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FINITE GROUPS LATTICES AND AUTOMORPHISMS

A B S T R A C T

The present paper is part of a systematic
labour to determine the symmetry adapted irreducible re-
presentations of the sequences of maximal subgroups of a
given finite group. We prove that the elements of the
group of automorphisms of a finite group allow the reduc
tion of the number of chains for which it is necessary
to calculate the irreducible representations. 'Moreover,
if the outer automorphisms of a finite group have the
property of interchange classes of conjugate elements,
we show that it is also possible to reduce the number of
irreducible representations to be calculated.

The method developed is applied expli -
citly to the maximal subgroups lattice -of the dihedral

group Dza which 1is isomorphic to Coa and Dza_1d. We

then discuss the application of the method to crystallo-
graphic point groups, as well as the use of automorphisms
to establishing relations between the Clebsch-Gordan co-

efficients of a finite group.



1. INTRODUCTION

The investigation of chains involving conti-
nuous as well as finite groups has become very familiar to
physicists and chemists during recent years. Group chains
turn out to be particularly useful in the study of broken
symmetry arising either via descent in symmetry or via spon
taneous symmetry breaking. Moreover, the consideration of
a group-subgroup chain throws light on the structural signi
ficance of the system under consideration and,if a suitable
chain of groups is chosen, it leads to the elimination of
the multiplicity problem thereby solving the question of la
belling the basis states unambigously.

Suppose we have a set of sequences of sub-
groups of a finite group G with the property that each se
quence is formed by maximal subgroups . Let Aut G be the
group of automorphisms of G and let us define a fundamen -
tal Lattice of a finite group as the one formed by all the
sequences of maximal subgroups which are not related by the
elements of Aut G . Therefore, given any other sequence
of maximal subgroups, there always is, at least, one ele -
ment ‘{ € Aut G which allows the derivation of the given
chain, from a sequence belonging to the fundamental lattice.
Furthermore, the irreducible representation (irrep) adapted
in symmetry to the given seduente is obtained by applying
the same transformation to the irrep adapted to that chain

of subgroups belonging to the fundamental lattice.
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To achieve our objective we start in section
2 by giving the theory necessary to obtain the irreps adap-
ted to any chain of a finite group G from those irreps adap
ted to the chains of the fundamental lattice of G .

The application of the method depends on the
knowledge of Aut G and the complete lattice of maximal sub-
groups of G which, in turn, allows the determination of the
fundamental lattice of maximal subgroups of G

As an example of application we chose the set
of dihedral groups 'Dza for several reasons. First , the
dihedral groups are generated by two elements and, since 2%
is a co-prime number to any odd number, the group Aut Dza
can be determined.in a general form and decomposed into the
product of fﬁree of its subgroups. This is shown in detail

in section 3 .
The second reason is that the complete lat -

tice of the group Dza can be exactly determined. This 1is
done in section 4, where we also introduce a compact nomen-
clature for the sequences. The notation allows a direct de
termination of the generators of a maximal subgroup , just
suppresing one of them , on the left of the set of genera -
tors which define the dihedral group and can also be used
to label all the sequences of crystallographic point groups.

Finally, it must be pointed out that the ir-
reps adapted to the sequence Dya> Cya can be deduced in
a simple algebraic manner, making easy the presentation of

the results .



= ;S" WPL'C“’D

In section 5 we find explicitly the irreps
adapted to the sequences belonging to the fundamental lat
tice and to the complete lattice, in a way that applies to
any crystallographic (or not) point group. In order to a
void some complexity in the tables given in that section,
we restrict part of our calculation to the non-crystallo-
graphic point group D8’ which is isomorphic to C8v and

D .
4d The method given in section 2 to find the

irreps of a finite group is discussed in section 6 , 1n
terms of convenient orderly steps of application, in par-
ticular, to crystallographic point groups.

In that section, we also analyze the role
of the vuter autbmorphisms which, besides establishing gm

metry relations beiween the Clebsch-Gordan coefficients

of the group, determine as well the isomorphisms between

the subgroups of a group. If we take, for example, Tisza
isomorphism D8 = C8v = D4d , we easily see that it re-
sults from outer automorphisms of Det and ,the isomorphsm
Td = 0 , comes from the unique outer automorphism of the

group Oh .
Finally, in appendix I we demonstrate a

theorem that reduces the number of irreps which necessa

rily must be computed by the induction method.

