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Abstract

Using Ehlers and unitary transformations, from Bonanos solution of the Ernst
equation, we build a new vacuum stationary axisymmetric solution of Einstein
equations depending on three parameters. The parameters are associated with
the total mass of the source and its angular momentum. The third parameter
produces a topological deformation of the ergosphere making it a two-sheet

surface, and for some of its values forbids the Penrose process.

PACS numbers: 0470B, 0425D

1. Introduction

We present a vacuum stationary axisymmetric solution of the Ernst equation which can be
obtained by using the Euclidon method proposed by Gutsunaev er af [ 1]. Then we show that this
solution reduces to the one found by Bonanos [2], and later rediscovered by others, in particular
by Dxas [3]. This solution is symmetric in the prolate spheroidal coordinates and depends on
one parameter, called q;. The construction of the corresponding gravitational potentials, with
the help of the Boyer-Lindquist transformation, shows that this solution represents the extreme
Kerr black hole [2, 3]. An Ehlers transformation followed by an unitary transtormation on
the latter solution, while keeping its asymptotical flatness, permits introduction of two more
parameters. So, the obtained new solution, in Boyer—Linquist coordinates, depends on three
parameters, which are connected, as in the Kerr case, to the total mass of the source and its
angular momentum. However, we did not succeed in relating directly this solution to the Kerr
solution, but we know that such a hink does exist by reason of the uniqueness theorem for
the solution with a good asymptotical behaviour and without naked singularity [4]). Only the
extreme black hole of Kerr appears as a limit, when g; — 0, of the proposed solution, and
this latter does not present a naked singularity. Varying the g; parameter allows us to show its
role in the ergosphere shape. The ergosphere, which initially has a torus shape, continuously
loses its form and finally separates into a two-sheet toroidal surface, progressively exposing
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the event horizon more and more. Then the Penrose process [3] is no longer able to take place
in a'domain of the azimuthal angle, for some range of the g, parameter values.

The paper 1s organized as follows. In section 2 we present a brief resolution of the
Emst equation. In section 3 we present the Bonanos solution [2] and transform it into a
three parameter stationary axisymmetric solution of the Ernst equation. Then in section 4 we
analyse the causal structure of the newly found three parameter solution. We end the paper
with a bnief conclusion.

2. Brief recall on the resolution of the Ernst equation

The line element of a general axisymmetric stationary spacetime 1s the so-called Papapetrou
metric, which in the cylindrical coordinates, o, z and ¢, reads

ds® = f(df —wdg)* — f [ (dp® + dz*) + p?dep*] (1)

where the gravitational potentials, f, @ and y are functions of p and z ﬂnlj’. The canonical
coordinates of Weyl, p and z, can be given in terms of prolate spheroidal coordinates, A and
/i, by the relations

p =k =1V - uH'? z = kAu (2)

where £k > () is a constant, A a radgial coordinate and —1 € p < 1 15 an angular coordinate.
The metric (1) with relations (2) can be rewritten as

2 2 2
ds? = F(df — wdg)? — k—[eﬁwf—uz)( AR )+(:-F e —ﬁz)dtf-‘z] 3)

+
f Ar—1 1 — pu?
where the potentials are now functions of A and p. The Ernst equation is [6]
(EE — 1)V°E = 2EVE - V& (4)

where V and V? are the gradient and the three-dimensional Laplacian operators respectively,
£ 1s the conjugated complex potential of £, and 1n general its solution can be expressed as

§(A, ) = P(A, ) +1Q (A, 1) (5)

where P and () are real functions of A and . Among the classical solutions of the Ernst
equation, we can cite the well-known Kerr solution [6],

Ek = pr+igu (6)
where p and g are real constants satistying
prtq =1 Y
and the Tomimatsu—Sato solution,
a(i, 1, p.q,9) .
ETs = : (3)
Bk, i p.q,98)

where o and § are two complex polynomials depending on the Kerr parameters p and ¢ and a
parameter § assuming integer values describing the deformation of the source [7]. To determine
the potentials f, w and y of the metric (3), the method consists of using the following relation
between f, the twist potential $ and &,

. §—1
f+id = Er 1 (N
which implies with (5)
2 2 _
= Py Q 1 & — 20 (10)

R* R?
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or, equivalently,
dln R? 3in K2
=1- d = 11
f P 30 (11)
where
RP=(P+1)?+ Q% (12)

In (9), ® is the twist potential defined up to a constant and related to the dragging by the
following differential equations:
b k(1 - u?) adb dw k(I -1)30
3rn f? Bpu du froaA
The potential @ is obtained by integration of (13), and y is determined by quadratures. Any
solution of the Ernst equation is a solution of the Einstein equations.

