A0042/77
0UT,1977

ANISOTROPIC BIANCHI IT . COSMOLOGICAL MODELS WITH

MATTER AND ELECTROMAGNETIC FIELDS

I. Damiao Soares

Centrno Brasileiro de Pesquisas Fisdicas
Rio de Janedlro - Brasil

ABSTRACT

A class of solutions of Einstein-Maxwell eduations is
presented,.which corrésponds.to anisotropic - Bianchi II spatially
homogeneous cdémological modeis vwith perfect fluid and electro-
magnetic field. A particular model is examined and shown tb be
-unstable, for perturbations of the elecfromagnetic field streungth
parameter about a particular value. This value defines a limiar
unstable case in which the ratio & , of the fluid density to the
e.m. eﬁergy density 1is ﬁonotonically.increasing with a minimum
finite value at the singula?ify. Beyond thié limiar, the model
has a matter dominatgd singﬁlarity (€< o0 ), and a characteristic
stggé‘appears where £ has a minimum, at a finite time from the
singularity. For large times, the models ‘tend to an exact soluvution .
for zero electromggnetic ﬁieldkénd fluid with ?=é} 13 . Some
cosmological features of the ﬁodels are calculated,'as the effect

of anisotropy on matter density and expansion time scale factors,

as comparéd to the corresponding Friedmann model.

Anisotropic spatially homogeneous cosmological models
~are of great interest for theoretical cosmology. Besides their
great generality among spatially homogenzous models, they are
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believed to provide a more appropriate description of early
stages' of our Universe than Friedménn.models. Inbfaqt the exis-
ience of horizons in Friedmann models makes difficult to under-
stand (in these models) the high degree of isotropy - of the

]
Universe as observed presently, unless very special initial

(1)

conditions are assumed . The Universe could have been primarily
anisotropic and some processes in its early stages of gvolution
have rapidly isotropized it. Among theée progessés, the mechanism
of particle creation has been extensively investigated, and it
proves to be significaht,onlyézgisotropic metrics(Q). Further-

more it has been suggested that the presence of electromagnetic
fields could alter the rate of creation of particles in anisotropic

(3)

models . 'Finally, anisotropy cdn also have a significant influence

in the expansion time scales of the'early stages of the evolution
of fhg Universe, and thus critically affect physical parameters
of these early stages (cf. references (1) and (4) for the problem
of heliumTébundahce in' the Universe).

In this context we present a class of spatially homo-
geneous cosmoloéical solutiéns of Einstein—Maxwell equations
for a perfect fluid and electromagnetic field, with a Bianchi
type II group(S) acting transitively on the sections of homo-
geneity'of the model. The sections are then endowed with the

structure of the orbits of the Lie group generated by the

Bianchi II Lie algebra -

[yqayz]=o ) [Xz’y3]=)(’ (1L

[‘/1 , Ys'__] =0



Taking (v, 8, :f)_ as local coordinates on these- three dimensional
manifolds, an invariant basis — dual to (1) — can be given by

the 1-forms

wq=_-' ar + ‘/mz(G) dl.f

wi= 1 45 (@)
O : .

w3 = al(F

where m(® ) satisfies the equation

—

§simb m don_ ) - : X (3)
- d8

N

Ay a constant. The line element is assumed to have the form

2 2,\R 2 |
ds?a atto Al) (w') o ) (@) (%)) TS
We also express (4) in the _fom(*)
ds?= '74;5 6498 o ' ‘ ' : (5)

where

4 i a2 - a 3 3
eb= (Lt 5 8=Aw ) & = Ba) ) 6: Bw (6)
. . . 7y
and we use (6) and (2) to define the tetrad matrix €g by
A A) .. . .. .
€= €y d)(x . Ricel rotation coefficients are defined
. . o . -
L.sc - ¢ A Cu(8) €¢od (7)

(%)

Capital Latin indices are tetrad indices and run form 0 to 3;
they are raised and lowered with Minkowski matrices 7»6‘,
7&8':&;“3(“’-1'-1’-1)' Greek indices are coordinate indiceés and run'
from 0 to 3; they are raised and lowered with the metric ?“"‘3)
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¥ o4 ='Z' Y as = zﬁ_ 1
. ~ (8)
2 8 4 —_-—nA— A
{ 02A= -—E- )’32 & BZ 1
3 8 3. A,
Y 03 = '——'—'B x 1 BR 1

where a dot means t—aerivative.