Inpg SX
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2. IRREPS CALCULATION FOR A LATTICE

A system of subgroups of a finite group G

- =41
G GODGli)Gz‘D... 'Z)Gk

beginning with G itself and ending with the unit subgroup,
is called a maximal subgroup sequence of G if v Gi - Gi+1
it does not exist a group H such that GiD H :>G.1_,_1
We say that two sequences of groups are dif
ferent when they differ at least by one arbitrary group Gf
An irrep of a finite group G, adapted in
symmetry to one of its sequences is given through an homo-

morphism induced by Péo’ , defined such that(*)

(o), ~_ .10) _ 4 l0)
T, =T (gz)—An’ Vg!_éG.

n numbers not equivalent irreps of G , M are unitary
»

matrices, and

rldl g,y = ®, vin/n') el g,y

nge G/LHCG’

i ’/(:= 0,1,...,"'7

(4)

(£+17) in T .

vin/n') 1is the frequency of r n

In particular, an irrep of an abelian group
is adapted in symmetry to every one of its subgroups. Thus,
an irrep can be adapted to more than one sequence of a lat
tice. In this work we interrupt the sequences which form

a lattice in their maximal abelian subgroup. Therefore,

(*) All the irreps in this work are assumed to be unitary
mAatrices.

Indg 155
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there is one system of irreps for each sequence appearing

in a lattice.
The lattice of maximal subgroups can be

constructed through the mappings induced by the elements

Y € Aut G which carry the original sequence to the imge

. P P ¥ s SR
chain G :>G13 GZD DGk . The set Gi is a

group of elements {‘P:gt} Vgpye 6 (i=1,2,...,k) . On
the other hand, if we apply the same automorphism on the
irrep adapted to a sequence belonging to the fundamental

lattice, it generates an irrep adapted to the image chain

PI(gz) = Pn(‘f-l:gz). This is shown in figure 1 .

The question now is : among the automor -

phisms “f € Aut G , which of them give different result

ant sequences ?

In order to see that, we first define a
group ¥

Sg(6;) = {Y € Aut G | G, = G,}
Obviously, Sg(6;) = Aut G NAut G

and it is a subgroup of Aut G .

Now, if we define another group,

[7,]
it

;§
S¢ (G,
AT

n
M Aut Gi ,
i=1

which also is a subgroup of Aut G, every element \{ € GS
will map a maximal subgroup sequence onto itself.

Writing Aut G in terms of the cosets of GS
we have,
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where |[n| = |Aut GI/IGSI .
We now proéeed to prove that if fl and '?2
are two elements belonging to different cosets of GS , the

¥ ¥
induced sequences G 2 Gll D ..o D Grl and G 2 Gl2 2 ...

- sz are always different. For this purpose we assume
the contrary :
SR ¢ .
G;” = Gy YV i=1,2,...,k .
*—1
Since f € Aut G there exists ‘f-l such that (é+1) 2=G.
i i i it

Hence, fl and ﬁa must belong to the same coset of GS ,
against the hypothesis.

Lét us consider another important question
which is thé subset of elements ~P € ¢S such that I‘:f i T,
i.e. which elements of GS induce inequivalent irreps ? In

order to see that, we define a group

Kg(T,) = {§ €S | r;fmrn} ,

which is a subgroup of GS . If we decompose the group GS
into cosets of its subgroup KS(Fn) , we have
Iyl
cS = C? \PY KS(I'n) , (2.2)
y=1
where |y]| = IGSI/IKS(Fn)| .
We are going to prove that if *{1 and ‘fz be-
long to different cosets of KS » the irreps f:l and ftf
. . ASTI v,
are 1nequivalent. We assume the contrary : Fn 3" Pn .

Il 93
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If this is so, there is \PZ such that rn " Pn , 1.e.
Y, ,f, belong to the same coset of KS’ contrary to the hy
pothesis. Therefore, only elements of the same coset of
KS induce equivalent irreps.
We need now to show that ¥V Y€ Aut G, I‘:f'i‘ I‘y‘g
(n'#n). Assuming,on the contrary, that PI " Fx, , there

is a unitary transformation U such that
. t :
Ff(gz) =U I‘;f, (gp) U Vg,€6

But, from Pﬁ(gz) = I'm(\-f'lzg£ = gp+) , valid for every ir
rep of G, we directly obtain Pn(gz,) " Fn,(gzi) , contra-
dicting definition of n .

As we have seen in section 1, it is possiHe
that the fundamental lattice may be formed by more than
one sequen;e. In this case, it is convenient to define the
isotropic group of the irreps,

Ky(r) = {Peatc|rfar 3 ,

-

such that KS(Pn) is a subgroup of KA(Pn)

Writing GSu and Kg , the index uy indica -
ting the different sequences which belong to the fundamen-
tal lattice, we have

u -
Kg(T,) = Gsu N K, () . (2.3)

The task of determine the elemenfs of
K,(r,) is simplified considerably by the fact that the
group of inner automorphisms of G, Inn G, is a subgroup
of KA(Fn) and it is isomorphic to the factor group G/Z(G),

being Z(G) the center of G . Then, we only need to ana-
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lyze the action of the elements of the factor group Aut G/

Inn G on the irreps of G .

