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ABSTRACT

The break-collapse method recently ' introduced for the
g~state Potts model is adapted for resistor networks. This
method greatly simplifies the calculation of the conductance
of an arbitrary two-terminal d-dimensional array of conduc-
tances, obviating the use of either Kirchhoff's 1laws or the
star-triangle or similiar transformations. Related properties
are discussed as well. An illustrative real-space renormaliza
tion-group treatment of the random resistor problem on the

square lattice is presented; satisfactory results are obtained.



I - INTRODUCTION

A considerable amount of effort is being devoted to the
study of random resistor networks (see Deutscher 1981 and ref
erences therein for connections with various physically inter
esting systems). A convenient way for quantitatively discussing
such problems is through the real-space renormalization-group
(RG) framework (Stinchcombe and Watson 1976, Straley 1977 a,b,
Reynolds et al 1977, 1980, Kirpatrick 1977, Rosman and Shapiro
1977, Yeomans and Stinchcombe 1978, Bernasconi 1978, Kogut and Straley
1978, Lobb and Frank 1979, Lobb et al 1981, Kenkel and Straley 1982,
Mujeeb and Stinchcombe 1982 and Derrida and Vannimenus 1982).
Typically within this procedure the equivalent conductances
of two-terminal arrays (or graphs) of conductors have to be
calculated. The purpose of the present work is to show that the
break-collapse method (BCM), recently introduced (Tsallis and
Levy 1981) for calculating analogous percolation, Ising and
Potts arrays, can be adapted to resistor systems, thus providing
a simple way to calculate the above mentioned equivalent con-
ductances. It avoids the use of Kirchhoff's laws (which 1lead
to large systems of linear equations to be solved) and iter-
ative star-triangle or similar transformations (whose imple-
mentation is greatly dependent on the topology of the particular
array to be solved, a fact which might become a considerable
disadvantage for complex arrays, e.g. d =3 ones)-

In Sectin II we state (without proof) the resistor BCM and

related properties; in Section III we illustrate its use for
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the central operational task within a RG calculation for _.the

quenched random resistor network on the square lattice.

IT - BREAK-COLLAPSE METHOD AND RELATED PROPERTIES

Let us denote the conductance of a single linear resistorasg

I/V where I and V are respectively the current and vol-

(g

tage across the resistor). If we have a parallel (series) ar
ray of two conductances g and gy the equivalent conductance

gp(gs) is given by the well-known expression

g, = 81 7 8 (parallel) (1)
818, .
g, = EI;@;— (series) (2)

This last expression can be rewritten in the parallel  form,

i.e.
D D D
s T &1 T & (2")
with
D _ 2 .
g; = 8 /g, (i =1,2,s) (3)

where g, is an arbitrary reference conductance and D stands

for dual (see Tsallis 1981 and Alcaraz and Tsallis 1982 for
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the analogous concepts in the context of the q-state Potts and
Z(N) models).

Algorithms (1) and (2) enable the <calculation of the
equivalent conductance G of any two-terminal array as long as
it is reducible through sequential series and parallel opera-
tions (examples of such graphs are presented in Figs. 1 (b,c)).
However, this 1is not sufficient if the array 1is irreducible
(e.g., Figs. 1(a,d,e)). Is is precisely this more general sit
uation which can be solved by using the BCM. In particular, for
an arbitrary two-terminal connected graph with bond conduc-
tances {g.}, the conductance of the graph is given by G({g§J=
N({gi})/D({gi}) where both the numerator'N and the denominator
D are multilinear functions of the {gi} (Mason and Zimmermann
1960). If we now choose the j-th bond of the graph and ‘'break"
(""collapse'") it, i.e. we impose gj =0 (gj-+w), we have a new

equivalent conductance G?(G;) given by
b 'y b b
Gj({gi} ) = Nj({gi}‘)/Dj({gi}') (4)

c '
Gj({gi} )

C ' c ]
Nj({gi} )/Dj({gi} ) (5)

where the superscript b(c) refers to a quantity with the j=-th
bond broken (collapsed), and the set {g,}' excludes g, The mul

tilinearity of both N and D leads to
_ b 1 [ )
N({g;}) = Nj({gi}) + ngj({gi}') (6)

and
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D({g,}) = D ({g;}") + g, D({g;}") (7)

The sequential use of these equations (together with Egs. (L)
and (2)) is what we call BCM; it greatly simplifies the calcu-
lation of conductances. Let us illustrate the procedure on the
example of Fig. 1(a) (b =2 Wheatstone bridge). After operating
on the central bond of this figure, the broken and collapsed
arrays réspectively indicated in Fig. 1(b) and 1(c) are ob-
tained. By exclusively using Egqs. (1) and (2), we obtain
b _ NP _ 818283 Y 818,8, * 81858, T 83838,