:In our models we have the présence_of én electromagnetic
field. Since we assume that it is not a pure test field but also
acts as source of the curvature, it must then be coﬁpatible with
the symmetries of the space-time. From (4) it is seen that we have

1 We are

a prefefred direction in our Universe, determined by w
. ‘ - — '

then led to take both E and H " along this direction. Spatial
homogeneity implies that E and H must be functions of t only.

With these restrictions, the electromagnetic tensor F has the

. AB

only components '
Fop=—Fp = EC(t)
o1 10 ’ . . (9)
Fpg= - Fsg= H (1)

)

in the local inertial frame determined by (6) and (2). In this

frame, Maxwell equations are written(x)
s 4 B
g[(!’) FaR]'S +2 FA5 ¥ LPa 'SJ‘RJ =0 ] (10a)
g L4 | AP
€ “¢r) F olg -~ F;D Y

P8
p ~Fpg Vo =0 (10b)

(%)

Square brackets denote anti-symmetrization and a bar denotes

partial derivative.
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Using (8), (9) and (6), equations (10) reduce respectivgly‘to

(HB*) - REAN, =0

. (1)
(E8%) + 2HA X =0
A 2 _ 2 A
Introducing the new variables .‘E= EB 3 %=HB and =-D_'2_ 4t
equations (11) can be rewritten
46 \
bt Sl (12)
4E N
ot
with solutions
. ~
8= Z Ceg 23\4 t
. (13)

%:Z_ J’&n«a?/\,,t

where 2. is a constant which we call eleqtromagnetic field

strength parameter. For (8) and (13), the energy-momentum tensor

of the‘electromagnetic field

- 4 - cd ‘
_':.a =~ Fac Fy 7 s F,F™ (1)
has non-null components
— — x?
Oo=-—-7‘;1 = IZZ = /53 = ‘qu (15)

The matter content of the models is a perfect fluid.
In the local inertial frame considered, an observer comoving

with the fluid is assumed to have the four velocity
A .
ub = 5. . ~ (16)

: . . H i
It corresponds to a matter velocity field €y and determines a
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congruence of time-like geodesics along which matter propagates.
Denoting respectively by ¢ and P thé density of matter-energy
and the pressure of the fluid as measured locally by the comoving

observer (16), the energy-momentum tensor of the fluid can be

expressed

—-’;5-.: (.Y“f'f') Uy B — P s ' (A7)

The total energy~momentum tensor for the»model is the sum of
the energy-momentum tensors of the fluid (17) and of the electro
magnetic field (1) .

The‘ﬁon—null components of the Ricci tensor for the

: . &
metric (4) are calculated

on (12

A B
fo=- =%
. . ee ® e 2 .
A AB L . A 2 : | (18)
Ru= 3 t2a5 T57 ™ |

- _ B AB - /B A% 2
Rea=Res = 5+ 27 +(B>~Zh~'\

Using (14), (17) and (18), Einstein field equations

4 ,
Rys == 7ms R =« Tag (G2L) (19)

reduce to the set of three independent equations

_ _k 3 k Z
Roo“'_z'f'(s"" f>+ 239
33
R, .E’i(g..f).. 237 (20a,b,c)
2:2
Rﬂ + a - R‘zz =0
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We take equations (20a,b) as determining the functional form of

[4 and P . vKuation (20¢) is ‘t.hen. one differént‘ial equation
for the two metric functions A and B. As usual, this arbitrariness
can be eilimina‘ted by assuming fm equation of state fp= P(g> for
the cosr;xic fiuid. We here have instead assumed a relation between

A and B, and from ¢ and P given by (20a,b) we have immedia-
(#*)

tely the equation of state P=P(g) . We take’
1/2 . .
Equation (20c) reduces then to
0; [ 24, ’ | R .
g, 3 (8>a TA A kDT «
In ferms of a new coordinate defined by
~ - 3/2 . ' .
dt =- 8 .dt - : (23)
equation (22) assumes.“the form
# 2.2 Q ' ' ‘
B'- FA A B - 2k2 =0 v v (21)

where a prime denotes derivative with respect to T. Two indepen-

dent solutions of (24) are given by

.

