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Abstract

On statistical-mechanical grounds, a stochastic optimization tech-
nique { Generalized Simulated Annealing} has been recently proposed
which contains both Simulated Annealing (Kirkpatrick et al 1983) and
Fast Simulated Annealing (Szu 1986) as particular cases. This tech-
nique can be faster than both in detecting global (and also local)
minima. Its utility in quantum chemistry is here illustrated, through
the use of a semi-empirical quantum method, on molecules of the se-
ries CH3—R (CgHe, CH300H, CH30H) N Hng (HgOg, HgSg), X2Y4
(NzH4, P2Hy, N2F,) as well as for double bond (C;H4 and CHzNH).
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1 Introduction

It is well known that, in general, a molecular system can exist in different con-
formational geometries, which are tree-dimensional arrangements of atoms
in a structure. The number of conformations increases with the molecule
size. In particular, molecules of biological and farmacological interest present
thousands of local minima {or conformations). The great difficulty, in this
subject, is to find global minima and not to get trapped in one of the many
local minima. This fact has led to the appearance of different theoretical
methods, in quantum chemistry{l], to describe the molecular conformations
as well as to obtain the optimized geometry.

In general, theoretical methods are based on the gradient descent ap-
proach. It is known that the gradient method indistinctly provides both
global and local minima, consequently, to find the global minimum, the brute-
force strategy has been the usual tool. _ _

Recently, the so-called simulated annealing methods have demonstrated
important successes in the description of a variety of global extremization
problems. Simulated annealing methods have attracted significant attention
as suitable for optimization problems of large scale, especially those where
a desired global minimum is hidden among many local minima. The basic
aspect of the simulated annealing method is its analogy with thermodynam-
ics, especially with the way that liquids freeze and crystallize, or metals cool
and anneal. The first nontrivial solution along this line was provided by
Kirkpatrick et al [2, 3] for classical systems, and also exterided by Ceperley
and Alder 4] for quantum systems. It strictly follows the quasi-equilibrium
Boltzmann-Gibbs statistics using a Gaussian visiting distribution, and is
sometimes referred to as Classical Simulated Annealing (CSA) or Boltzmann
machine . The next interesting step in this subject was Szu’s proposal (5] to
use a Cauchy-Lorentz visiting distribution, instead of a Gaussian one. This
algorithm is referred to as the Fast Simulated Annealing (FSA) or Cauchy
machine.

In recent years, some authors [6, 7} have applied the Boltzmann machine
to describe molecular conformations and the associated global minima.

On the other hand, it has been recently proposed [8] a Generalized Sim-

ulated Annealing (GSA) approach which closely follows the recently Gener-
alized Statistical Mechanics [9, 10]; it contains both Boltzmann and Cauchy
machines as particular cases, with the supplementary bonus of providing an
algorithm which is even quicker than that of Szu.

We propose in this work the use of this generalized algorithm in order to
describe molecular conformations and to optimize the molecular geometry.”
To illustrate this, we make a coupling between a semi-empirical quantum
program (MOPAC-package) [11] and the GSA routine.

In section 2, we discuss the algorithm used for recovering the global min-

ima. In section 3, we present results concerning a variety of molecular struc-
tures, We conclude in section 4.
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2 Generalized Simulated Annealing in Quan-
tum Chemistry

Here, we implement the GSA algorithm on a semi-empirical quantum method
to calculate the minimal energy conformational geometry for different molec-
ular structures.This technique can be indifferently applied on all ”ab-initio
? or semi-empirical quantum methods. We have used, in present case, a
semi-empirical one only for computational convenience.

The GSA method is based on the correlation between the minimization
of a cost function (total electronic energy) and the geometries randomly ob-
tained through a slow cooling. In this technique, an artificial temperature is
introduced and gradually cooled, in complete analogy with the well known an-
nealing technique frequently used in metallurgy when a molten metal reaches
its crystalline state (global minimum of the thermodynamical energy) In our
case the temperature is intended as an external noise.