G = = = (8)
2,8, *8,85 * 8,8, * £,8,

lon

and

g - NS _ B3 T ByBy T 88, T 88, (9)
D¢ g1 7 8y T 837 &

therefore, by using Eqs. (6) and (7),

818283 * 81858, + 8,838, + 81838, + (8,85 + 883+ 848, +8,8,)8;
8,8, + 8184 * 8,8, * 848, + (g + g + g5 *+ g,)8;

which is the well-known Wheatstone bridge result. The multi-
linear character of the numerator and denominator of (10) 1is
written explicitely in terms of gs-

As a corollary of Eqs. (6) and (7) we obtain a practical

expression for the derivative, namely

N¢ - @D¢
G 3 3
e c o (11)
3




Another immediate consequence of Eqgs. (6) and (7) is the
following binominal-type form when two bonds in the conductance

array are operated on,

N({g; D)
Clle;} = prrg, Py

1
bb 1y cb " be 1" cC (X}
-Njk({gi} ) +gJ."Njk({g.l} ) +gkl\:jk({gi} ) +gjgkNjk({gi} )

bb n“ cb 1 be 1) CcC )
Djk({gi} )-+ngjk({gi} ) +ngjkC{gi} )-+gjgkN5k({gi} )

(12)

where we have simultaneously operated on the j-th and k-thbonds

(the set {gi}" excludes now both gj and gk); the extension of
Eq. (12) to any number of operated bonds is straightforward.
Let us also quote an interesting property concerning pla-
nar arrays and duality. If we consider any pair of dual arrays
(i.e. superimposab1e in such a way that each bond of one array
crosses one and only bond of the other; see details in Essam
and Fisher 1970 and references therein) and denote by G andGD,

respectively, their equivalent conductances, we verify that

¢®({gdh) = 16({g;N1° (13)

6" ({g2/g.1) = g2/G{g, 1 (131

This property can be illustrated on the pair of arrays indi-
cated in Figs. 1 (d,e).
Finally, we note that the break-collapse properties of the

resistor network follow quite closely those presented in
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Tsallis and Levy 1981 for the g-state Potts modeleﬂl=—q J i§j§c’i’0j » 05 =

1,2,....,9). This is of course not surprising since the resistor
problem can be obtained as the T+ 0 limit of the q~+ 0 Potts mod .
el (Stephen 1976, Lubensky 1978 and Wu 1982). To be more precise,

if we associate with each bond the transmissivity (Tsallis 1981

and references therein)

Tz (1-e"Y/RTy /[ 14 (q-1) e VKT (14)

the parallel and series algorithms are given by

T, + t, + (g-2)t.t T, +t, -2t,t
T -1 2 12 (g»0) . 1" 2 172 (15)
p T = T =
1+(q-1) T T, 1 - T%,
and
t =tT.t 16
ts t1 2 ( )

By introducing fi =1 - go/gi 1t is straightforward to verify
that, in the limit go/gi - 0 (i.e. fi -~ 1, hence T » 0), Eq.
(15) (Eq. (16)) leads to Eq. (1) (Eq. (2)).

ITI - RENORMALIZATION GROUP APPLICATION: RANDOM RESISTOR NETWORK

Consider a square lattice with the following  independent

‘(quenched model) conductance probability Iaw for each bond

P(g) = (1-p)6(g-gy) + pdlg-g,) (0<g,<g,) (17)



The average conductivity o(gl,gz;p) has the following proper-

ties: (i) c(o;gz;p) . (p—pc)t and G(gl;w;P) o \(pC—P)—S as

12 = '1/2, where the critical exponents satisfy, at d=2,

t =s; (Straley 1977 (b)); (ii) [G(O,gz;l)]'ltdow,gz;p)/dp1p=1=

[0(g;,=,01 " [do(g ,»;p)/dp] _ o= 2 (Bernmasconi 1978); (iii) be
cause of the square-lattice self-duality, g(gld%;p)gQﬁ)gz;l—p)=
£:8, (Straley 1977 (b)).

We intend to approximately calculate O(O,gz;p) (resistor-
insulator mixture) and o(gl,m;p) (resistor-superconductor mix
ture) within the RG framework by renormalizing the b =2 Wheatstone
bridge (see Fig. 1 (a)) into a single bond (it is now well known
that both graphs being self-dual, this choice is an appropri-
ate one for the square lattice). The renormalized distribution
law PH(g) associated with the b =2 graph is, through use of

Eq. (10), given by

P(e) = [(1-p)°+ (1-p)“p]s(g-g,)
+ 4 (1-p)'p d(g-3§£l++5§§fz)
. (l_p)spzé(g_ggglélfliz; 3g5 )
v 2 (l—p)3P25(g'§fii)

<+

3 2 2
4 (1-p) 3pzts(g (BT REE, T PR )
28] * 5818, * &)