3. GROUP OF AUTOMORPHISMS OF A DIHEDRAL GROUP Dza

Let <p> and <e> be two groups generated Dby
some arbitrary operations p and €. Let n be any integer
n>2 . If p"=¢g?2-= 1 , Ep = p'le and <p> N <e> =41 |
and € are the generators of the group Dn = <p,e> with ele-
ments {ﬂ-,p,pz,...,pn—1,e,pe,pze,...,pn-Ie}.

It is clear that, associated with the defini
tion of a dihedral group, we have the isomorphic groups gi-
ven by

cz,, cX > .

Dya = < Coa» C

2a

A

C _ z X

20,y = < Caar 16 >

- z X - z '

->
where Cﬁ is a symmetry operation by rotation in an angle

-> . . . . .
2n/v around the n axis and I is the inversion operation.

Furthermore, the isomorphisms that relate these groups are

outer automorphisms of the group Dyo p, = <C§a, C§> ® <I>
and it must be noted that Doa CZ“,V and Dza'l,d are

maximal invariant subgroups of Dza,h .

In order to determine the group of automor -
phisms of a dihedral group we use the property that the or-
der o(g) of an element g of a finite group G is preserved

by the transformations of the group of its automorphisms .



This means that, if o(g) = h , then o(Y:g) = h V{caut G.

p2k+1)

For n = 2%, o =2 ¥ r=0,1,2,... . Then, for

a > 2 we have mappings such that

\f : p2k+1 - p26(k)+1

where & (k) are integer numbers. Calling 4(0) = m, we get
Im+1
Y:p + p m .

Then, \fi k (\?: p’k . p(2m+1)h

©
"

1

-1
with the fixed points 4 and pza . Now, since o(pke) = 2

VYV k , we can define an element \P(A,T), that we write
briefly (A,t) , such that it induces on the elements of the

group Dzd'the following mappings

(A1) : pf » oM (3.1)

’ ’
(1) s pfle - pMETTe
where k, k', X and 1 are integer positive numbers less than
or equal to 2%, and A is an odd number.

The law of combination of the elements (A,T)
is given by :

(A1,T1) (A2,T2) = (A1d2,A1T2+T1) Mod 2% . (3.2)

The unit element of the set {(A,t)} is (71,0) and the inver-

se of (A,t) is the element (A,T)-I = (A-1,—A_1T) , with
AA-I = 1 Mod 2% . Then, we conclude that the set of auto -

‘morphisms (A,1) forms the group Aut Dza .
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Now we want to show that the group Aut D,q
can be written as a triplet product of some of its sub-
groups. In order to obtéin such expression we use equa -
tion (3.2) and write an arbitrary element (X,t) in the fo
llowing form :

Oot) = (1,170,000 = (2,00 (1,1)7, (3.3)
where T' is such that At' = t Mod 2°

Clearly, since

<{1,1)>MN <(xr,0)> = (1,0)

*

we are able to write

Aut D,y = <(1,1)>@ <(x,0)> (3.4)

where <(X,0)> is the abelian group of all the odd numbers

less than 2% under the operation of multiplication Mod 2%
We prove now that it is always possible to

generate the group <(X,0)> from the elements (3,0) and

(2%-1,0) such that we can write

<(r,0)> = <(3,0)>@®<(2%-1,0)> , «a

v
W
.

~
w
.
(92 ]

L

By induction we get that, for a > 4

_ _ a-2
;2% = 1+ 2% ) Mod 2% . Then, 3% =1 Hod 2% for
@ >3 . On the other hand, we must prove that Fk = za-Z
is the less power for which the property Sk = 1 Mod 2%

holds. Suppose, on the contrary, that there exists

R o< 2973 with that property. Therefore, since k must be

a divisor of Za-z, we can write k = ZB (B < a-3). But

28 a-3-8 _

in this case, (3 (1 + 2“'1) Mod 2% for a-3-8>0.