(13)

3. A new three parameter solution

Using the method proposed by Gutsunaev et al [1], the so-called Euclidon method, to obtain
vacuurm axisymmetric stationary solutions of Ernst equation (4), we can obtain

Agt .
§= . +ig1(A — () (14)
I

where g, is an arbitrary real parameter. We shall present in another paper details of the method
used to obtain (14).

By applying the method recalled in section 2, we obtain the potentials corresponding to
solution (14),

A= D - +qi — !

—_ 1
f (A — D21+ ) +gi(x — ) (1)
B 210 — )
T = D21+ p)? +gi o — ) (16)
i . 2 _ —aler 3
L], a p:)[cx 11+ p) — g2k — )] | an
1 gl — )t - (A2 = D1 — pu?)

We can observe that this solution is not asymptotically flat, because g4 does not vanish as
» — oo and has the same behaviour as the Demianski-Newman g, [11, 12].

Now making on (14) the simple transformations, u -» —pu, then £ — i, and then
& — £*, we obtain

A+l
=— . 1
ér Q1(K+u)+lk+# (18)

Calculating the corresponding potentials in (18) by using the method of section 2, we obtain
_ G+ 1P+ G+ @) ik + )t — 1]
e+ D2+ gy — 112

(19)

B

_ 200 + DA+ 1)
T+ D2+ L+ )2 [qr(d + ) — 12

dp (20)
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2k(32 — (1 — pDq1h+ 1) — 1]
W =——F— y > NG (21)
qiqi + ) — (A2 - (1 — pd)]
Introducing the coordinates r and 8 through the Boyer—Lindquist transformation [9]
r—M
k
we obtain asymptotically, r — oo, for (19) and (21)

A= W =cost (22)

me1+2£1+0(i2) (23)
ar r
2
wg ~ (5) (—ud=+0 (i;,_) 24)
[4]] r r )

From this asymptotical behaviour, (23) and (24), it is easy to interpret the solution given by £
in (18) as describing the extreme Kerr black hole. The solution £z has been obtained in 1973
by Bonanos and rediscovered by Das [3], and developed by Bonanos and Kyriakopoulos [2]
from the Herlt method [14].

We can further transform the Bonanos solution (18), as follows, by including two more
parameters. The new solution thus obtained has an interesting causal structure which is studied
in the next section.

By means of the following particular Ehlers transformation {8} on (18),

ciép +di

= (25)
2 diép + 1y
we can introduce a second real parameter a;, where
c1 = 1+im d) = iay (26)
satisfying
("-‘ ‘fl) € SU(1,1) e — ldi | = 1. 27
di €1

It can be proved that solution (25) does not have suitable asymptotical flatness. Then, a second
step consists of performing a unitary transtormation on &,

£ = —e%) = (m +in)§ m?+n? =1 (28)

with 8y an arbitrary real constant, and m and » real constants. Then (28) with (5), (18) and
(25) becomes

£ =[~a1 Qs ~ 1 +io) (P + 1)1 {Pa(m — a1n) — Qplaim +n) — arn +i[ Paaim +n)

+ QOp(m — o1n) + oyml} (29)
where Pp and Qg are the real and imaginary parts, respectively, of (18). Considering
n
== 30
= T m) (30)

and applying the method recalled in section 2, we find the potentials corresponding to the
solution (29) of the Ernst equation

A+ + G+ wlfgierw? —1]] 56

f2= 1+ AP + O+ [ q1(h + ) + 1P 2

(3D
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_ (14 Ap) A+ ) 2%
b2 = [ T+ A2 + (h+ @2gih + o) + 1P } cos T3 (32)
_ % (1= p» 32— DM+ g+ )] 2 fo 33)
g | (L4 2p)2 + O+ gl (h+ p)? = 1] 2
We find for y» in (1) from (29),
_L T, G-ba-ph] 1.,
}’2—2ln[ql ot ) ]-—Elnql. (34)

Furthermore, the factor cos—2(6y/2) in {31) can be absorbed by a rescaling process of the metric
into a conformal metric, such as ds% = cos? (90/2)d32. Now introducing the coordinates
r and 8, through the Boyer—Lindquist transformation (22), inte (31) and (33), we obtain
asymptotically, r — oo,

fzwl——2—-}€—l+0(l2) (35)
q1r r
k\2 1 — 2 1
Pp Y Pl cos?‘@(—ﬂl+0(—5 . (36)
q1 2 r r