3 ‘ ‘2 + 39 2
(1-p) °p*6 (g - R R

+
EAS]

2

3gi-+4g1gz'tg -
2

PR

3g5+ 48,8, * &)

-+
~—2

[1-D)2p38<g

g5+ 5858, * 28,8]

v 4 (1—p)2p36(g-
2 2
285+ 58,8, * &
28,8
2°1
+ 2 (l-p)2p36(g-'g‘;—;—g~l)
g5 +4g,8) * 3g)
+ 2

(1-p)*p*6(g - )

Zg2 + 6g1

|

3g5 * 58,8

+ 4 (1—p)p‘*6(g -
i ng + Sgl

+ |{1-p)p* +p°) 8(g-g,) (18)

Following along the lines of previous works (Bernasconi 1978
and Mujeeb and Stinchcombe 1928 and references therein ), we

shall approximate this distribution law by a binary one, namely
P'(g) = (1-p')6(g-g{) + p'6(g-g)) (19)

where pi,gi and gé are the renormalized parameters. In the gen
eral (p,gl,gz)-problem we should need three RG recursion rela-
tions to calculate c(gl,gz;p), but for the particular cases of
interest, namely g, = 0, ng and g;l= O,Vgl, two RG recursion
relations suffice. In both cases there is a §-function (at g =

0 for the conductor-insulator case, and at g"1 =0 for the

conductor-superconductor case) whose position remains invariant
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under renormalization. Following previous works (Stinchcombe and
Watson 1976, Yeomans and Stinchcombe 1978; Mujeeb and Stinchcombe
1982) we shall use the weight of this particular §-function in
order to obtain the recursion relation for the occupancy prob-

ability. We have, for the both g, =0 and ggl;=0 cases,
p' = 2p? + 2‘pé - Sp* + 2p°® (20)

first obtained by Reynolds et al 1977 for bond-percolation on

square lattice. The second recursion relation is provided by

<f(g)>p, = <f(gJ>PH (21)
where the choice of the function f(g), appears to by arbitrary.
Stinchcombe and Watson 1976 and Mujeeb and Stinchcombe 1982  have
used f(g) = g for the g = 0 problem; Yeomans and Stinchcombe
1978 used f(g) = g, &ng for the same problem; Bernasconi 1978
has used f(g) = £ng for the full (p,gl,gz)-problem; Lobb and
Frank 1979 have used f(g) = g, 1/g, Lng for the g = 0 case.
Herein we use f(g) = g for the g, = 0 problem, f(g) = 1/g for

the g;l = 0 one, and finally

f(g) = S(g) = ;o (22)
o]

for both problems (go = reference conductance). The function

S(g) is the simplest one which monotonically varies from 0 to 1

when g increases from 0 to «», and which satisfies the property
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sP(g) = s(e®) = s(gl/g) = 1 - S(g) (23)

The use of a variable satisfying this type of property (prob-
bability-like transformation under duality) has proved to be
extremely useful in the treatment of Ising and Potts problems
(Levy et al 1980, Tsallis 1981, Tsallis and de Maga-
lhaes 1981, de Magalhaes and Tsallis 1981, Alcaraz and Tsallis
1982, de Oliveira and Tsallis 1982, de Magalhaes et al 1982).

Note also that, in the limit g ~ 0(g>), S(g) v g/g (S(g) v1-g /g).

Conductor-Insulator Problem: (g-RG framework)

Equation (21) with f(g) = g provides

. 2 14 4
p'g, = (P*+3 P’ - TP *+qz Pg, (24)

which together 'with Eq. (20) provides closed recursion rela-

tions. These equations provide the following fixed points:

(p,g;") = (0,0) (semi-stable), (0,=) (fully stable), (1/2,0)

(fully unstable), (1/2,») (semi-stable), and (1,g;1)(ﬁﬂly5tabha
-1

Y g, ). The Jacobian matrix a(p',l/gé)/B(p,l/gz) equals for
-1
(P,gz ) = (1/2,0),

13/8 0
(25)
0 30/17
and, for (p,ggl) = (1,1),
0 0
(25")

- 8/5 1
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Consequently v = £n 2/&n (13/8) Y 1.428 (Reynolds et al 1977
compared to the exact den Nijs 1979 value of 4/3). Furthermore,
by taking into account that o(gl;gz;p) scales as 1/g2’(Stinghcombe and
Watson 1976), we obtain t = £r(30/17)/£n(13/8) 2 1.170 (com-
pared to estimates which range from 1.0 to 1.43; see Gefen et
al 1981 for a discussion on the present situation) and
[o(O,gz;l)]_l[dc(O,gz;p)/dp]p=l =8/5 (to be compared with the
exact value 2). The full p-dependence of o(O,gz;p)islnesaned

in Fig. 2.