Tivg <%
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This relation shows that there is no k < 2a-3. Therefore,
we can conclude that the 2a-2 powers of 3 Mod 2% are dis-
tinct; moreover, they are the elements of the cyclic group

<(3,0})> .
Using this result we make the coset expan -

sion of <(A,0)> with respect to its normal subgroup
<(3,0)>

<{r,0)> = <{3,0)>® u <(3,0)> . (3.6)

Since every abelian group can be expressed &
a direct product of cyclic groupscl) it must exist an ele-
ment u which belongs to <{(A,0)> and is not contained in
<(3,0)> such that u? = 1 Mod 2% . Tt is easy to verify(z)
that the four roots of this equation are : u = 1, 22T g,
Za'l + 1 and Zd- 1 . .We then choose the last root becau-
se if defines the element (2%-1,0) which,in turn,induces
the mappings pk -+ p-k s bhe - p-ke . This choice com -

pletes the proof of equation (3.5) .

Equation (3.4) can now be rewritten as
Aut D,o = <(1,1)> ®{<(3,0)> ® <(2%-1,0)>} , o > 3.(3.7)

Clearly, this equation remains true if a=2,

that gives the group D4 : but since 2%-1 = 3 , equation

(3.7) becomes

Aut D, = <(1,1)>0 <(3,0)> . : (3.8)

(1) W.Ledermann, "Introduction to the theory of finite
groups', p.142. Oliver and Boyd: Edinburg (1957).

(2) L.E.Dickson, "Introduction to the theory of numbers',
p.14. Dover Publ.Inc. N.Y. (1957).

Zapg 1%
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It must be noted that our result is not valid
for a = 1, since in this case we get the group D, which ,
being abelian, has Inn D, = 4 . The outer automorphisms are
given by the permutations of the elements €, p and pe . Thus,
Aut D2 is isomorphic to SS’ the symmetric group of degree 3.

We can also write the group of the inner auto

morphisms of Dza as a semidirect product, using the followng

transformations
pT‘pke)p'T = pk+2T€ = ‘1’1)2'[' . pke ,
(3.9)
pTe(pke)pTe = p'k+ZTe = (I,I)ZT(ZG-I,O) : pke.
Then, for a > 2 we have,
Inn D,y = <(1,2)>@ <(2%-1,0)> (3.10)

where (1,2) = (1,7)2 .
Finally, using equation (3.10) into (3.7) we
obtain

Aut Dza/Inn Dza = <(3,0)> Inn Dza@
(1,10 <(3,0)> Inn Dyo . (3.11)

This equation shows that the elements (3%,0) and (3%,7) with
0 < 2 < Za-Z’ are coset representatives of Inn Dza in AutDza

for o 2> 2 .

g %,
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4. THE LATTICE OF A DIHEDRAL GROUP Dza

In order to establish the sequences of the
dihedral group Dza we decompose the group into semidirect

(direct) products of its subgroups, for o > 1 {(a = 1)

<p,e> <p> @ <e>

(4.1)

<p?2,e> ® <pe>

This equation shows that <p> and <p?,e> are subgroups of
D,y of order 2* . Now, applying (A,T) € Aut D, to <p> ,

and remembering that A is an odd number, we have
= <prs =
<(Xx,T):p> = <p”> = <p>

Then, <p> is characteristic in Dou> i.e. it is mapped on-
to itself under all the automorphisms of Dza .

Application of (XA,t) to <p?,e> gives,

2 A

<{r,1):p2%, (X,T):e> <p?2 ,ple>

T
<p?,p e>

<p?,e>, T even
(4.2)

<p?,pe>, T odd.
On the other hand, the order of the intersections is

I<p>(ﬁ <p2,e>| = l<p> F\<p2,pe>l

<p2,e>M <p? pe>|

=2a-1

Therefore, these three groups above considered are the u-
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nique subgroups of D,q of order 2* . This result can be used
recursively for the dihedral subgroups Dza-1 » Dog-2 5 -
Hence, it follows that the lattice of Dza will be formed by
blocks of the type shown in figure 2. From this figure, it
is easy to obtain the complete lattice for Dza , which will
consist in 2%-1 interrupted sequences.

From equation (4.2) we see that the maximal
subgroups of D,q , <e,p?> and <pe,p?>, are related by the ele

ment (1,1) € Aut D On the other hand, there is always

20
an element (1,2”) € Aut D,, from which we get

n+l n

n+]
<e,p?’ > = <p?e,p? > Vi ox

n

, 1n the

interval 0

A

R<a -1

Then, the fundamental lattice of D,y can be
obtained from the blocks shown in figure 2, after deletion of
the group <p2k+1, pzke>

Figure 3 shows the fundamental lattice for D,q
which is composed by a sequences of non isomorphic subgroups.
Note that we take the axis of highest order in the same di -
rection for all of the subgroups. Note also that we presxved
€ as a generator of all of them. As we will see in the next
section, these conventiomswill allow us to define in a geneml
form the irreps adapted to thé sequences <e,pzh> :><p2n> V.