We see from (35) and (36) that the solution now has the good asymptotic behaviour allowing
us to interpret the parameters gy, & and k as
k 2 B0 J &
ql—M cosz-Mz—M
where M and J are, respectively, the mass and angular momentum of the source, anda = J/M
the angular momentum per unit mass, In the Kerr solution (6} there are two parameters linked
by condition (7). The asymptotical behaviour of this solution imposes [10]

(37)

_ k _a (38)
P=u 1%y
and condition (7) fixes £,
k= M? —a?. (39)

In our solution, the asymptotical relations (35) and (36) impose (37), but ¢, & and k are
arbitrary, as can be seen from (14), (28) and (2} (with (22}). Of course, it is always possible
to compare our parameters to those of Kerr by putting

o » 6o k
—_— = = {08 — —_— = = 40
YRk 2 ¥y oP=a (40)
and assuming 0 € ¢ < 1. So, we would have also from (7),
6
qlz+cos4?0 =1. (41

However, it is not necessary for us to choose (40} and (41). In general, our solution presents
three independent free parameters, g, fp and &, whereas the Kerr solution presents only one
independent parameter, either p or g. Furthermore, imposing (40) and (41) does not reduce our
solution, {31)—(34), to the Kerr solution. The differences between both sclutions are further
studied in the next section. Besides, we note that the solution {31)—(34) does not belong to the
vusual Tomimatsu—Sato solutions [7].
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4. Horizons, ergospheres and singularities

Expression (31) can be written as

b= D cos 3 {42)
with

No=(1+r)" + A+ gf(r +)? - 1] (43)

D=(14+3u)+(h+p)?gi(h+ 1)+ 11% (44)

4.1. Horizons

The horizons correspond to the solution of f; = ( for 4 = %1 which is, from (43), and (22),
rn = M £ k. These horizons split into the Cauchy horizon, with radius roy = M — &, and the
event horizon, with radius r., = M + k. These results are satisfactory since, for any stationary
axisymimetric metric, the horizons depend only on the spacetime symmetries.

4.2. Ergospheres

The equation of the ergosphere surfaces, from (42), is N = 0, and two cases have to be
distinguished from (43).

4.2.1. 2+ =0. Inthiscase N =0 if, in addition,

1+ =0 {45)
which, with (22), imposes two solutions, describing two ‘points’

w=—1 r=M+k=raq {46)

u=1 r=M—k—=ry. 47

These ‘points’, (46} and (47), are the intersections of the z-axis with the event horizon,
r = rey = M +k, and the Cauchy horizon, r = ry, = M — k, respectively, belonging to the
ergospheres. It has to be noted that (46) and (47) produce, from (44), D = 0 as well, hence
there is an indetermination for the ratio N/D. This indetermination can be raised by studying
the imits (r — M)/k — =£1 which produce

rl_iglh Lp=-1)= rl_i{f_lh HLpn=1=0 (48)

The limits (48) are finite and zero, hence these points belong to the ergospheres.

4.2.2. %+p % 0. Inthiscase, (A+ u)? can be factorized in (43), and the equation for N =0
becomes

1+ip 2 2 2
()L+,u.) +gi(A+u)y =1 {49

which is the equation for the ergosphere surfaces. It is a fourth degree surface, and for the
representation of this surface, it is useful to express it through a parametric representation with
the help of a parameter 7, such that

1+ap\?
( M) =cos’1 q]Z(A + u}z =sin’ 1. (50)
A
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Figure 1. g = 0.01, ren = 4.04, rep = 3.96.

Figure 2. g = 0.04, rg, = 4.16, 7oy, = 3.84.

We can see from (50) that it is a bounded closed surface for any value of the g, parameter.
We have plotted some curves, which are intersections of this surface by the meridian plane
¢ = 0, for different values of the parameter 1 > g; > 0, as shown in figures 1-10. These
curves present the following interesting features:

*» When q; — 0 the aspect of the ergospheres and horizons tends towards the aspect of the
Kerr extreme black hole (e.g. see figure 4 of [12]), as shown in figure 1.

e When ¢, increases its value the aspect of the ergospheres remarkably differs from this of
a Kerr black hole, as shown in figures 2-5. Especially, we can note, the surface of the
exterior ergosphere becomes double, presenting some thickness being a two-sheet torus.
It is the same for the interior ergosphere.

e For a defined value of g, near q; =~ 0.5, the exterior ergosphere opens itself on the axis
i = 0 (8 = m/2), as shown in figures 6-8. Then the event horizon becomes naked in a
certain angular aperture, whereas the Kerr event horizon is always dressed by the exterior
surface of the ergosphere. Thus, on this spatial portion, the Penrose process [5] is no
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Figure . g1 = 0.1, re, = 44,1y, = 3.6,

Figure 4. g1 =0.25, ren = 5, ren = 3.

longer able to take place. This special topology of the ergosphere also indicates, here, a
difference with the Kerr metric.