Conductor-Superconductor Problem: (g“l—RG framework)

Equation (21) and f(g) = 1/g provides

4 4
C -+ 20-p)? - 1P ¢ 1e(1-p)
' gl

(26)

Notice that through the transformation p-+ 1-p and g2+]/g1,Eqs.
(24) and (26) are the same; this property should hold for all
b-sized "Wheatstone bridges'". The following fixed points are
obtained: (p,gIl) = (O,gil) (fully stable, V gil), (1/2,0)
(semi-stable), (1/2,%) (fully unstable), (1,0) (fully stable),
and (1,~) (semi-stable). The Jacobian matrix 8@f,1/g{)/8@n1/g9

equals, for (p,gil) = (1/2,x)

13/8 0 -
0 17/30 (27)

-1 -

and, for (p,g1 ) = (0,1), is the same as in Eq. (25"). Con-
sequently v is the same as . before, s =t 1.170 and
- -1 -

Lg(gl;w;O)] Ipﬁ(gl,w;p)/dpj = 8/5 (the exact value being2).

p=0
The p-dependence of c(gl,w;p) is presented in Fig. 2:
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Conductor-Insulator and -Superconductor Problems: (S-RG framework)

Equation (21) with f(g) = S(g) = g/(gfgo) provides for the

g, = 0 case (where we choose g, ='g2)

1_=[2 D! 5]5_ (28)
g zp? + E--pt s B4 =2

and, for the g51_= 0 case (where we choose g, = gl)

- | 1 -p' ©
Fap? + LR e, (IR)T -

which together with Eq. (20) provide closed recursion relations. As be-
fore, through the transformation (p,gz) > (1—p,l/g1), Egs. (28)
and (29) are the same; this property should hold for all
b-sized 'Wheatstone bridges'". The fixed points are, for the
g, = 0 case (gg1 =0 case) the same as obtained in the
g-—RG(g—l—RG). Analysis of the relevant Jacobians provides:

(i) the same value of v as before; (ii) t=s=2n(31/17/2n(13/8) ~n
1.237, to be compared to the recent accurate estimateof t = 1.28 %
0.03 (Derrida and Vannimenus 1982); (iii) [O(O,gz;l]—l[dG(O,gz;p)/dp]p=1=
[q(gl,w;o]-l[dg(gl,w;p)/dp]p=o = 2, which is the exact value.

The full p-dependences are presented in Fig. 2.

IV - CONCLUSION

In conclusion, the calculation of any two-terminal array
of conductances can be greatly simplified by performing trivial
topological operations (bond "breaking' and 'collapsing'") and

applying the algorithm described herein (denoted by break-col
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lapse method). It avoids the use of Kirchhofffs 1aw$ and of
non-linear transformations such as the star-triangle mapping.
Although the use of the break-collapse method has been exhib-
ited on the standard Wheatstone bridge, different and larger
arrays can be solved as well. The study of a few ddimensional
anisotropic random resistor problems is presently in progress
and will be published elsewhere.

As an illustration of this method, we have constructed,
along the lines of previous works, three different and quite
simple real-space renormalization-groups (noted g-RG, g'l - RG
and S - RG) to study the full concentration-dependence of the
mean conductivity of the quenched random resistor problem on
the square lattice in both limiting situations where the nor-
mal resistors are mixed either with insulating (g1==0)of with
superconducting (gg1 =0) bonds. All three RG's lead to satis-
factory results. The S-RG (where mean values are taken on the
variable S(g) = g/(g+go)) excellent results are obtained in spite of
the small RG cluster that has been uséd. It enables the 'single-shot"
treatment of both g = 0 and ggl =0 cases, and provides, besides the exact

critical probability P, = 1/2, the exact limiting slopes (at

p=0 and p=1) as well as a critical exponent t =5 n 1.24 which
compares well with a quite accurate recent result by Derrida
and Vannimenus 1982, namely 1.28 +0.03,

Two of us (CT and AC) acknowledge hospitality from the Cen
ter for Polymer Studies / Boston University where this work was
intiated; CT is grateful also to the Istituto di Fisica Teori
ca/Universita di Napoli where it was concluded. Weacknowledge

also useful remarks from H E Stanley; one of us (CT) is deeply
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important facts on the renormalization group  treatment of
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CAPTION FOR FIGURES

FIG. 1 - Two-terminal planar arrays of conductances {gi} (o

FIG.

2

and e respectively denote terminal and internalnodes)
(a) self-dual b =2 Wheatstone bridge; (b) and (c) are
respectively '"broken" and '"collapsed' graphs of (a);

(d) and (e) constitute a dual pair of graphs.

Concentration-dependence of the square-lattice mean
conductivity in both limiting cases gy =0 (resistor-
. . -1 .

insulator mixture) and g, = 0 (resistor-superconductor

mixture).
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