~ I
.,
X
,

for the spatially homogeneous models we are considering, the

. : . A
fluid described by (g,?, L ) has constant entropy.
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L ~ (25)
it T\ VT AN

in terms of T(t). In this parametrization, we must have B(%) > O

so that the coordinate t assumes only real values (cf.(23)) and

the signature of the metric remains unalteved (cf.(21)). The
density ¢ and pressure P -have the following expressions
— 9 13'- 2 | -Z)‘a’l z:‘zvs.-’) B”s |
2k g= (?) - 2Ac A~ K . (26)
1\ - 2, 2 4
2xp = (9(-5_) C A} -3k IE ) B (27)

Let us consider first the solution

P
YAZAR

B= cosh V& Aol t - (28)

From (26) and (27) we note that for 2 =0 this sélution is
nonwsingulér but the matter density S is négative for an inter-
val of T around € = 0. In order to have a physical matter density,
we must consider for this solution the presence of the electro-
magnetic field, the strenght parameter of the field being such

that ’

P
2 - ' (29)
qAZN . ,

in order to eliminate the possibility of negative energy densities.
The present parametrization of solutions with T(t) (cf.(23)) will
be valid only for
A 1 2 . .
| +1 > arc cosh k2

Ve Ao, 4ad 3} -

(30)



In this region ¢ is always positive, with a singularity at
.[ l_ ~—— ave cosh kZﬁ Az . In what follows we restrict the
VE AN /?A

range of T to positive values only, starting from the singularity
"E .

o)

. [ J
The behaviour of the models differs greatly whether

the equality or inequality in (29) holds. To see this we consider

the ratio of the energy density S of the fluid to the electro-

magnetic energy density,(fzmz T,o(em) e(o) 0> ))

S o€ .
em , A ,
where & is a number whose value depends on t. Using (26) and

(15) we can express (31) as

| 24
Ee ____,(3.3,4,)\3..‘.’_".{‘._‘/:@1__ - ZA'},\:{B—kz ) (32)
«X* B

55__..,(,(-;-4) _ - (33)

~

whe re o= Cosh \I;Ao Ay t y, &2 1 . From (33) we can see that
the maximum contribution of the electromagnetic energy density
to the tgtal energy density (matter and e.m. field) of the model
occurs at the singularity (&« = 1) and it represents about &
per‘cent of the total energy density.at that stage. For larger
times, the contribution of the em. energy density becomes more
and more negligible.

For the inequality in (29), we consider the typical

e ¥y, ; . .
value &2 L, = , which yields from (32) ,
Yas N

1502~ 12 | (31)



-10~

[N

whére o= cask\/fa?:‘%)\.,g , ®22 . From (34) we 'caﬁ distin
guish three characteristic stagés in the evolution of this model.
Sufficiently near the singularity (& = 2) the contribution.of

the electromagnetic energy density to the total energy density is
negligible ( & —» oo ) and the singularity is matter dominated.
The second characteristic stage occurs for later values of T and
it corresponds. to a configuration whefe the electromagnetic énergy

density has its maximum relative to the total energy density

(matter and e.m. field) of the model. € (%) has a minimum at
this stage. For (34), € (&) is calculated to have a minimum
at K< 3.8 with o (3.8) 2 28.5. Although at &2 3.8 the

ratio y”?% has a maximum, the electromagnetic energy density
corresponds to only 3 percent of the total (matter and e.m.)
energy density of the model at that instant. The graph for both

cases is illustrative.

(figure)

The modél is stable for perturbations of the strength parametef
)M s which maintain the inequality in (29), but it isrhighly
unstable for perturbations of L around the value "Za/%f/\g =1.
We remafk ~ that for kZZAfA;z ={, sufficiently n’ear‘
the singularity the equation of state of the fluid can be appro-
ximated by ?='§- § . For large T, the contribution of the elec~-
tromagnetic field can be neglected and the present solutions tend

to the exact solution for zero electromagnetic field, and fluid
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1 . . . .
with equation of state P=% § . ,which we discuss 1n the following.

4

For zero electromagnetic field 2 =0  we consider

the solution (25)

B = Co(}'? {;ADA1:E’ (35)

which gives for (26) and (27) ,
: -3
2k ¢= 3OA3 A;i B
4 (36)
P=% S
We now discuss other cosmological features of these

anisotropic models. The fundamental observers are determined by

the fluid velogity field (cf. (16))

. I"‘_ M A M . - ’ 28
W= €y W= S (37)

(6)

and the kinematical quantities discussed here are assoclated
to this.vélocity field. (37) is geodetic and irrdtatioﬁal since
Yoao - 0.and Yorasy = O (A,B = 1,2,3) respectively. The
models expand anisotropically. In fact, from (4) we see that
there is a preferred.direction of expansionAdetermihed by w? ana

the expansion of (37) along this direction is,measured by
_ 1. A
9{4)" X? 1= A

The total averaged (over angles of the observational sphere) expan

sion of the congruence is given by

] [Qh

5
= u® = —
4 (38)
We than see that along 694 the expansion is only 1/5 of the total
gxpansibn (38), contrary to an isotropic model in which the ex-
pansion along any direction is 1/3 of the total expansion.

