number of Y, matrices we get zero for the terms with yanatrices
i

and we are left with:
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Where we have used that the product of Yn+l times a number n of

Y, matrices has the trace proportional to the totally antisym-
i .
metric tensor Tt. Then we see from (A.2)thatfhﬂyn+1fng Y, .-

ah+l

is totally antisymmetric in ay indices.
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Adendum

After this work has been completed we received two preprints:
"Finite-Mode Regularization of the fermion functional integral™®
—-A. Andrianov and L. Borona IFPD 16/83.

"ABJ anomalies in any even dimensions" - L. Borona and P. Pasti IFFD 20/83
in which in the first the authors compute the axial anomaly (to
one-loop order) in any space-time dimension with the finite-mode

regularization.