Now we can write equation (4.1) in the follo -

wing form
<e,p> = <pe,e,p?> . (4.3)

As we see, the group'D20l can be given also by three generators

Zydg 12
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such that , the different elements are expressed by
(pe)a eB (pz)Y with 6,8,y integer positive numbers .

We shall now give an alternative definition
of the group Dza and its subgroups, using an arbitrary num
ber of generators. If we write p26 instead of p , equa-

tion (4.3) can be re-written as
> = <p® g,e,p > . (4.4)

Iterating this equation 2-§ times, we have

24 28+1 2n+1>

A
<e,p? > = <p?Te,p Eyeves€,P . (4.5)

This equation allows us to introduce the notation

n+
T

2
<pe,p%€,...,€,p

2 vIas Tl
= <g,p> D <E,p> D... D<g,p > 2 <p >, (4.6)

which is also an alternative expression for the decomposi-
tion of a group into semidirect products of its sub -
groups, and is a compact form to express the sequences of

the fundamental lattice of Dza, regarding that <g,p> S

= <g,p> > <p> ..
The importance of equation (4.6) rests on

the fact that it also applies to crystallographic point
groups - since they always can be decomposed into semidi -
rect products containing some of their maximal abgoups(s)—
as well as to nilpotent groups since their maximal sub-

groups, by definition, are always invariant .

(3) S.L.Altmann, Phil.Trans.Roy.Soc.A 255, 216-40 (1963).
S.L.Altmann, Rev.Mod.Phys. 35, 641-5 (1963).
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There is also a practical advantage in this
notation since every time we remove one generator on the
left side of the bracket in equation (4.6), we get the set
of generators identifying another maximal subgroup of the
same sequence.

As we will see in section 5, this notation
also introduces simplifications in the calculus of the ir-

reps adapted to the sequences of a fundamental lattice.

5. IRREPS CALCULATION FOR THE GROUP D

2(!

We are going to apply the concepts developd
in section 2 in order to obtain_thé irreps adapted in sym-
metry to tbe sequences .of the group Dog -

| If Déa is the commutator group of Dza de -

fined by

20

=
]

<{ab57b—qa,b € Dyal>

we have, D = <p2> ,

20

Then, the number of one-dimensional irreps

—

of D,, is [Dza/Déa = 4 . On the other hand, remembe -
ring that pe = ep_l , the classes of D, are 4 ;pza-1 ;
(pk,p_k) for 0 < k < Za-l;(e,pze,...);(ps,pae,...). There
fore, using the theorem of Burnside(4) we conclude that

the remainder irreps are bidimensional.

(4) A.A.Kirillow."Elements of the Theory of Representa -
tion".P.140. Springer-Verlag N.Y. (1976).
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Now, returning to the fundamental lattice

shown in figure 3, let us take the chain labelled by a,

a
j.e. <g,p> D <p> = <e,p> . From p? e2 =4 and pe =

€p we have, up to a fase factor,
i 0 1 w 0 5
E, (g) =( ) , E, (p) = ( * ° (5-1)
ak 1 0 ah 0 "

where w = exp{Zl-an} .
We shall now calculate the isotropic group

of the irreps: "
Ky(E,) = {¥ € Aut D,o| E, ~ Ep}
*-1

Using Ek (gi) = Ek(g‘):,gi) ’

and from the results obtained in section 3, we have

(A T)-1
BT (o) = B, ((3,7):p)
= Exh(p) R (5.2)
where Ak =Xk Mod 2% | if Ak Mod 2% < 2%7T |
and Ak = 2% -Xk Mod2® ,if Ak Mod 2% > 2271 |
From equation (3.7) we get the elements to be used in

(5.2). Therefore, it is immediate that the elements of
<(1,1)> as well as those of <(2%-1,0)> belong o KA (Ek)

for all k . 5
Now we write k = 2°v, with v an integer

positive odd number and 4 ranging from zero to o - 2 .

Zliibg 83
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i %

a-1-3

From k < 2a-1’ we have that v < 2 Then, since

20-2-4 a-4 .
3 = 1 Mod 2 we finally conclude that the remai

ning elements of KA(Ek) are those belonging to

a-2-3
<(32 ,0)>. These results allow us to express the iso-

tropic group of the irreps as
2a-2-4
Ky (Eps,) = <(1,1)> @ {<(2%-1,0)>® <(3 ,00>} . (5.3)
Since <p> is characteristic in D,,, the iso

tropic group of the sequence <eg,p> is

a _
Dzms = Aut Dyy (5.4)

and from equation (2.3), we immediatly obtain
a _
KS(Ek) = KA(Ek) . (5.5)

Equations (5.3) and (5.5) show that for the chain a we on-

ly need to calculate, for instance, the irreps E with

24

0 <4 <0 -2 because the remaining ones can be obtained

through the coset representatives of Kg(Ek) in Aut Dza .