¢ The evolution of the interior part of the ergosphere, for increasing values of g, looks
intricate, with, particularly, the advent from the centre of a new curve, as shown in
figures 3-4, with a four-leaved clover shape, which grows until it passes beyond the
Cauchy horizon, as shown in figures 8-9, which of course vanishes when gy = 1 (M = k),
as shown in figure 10. This complicated behaviour also presents an important difference
with the Kerr metric, because in this last case, the Cauchy horizon always covers the
interior ergosphere,
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Flgure 5. g1 = 0.4, feh =5.6,r, =24,

Figure 6, g1 = 0.5, reh =6, ren = 2.

Figures 1-10 show the parametric plots of the curves describing the intersections of the
interior and exterior ergospheres, defined by (50), with the meridian plane ¢ = 0 for different
values of the parameter ¢, in the range [1072, 1]. The vertical axis is z. The ergospheres are
the axisymmetric surfaces which can be generated by rotation of the curves around the z-axis.
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Figure 7. g = 0.6, rep = 6.4, rep = 1.6.

Figure& q] = 075, rey =T rp=1.
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Figure9. g1 = 0.9, rgp = 7.6, rn =04,

The event horizon and Cauchy horizon are also represented (circles of radius rep = M + £,
ren = M — k, respectively). The mass M has been fixed to the value M = 4. kis given by
37.

4.3. Singularities

The singularities correspond, when they exist, to curves or surfaces defined by D = 0 from
(44). We see that D is a sum of squares and it can vanish only in two cases.

431 1+4Aiu =0and A+ u = 0. This system of equations is the same as studied in
section 4.2.1, and corresponds to the two points (46) and (47) of the horizons where N = 0.
Since, after raising the indetermination of the ratio N/ D, the limit (48) is finite and zero, these
two points are not singular.

432. 1+ 2 =0andqg (A +u) = —1. Consequently,

ql,uz-i-p,—q] =0. (51}
The polynomial (51) aiways has two roots
-1 /A
pe= DEYE Ay (52)
2g4
that gives the two solutions
—1+/A
By = —F7 (33)

2q1
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Figure 10. ) = L, rep, = 8, repy = 0.

and
1+/A
2q;

The first solution, (53), produces 0 < . < 1, while the second, (54), produces |u_| > 1,
hence it has to be rejected- From (53) with (22), we have

24} )
r. M(1+1_\/Z (55)
which gives 7. < rgy = M — k, hence the two ring singularities (55), which are the solutions
for 4, = cos(£6,), are inside the Cauchy horizon and so, a fortiori, inside the event horizon.
There are no naked singularities.

. = (54)

5, Canclusion

It is possible to recover with the Euclidon method [1] the Bonanos solution (18) of the Emnst
equation, originally obtained with the Herlt method [14]. It depends on one parameter, g, and
can be interpreted as an extreme black hole. To introduce a second parameter in this solution,
we performed an Ehlers transformation, producing a non-asymptotically flat spacetime instead.
Only after performing an unitary transformation, the new solution obtained, (29), with
condition (30), achieves the appropriate physical asymptotical flatness. A second parameter,
6y, appears in this process, to which we have to add the free parameter & of the prolate spheroidal
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coordinates transformation. In Bover-Lindquist coordinates, the asymptotical behaviour of
the metric tire component, f2, and of the dragging, w,, permits the parameters introduced to
be interpreted in terms of the mass and angular momentum of the source (37).

We did not succeed in obtaining the Kerr Iimit of the solution, however we know that it
does exist becaunse of the uniqueness theorem, since this new solution has asymptotical fiatness
and does not present naked singularities.

One of the parameters introduced, ¢, shapes the ergospheres showing notable topological
differences to the Kerr spacetime. When this parameter g; — 0, the solution tends to the
extreme Kerr black hole, which is different from the Bonanos extreme Kerr black hole solution
since, for this case, g, # 0 is arbitrary. For some range of the parameter values, the exterior
ergosphere opens itself leaving the event horizon naked, which forbids a Penrose-like process
in this aperture. We conjecture that the obtained new solution (31)—(34) represents a distorted
stationary black hole, which would extend the results obtained in the static case [13], but this
needs further investigation,
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