The procedure consists in comparing the total semi-empirical energies for
two random geometries obtained from the GSA routine. The artificial tem-
perature ( or set of temperatures) acts as a source of stochasticity extremely
convenient for eventually detrapping from local minima. Near the end of the
process, the system hopefully is inside of the attractive basin of the global
minimum ( or in one of global minima, if there is degeneracy}. The chal-
lenge is to get cool the temperature the quickest we can but still having the
guarantee that no irreversible trapping at any local minimum occurs. More

precisely speaking, we search for the quickest annealing (that is, in a some
sense approaching a quenching) which preserves the probability of ending in
a global minimum being equal one.

The present GSA routine was built using the same procedure presented
in {8]. We apply this algorithm in order to study a set of molecules which
present one or more different conformations by rotating a particular dihedral
angle (8) around the X-Y bonds, i.e., in this case we have only one degree of
freedom (D = 1) . In summary the whole algorithm for mapping the global
minimum of the energy function is:

(i) Fix the parameters (g4, qv) (we recall that (g4,qv) = (1,1) and (1,2)
respectively correspond to the Boltzmann and Cauchy machines). Start, at
t = 1, with an arbitrary value 8, and a high enough value T, (1) ( visiting
temperature) and cool as follows:

o) = T Ot = (1)

where ¢ is the discrete time corresponding to the computer iteration, and
qa (qv ) is the acceptance indez (visiting indexz).
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(ii) Then randomly generate ;4 from 0, by using the visiting distribution
probability g, as

i =
~-N\TI(ZE+22 V(&)
9av (A8) = (QV* 1) r(tv_x_ — : ) =

W

gv~1 3) A, )2 ;,L_#‘L,ﬂ
{1 +(gv - 1)—‘—JF:[TV o= }

(2)

with —180 <A# < 180 ; T is the gamma function. This procedure assures

that the system can both escape from any local minimum and explore the
entire energy surface.

(iii) Then calculate the total electronic energy E{6,;1) by using the MOPAC
program:

If E(GH.]) < E(G.), repla.ce 0‘ by 0,.,.1;
If E(6:41) > E(6;) , run a random number r € [0, 1} :if r > P,, (accep-
tance probability) given >y

l —_
1+ {1+ (g4 = 1)[E(Besr) — E(8)] /TAW}

Poa(be = 0441) = 3)

with (T4 (t) = TY (1)), retain 8, ; otherwise, replace 6; by 8,,,.

(iv) Calculate the new temperature T}, using Eq.(1) and go back to (ii)
until the minimum of E(f) is reached within the desired precision.

In short, this computational method is based on a stochastic dynamics
which enables, with probability one, the identification of a global minimum
of the electronic energy hiper-surface, which depends on a continuous D-
dimensional variable z , (in this paper D = 1 and z = # is the dihedral angle).
While the number ¢ of computational iterations increases, it might happen
that 8; provisorily stabilizes on a given value, and eventually abandons it
running towards the global minimum. This temporary residence can be used,
as a bonus of the present method, to identify some of the local minima. The
ordinate (Number of cycles), in the figures 1 to 4, represents the frequency
(temporary residence) of the positive trials when a tested angle appears.

In figures 1 to 4 we observe the arising of some dihedral angles (noises)
which do not represent the searched local or global minima. They appear
with minor frequency, and in order to eliminate this noises it is convenient
to repeat the procedure (i) to (iv) using different initial conditions. In this
case we can also verify that all degenerate minima will be visited with the
same frequency.
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3 Applications

We have applied the MOPAC-GSA approach to find the possible conforma-
tions of some important molecular systems. We have also treated the barriers
associated with rotations around double bonds.