This will be proved in appendix I, from the action of the

automorphisms of D,yq which interchage classes. Pérticulaz

ly, relation Kg(Eza_Z) = Aut Dza comes from the faot that
a-1

p? is the unique element, other than unit, that belongs

to the center of Dza .
Now we wish to calculate the irreps adapted
in symmetry to sequence b = <pe,e,p?> using the results

obtained for a .

First, we give the irreps adapted to

b N?g x
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<e,p?> , which, in analogy to equation (5.1),are of the

form 0 24

3 (0 ' 1) ' E_(p?) -’ ) (5.6)
E = R = > .
o) 1 0 ¢ (o w*

where 0 < ¢ < 247,

. . 2 -2
Second, taking into account that ep“e=p |,

we can write

UE q-1002) U = E.(p2) (5.7)
2 -j J

UE g-1Ce) UT = E.(e) (5.8)
2 -j J

o-2

where 0 < j < 2
If now we apply these two transformations

on the irreps given by-equation (5.1), with U = (g %)

when k> 2°°Z and U = (1//2)(_} i) when & = 2%°72 ,
we find the desired irreps which are shown in table 1

The isotropic group for the chain b is ob
tained in the same way. First we note that <p?> is cha-
racteristic in Dza and <g,p?> is a normal subgroup of
D,o - Then, we only need to analyze the action of the
elements (3,0) and (7,7) of Aut Dza on € and p2. From
equation (4.2),

<(3,0):¢ , {3,0):p%>

<g,p?> , (5.9)

<(1,1):e , (1,1):p%>

<pe,p?> . (5.10)

Hence, using equations (3.7) and (3.10),

2
he
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2ms" = <(1,2)>® {<(2%-1,0)>® <(3,0)>} . (5.11)
Table 1 also includes the generators of the chain b, =
<p2?e,pe,p?> , which is obtained from the application of
the element (7,1) on the generators of the sequence b .
The method applied to find the irreps adap
ted to chain b from those of chain a can be adopted to
calculate the irreps adapted to chain ¢ = <pe,ple,e,p*>
and also can be used repeatedly until we obtain the irreps

) 2 a1
corresponding to the sequence <pe,p°€,...,€,p

> . How
ever, it is important to bear in mind that in order to get
the irreps adapted in symmetry to this last generic chain,
the matrices correspon@ing to tﬁe elements € and pza-l
must be diégonalized simultaneously. This can be done us
ing the transformation matrix U = (1//2)(_% i)

We proceed now to apply the results to the
group D8 = D4d . The reader should notice that this
group is convenient for application, since it is the gmup
of lower order which has chains of types b and ¢ . On the
other hand, several compounds with this point symmetry
are already known(S).

Figure 4 shows the lattice of interrupted

sequences of the dihedral group Dg and one fundamental lat

tice, together with the elements of the group Aut D8

(5) D.L.Kepert. Prog.Inorg.Chem.24, 179 (1978).

Trdg 130
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which are needed to obtain the complete lattice from the
fundamental one.
In order to obtain the irreps adapted to

every sequence belonging to the lattice of D8 we first

write
Aut Dg = <(1,1)> ® {<(7,0)> ® <(3,0)>}
Inn Dy = <(1,2)> ® <(7,0)>
Ky (Ey) = <(1,1)> ®<(7,0)>
Kp(E3) = Ky (E;)
KA(EZ) = Aut D8 .

In particular, for each sequence of D8 we ‘have

D8:3 C8 = a

a
S Aut D8

Thus, there is only one chain of type a .

Kg(E)) = <(1,1)> ®<(7,0)>

KS(E3) = Ks(El) .

Since (3,0) € S, we have Eg = E{S,O)

_ Q2
KS(EZ) = §% .
Then, the irreps corresponding to chain a, are given by

equation (5.1) with w = explin/4)

IxPg 130
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sP = <(1,2)> ® {<(7,0)> ® <(3,0)>}

The element (1,1) generates the isomorphic chain that we called

by
KS(El) = Inn D8 .
KS(EB) = KS(El)
. _ rnl3,0)
Again, E3 = E1 .
_ b
KS(EZ) =S .

The irreps adapted to b and'b1 are shown in table 1, where

we must take w = explimn/4) .

D83D43D2 = Cc

S€ = <(1,4)>®<(3,0)>® <(7,0)> .