T

IR 3
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The anisotropy of the model can be measured through the

distortion of the congruence of comoving observers (37),

1 8 . |
6:5=6~ ry diog. (0,2,-1,-1) | (39)
. .
¢t le o'l LAY ;
From (39) we calculate 7 As 72 <'B ) and'we have the
result _
(,v=£ 6 | (40)

15

(7)

As well known from Raychaudhuri's equation , the presence of
anisotropy can have an important effect on the matter density, and
in changing the expansion time scales of the models, as compared

to the corresponding isotropic model. For illustration we compare

solution (35), (36) to-.-the Friedmann model

ds?= ar?- A‘?('t)(dx"-:-dy'%dz") . - (41)

: i ‘ .
for fluid with P=% § . In what follows a subscript a or f denotes
respectively quantities related to the anisotropic or isotropic

model considered. By a convenient choice of integration constants,

we can express (35) in terms of the coordinate t (cf.(23)) as

3% Ay Y3

B = P T | (42)
Einstein field equations for (41) yield

R YA | |

‘F...(.E_)A | (43)

where to is a constant of integration which we use to normalize

the volume of the model to unity at a given time. Expressing

Lo
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1 ' . .
fM=¢0® , we have for P""}"g and the above time-coordinates

it

-2 (44)
g= 5 (2 Sy t |
kAR 9

where 83\/—?25_ , 0 resPectively' for the anisotropic or isotropic
cases. .Concerning time scales, we de.fine the speed up 'factor

s = t"ff* (which can be calculated by equating the volume of both
models, and has the constant value S:‘(-é—-?— (/\,A,WS'{Z)—." ) and from

(44) we have

2 | (45)

Conclusions

From the anisotropic cosmological solutions of Einstein-
~Maxwell equafions presented here, we have examined a particular
rﬁodel whicﬁ shows some intefeéting propertiés, concerning its
stability reilative to the ratio kzz/%ﬂf s where 2 . is the strength
parjar;leter of the electromagnetic field ( 4 )‘1‘ has sometimes
been regarded as the gravitational magnetic charge of the space-
(8)

. 2
~-time ). For k2 /7.43)»',2 < 4, we have a non-singular solution

?
but negative energy densities appear. For kz/‘/A‘;z/\;t > 1 , the
~o
solutions present a singularity at T,=

2
arc cosh kz/ ¢\2  and
{TAN 4hs Aq
the energy densities are always positive. Nevertheless the beha-
viour of the solution is rather different, whether the equality
or the inequality holds. In the first case the maximum contribution

of the electromagnetic energy density to the total energy density

(matter and e.m.) of the model occurs at the singularity and it

€
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represents about 6 percent of the total energy density (fiuid

'and e.m.) at this stage. Its importance for later times becomés
negligible since the ratio € of the fluid density to the elec-
tromagnétic energy density is monotonically increasing, with a
minimum'finife value at the si;gularity. But this case is an
unstable configuration. In fact, for values of kz%Aol)\: >1-

we have a drastic change of the above picture. The singularity

is matter dominated since the ratio & goes‘to ihfinit?. A charac
teristic stage appears at a finite time from the singulafity where
the ratio € presents a minimum, that is, the electromagnetic
energy density has a maximum relative to the fluid energy density.
It is at this stage when some processes, depending on the presence
éf electromagnetic fields, should-most probably occur. For large
times all models have as limit the exact anisotropié Bianchi ITI
solution, for zero eleétromagnetic field and fluid with equation
of sta%e F=’3" S . In the anisotropic model with zero elec-
tromagneti¢ field and fluid with r=§§-§ > thg effeét of anisotropy
is to reduce the valug of the matter density of the model, relative
to the correspoﬁding Friedmann model. “

We finally remark that although matter is electrically
neutral, our models have the presence of a non-zero electric field
which for high values 6f the matter density (at early times, for
instance) could give rise to conduction currents in a magnetohydro
dynamic regime( 9). In this context our models are a first appro
ximation of more general cosmologies in which a conduction

current would appear in the RHS of Maxwell equation (10b). We

will discuss this in a future paper.
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