The different minima were obtained by considering the group G fixed and
rotating the group R around the binding G — R axis, as a rigid rotor. Here,
all bond lengths and all other angles are held fixed during the rotation, and
are assigned standard or experimental values. We have used, for simplicity,
the (1,2) machine. If quicker convergence is required, the (1,2.9) machine
can be more appropriate (see [8]).

We recall that MOPAC is a quantum chemistry program package, which
contains a variety of semi-empirical approximations (Hamiltonians). In this

paper, to calculate the electronic energy, we have used the semi-empirical
MNDO-PM3 Hamiltonian (12].

Series CH;-R

Within the series CHa- {Radical) we have studied the compounds CH3-CHs
( ethane ), CHs-COH ( acethaldehyde ) and CH;-OH ( methyl alcohol ). As
shown in Figures la-c our method predicts, for all compounds, the eclipsed
conformation as being the global minimum. The results obtained using the
MOPAC-GSA approach agree with the results obtained from pure MOPAC
calculations. In this case the fixed group G is the CH; one.

Fig. la-c

Series HX-R

In case of the HO—OH (hydrogen peroxide) and HS—SH (hydrogen per-
sulphide) the eclipsed geometry corresponds to the equilibrium conforma-
tion, which is in relative agreement with the expected results from the semi-
empirical method. In both cases we have fixed the group HX and rotated
the radical R around the bond HX- R. See Figures 2a-b.

Fig. 2a-b




CBPF~NF-041/94

Series XY,

In this series, we have analyzed the compounds N;H, (hydrazine), P,H,
(diphosphine) and N,F, (tetraftuorohydrazine). Qur method, as well the pure
MOPAC ones, predict that the most stable conformation for both molecules
is the eclipsed geometry. In all cases we have fixed the group X;Y and rotated
the R one. See Figures 3a-c.

Fig. 3a-c

Double Bond

Another interest in this direction is the study of the barriers to rotation about
a double bond. The examined compounds are the CH;—CHg; (ethylene) and
CH;—NH (methyleneimine), which have the cis and ¢rans as the most stable
conformations. We have rotated around the CH; — R. See Figures 4a-b.

Fig. 4a-b

4 Concluding Remarks

We conclude from these preliminary studies that the MOPAC-GSA approach
is a good qualitative and quantitative indicator of conformational molecular
preference. We would like to emphasize that the GSA , differently from the
gradient descent approach, enables us to map out local minima while the
global minimum is searched.
We intend that this technique can be indifferently applied on all "ab-
initio” or semi-empirical quantum methods, since the GSA routine makes no
— interference in the quantum calculus. In particular, we have used the semi-
empirical MNDO-PM3 approximation, only for computational convenience.
The GSA method converges faster when the parameter qy increases and
has both the Classical Simulated Annealing (CSA) and the Fast Simulated
Annealing (FSA) as particular cases. In this paper we have used qv =
2 (Cauchy machine or FSA) and D = 1, and have applied the algorithm
in order to study a set of molecules which present one or more different
conformations by rotating a particular dihedral angle (#) around the X-Y
bonds. This procedure can be straightforwardly extended to any dimension
D>1.

We acknowledge useful discussions with D.A. Stariolo.
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Caption for Figures

Fig. 1- Profile associated with the possible equilibrium (global minima)
conformational geometries of the molecular structures: (a) C;He (ethane),
(b) CH3COH (acethaldehyde) and (c) CH3OH (methyl alcohol).

Fig. 2- Profile associated with the possible equilibrium (global minima)
conformational geometries of the molecular structures: (a) H30; (hydrogen
peroxide) and (b) H;S; (hydrogen persulphide).

Fig. 3- Profile associated with the possible equilibrium (global minima)
conformational geometries of the molecular structures: (a) N;H, (hydrazine),
(b) P;H, (diphosphine) and {c) N,F, (tetrafluorohydrazine).

Fig. 4- Profile associated with the possible equilibrium (global minima)
conformational geometries of the molecular structures: (a) C;H, (ethylene)
and (b) CH;NH (methyleneimine).
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