The elements (71,71) , (71,2) and (1,3) generate three similar

chains that we call cl,'c2 and Cq respectively.
Kg(Ey) = <(1,4)>® <(7,0)> ,
KS(ES) = KS(EI) .
Again E, = E(3,0)
L T

_ <€
KS(EZ) =8 .

The irreps adapted in symmetry to chains c, €y S, and €z »

are given in table 2 .

Lisdg §
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From the analysis of these three sequences

we see that we can calculate, for all of them, E, from E1

3
through the element (3,0). This is a general property
that applies to every sequence belonging to the groups
Dza : knowing the irreps Ezé, we obtain the others just
using the elements of the group <(3,0)>. This result
follows from the fact that the groups Dza have subgroups
given by <p2n> and <e,p2n> with 0 < 2 < a and, since 3

and 2" are co-prime for all r, the element (3,0) always

belongs to the group of automorphisms of Dza .

6. DISCUSSION

The method developed in this work can be
applied to any finite group G, following three natural

steps.

1) DETERMINE Aut G

Since the elements of Inn G induce conjuga
tions by g € G we need only to determine the repre -
sentatives of the left cosets of Inn G in Aut G =
® ¢ Inn G , which are of two types(6): those which do
not interchange classes of G at all and, those which
interchange, at least, two classes of G . Note that
the interchanged classes must have the same number of

elements of the same order.

(6) A.G.Kurosh, '"The Theory of Groups'.Ch.IV,Vol.I,Chelsea
Publ.Co.N.Y. (1960).

a
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In particular, Aut Dza does not have ele-

ments of the first type : Let us call them jﬁ . The clas

ses of D,, are (p,p-7),...,(s,pze,...),...,(pe,p’a,...) .

In order to preserve these classes, the elements 7& must

be such that

g 2P > o on p!

‘fa . pke S pk+21e on p—h+21€ )

From equation (3.9) we directly see that these mappings are
induced by the automorphisms belonging to Inn Dya - Then |,
every outer automorphism of D,q is of the second type. Un-
der the action of the elements.(!,t},for odd T, the <class

(e,p%e,...) is mapped onto (pe,p®c,...). In turn, the ele-
) 2%y -2%y
(p )

ments of <(3,0)> map the classes onto

8 1 _pb
(pz v , 0 27 ) for (v#v') .

» P

The octahedral group is another interesting

example. Since its classes are 1, 3C2, 6C,, 6C, and 8C

2* 4 3
it is impossible to induce an interchange of two of them by
an outer automorphism. |
Every element belonging to the group O can
be obtained from the pair of generators CX, CZ . Then, we
must expect that we can also generate the group using the i
mage pair (Cz)y . (CZ)* # (C})f . These elements must be-
long to the class 6C, ; then, |Aut O] < 30 . Since the cen

ter of 0 is 2(0) = {4} , we have |Inn O] = [O|/|Z(0)]|= 24.
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Therefore, by the theorem of Lagrange(7), we have [Aut O]
= 24k, (k integer). So, we conclude that the only possi-
ble value is k=1, i.e., Aut 0 = Inn O = 0 . This result
would have been obtained directly from the knowledge that
O is isomorphic to S4 and, therefore, it is a complete

(8)

group
From what we have seen, we are constrained to

affirm that, although the investigation of the group of
all automorphisms of a given group G is usually very dif-
ficult, the use of generators and a careful study of its
corresponding transformations, introduce a great simplifi
cation in the algebraic calculation of Aut G . As a con-
sequence, the determination of the automorphisms of crys-

tallographic point groups becomes a nearly direct task.
OBTAIN THE FUNDAMENTAL LATTICE

It is important to note that there is not a
general method to obtain the proper subgroups of a finite

group.
Although the existence of subgroups can be in

vestigated using the Lagrange theorem, it does not insure
we are going to obtain the complete lattice.

Fortunately, all crystallographic ' point
M

groups are Sylow's groups of order 3 x or 2™ (m>0,
g Z

integer). This fact allows us to use the powerful tool

(7) Reference (6), p.62.
(8) Reference (6), p.92.

CNPg 153
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(9)

that are Sylow's group theorems in determining a
group-subgroup structure.

On the other hand, from the knowledge of
Aut G , and some arbitrary subgroup of G, we are able

to obtain every subgroup and to identify the isomor-

phic ones.

DETERMINE THE IRREPS FOR THE SEQUENCES OF THE
FUNDAMENTAL LATTICE

In section 2 we used a simple method to
determine the irreps of the sequence <e,p> of the
group Dza . In order to find the irreps adapted to
any sequencev G D G1 D ee D Gk‘ of an arbitrary fi
nite’gféup G , it would be necessary to use the induc
tion method. This method is simplified considerably
when every member Gi of the sequence can be expressed
as a product G; = Gi+1® S; » where S, is a cyclic

(10). Fortunately, this condition is satisfied

group
by at least one sequence of subgroups of all crystal-
lographic point groups .

In appendix I, we show that the number of

PZ 1 I, induced by an outer automorphism ‘f’é G is

Cyril F. Gardiner. "A first course in group Theory",
Ch.6. Springer-Verlag, N.Y.(1980).

(10) S.L.Altmann, "Induced Representations in Crystals

and Molecules'". P.268. Ac.Press (London)Ltd.(1977).

CiNPg 150
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equal to the number of relations (\f:Ck) # C,, where
Ck are the classes of G . Then, it is not necessary
to calculate all the irreps adapted to a given sequen
ce, as was shown for Dza» where we only need to calcu
late the irreps E,  for 0 < 4 < a-27 . |

Once we have obtained the irreps adapted
to a sequence of the fundamental lattice, we must de-
termine the irreps adapted to the other sequences. We
are compel to affirm that the method used in section
5 is more convenient than the induction method , be-
cause we are using it successfully in the calculation

of the irreps adapted to the sequences of the group

Oh L]

We are now in a position to discuss the

role played by the automorphisms of a group G in the

Clebsch-Gordan coefficients of the group.

Let us consider a unitary matrix U, the e-

lements of which are the Clebsch-Gordan coefficients of

the group G . The reduction of the Kronecker product of

the irreps of G may be written in the form

-r
Ut {r lgl®r, ,(g) } U=

?" U(I'n@ rntl I'nn)rnu(g) ’

where o is the frequency of rn,, in the direct product of

the representations.
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According to 'I‘n(g) = I‘:f(‘f:g) , we have

vt rtigr @t (e -

@, olr,®r,| r,rhlg) ¥ P e Aut 6.

It follows at once from this equation that
0(rn® rnvl rnp:) = U‘F;f® r;{’vl F:l?”) .

'When\f is an automorphism which interchanges
classes, this relation between frequendes becomes an inte -

resting non trivial equation. Moreover, we can write

<rn rnr Yn anl b,rnrvYnt'> =

<r;f I‘;f, 'Y;f Y;Pyl b F:lrvv Y:f">

where b runs from 7 to o .

Clearly, this relation shows that a table of
Clebsch-Gordan coefficients is greatly simplified when all
the irreps of a group G are calculated from a minimal sub-
set of irreps arbitrary prefixed.

For our particular case when G = Dza . the

minimal subset is that formed by the a-1 irreps Ezé , for

0 £ 4 L a-2 , from which we calculate the 2071 irreps s
just by application of the elements (32,0) and (1,7) of
Aut qu .

Note also that the use of ¥ € Aut G for

the group D8 , directly evidences a symmetry by column ex-

change of the Clebsch-Gordan coefficients
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_ e (3,0).(3,0) (3,0
<E; E, vy v | Eg v> = <E; E, Y Y|Eg 4>
= <Eg E, vy Y | Ef v ,

where y denotes any component of the bases of the irreps Eh'
Clearly, we can extend the relations between
the Clebsch-Gordan coefficients of a group G to any nj - sym-
bol.
Finally, we turn our attention to the fact
that the well kncwn isomorphism O = Td is generated by an e
lement \f € Aut 0, such that 9 C5 » IC, , being C; an e-

lement belonging to the class 6C; of O . The group Td can

2
then be written as

Ty =T®<IC)> =0=T®<)>

and, by direct application of the method developed in section
2, we obtain that the irreps adapted to the sequence Oh >
TdD T D... can be taking also as those corresponding to

the sequence OhD 0STO>O...
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APPENDIX I

Theorem :

If we apply an outer automorphism “f € Aut G
on the irreps of a finite group G, the number of (9 Pn)
inequivalent to Fn , is the same as the number of different

relations induced by Y : Cp > Cpry kER' .

Prdof :
Let rn be an irrep of G . Then,
-1
"P: rn(gk) -+ rn(kP gk_) = rn(gkv) s (gk,gk:) € G (1)
Equation (1) shows that \?: Fn is an irrep of G and then

it is equivalent to some Fn, of G, of the same dimension.

The characters of the irreps are such that,

\Y : Xn‘ck.) = Xn'(ck) ’ (2)
= x,09 e (3)
= X, (Cpr) : (4)

Equation (2) shows that ¥ induces permuta -

tions of the rows of the unitary matrix X the elements  of
. 1/2 .

which are X , = (|Ch[/lG|) / x,(C,) . Equations (2) and

(4) show that $ also induces permutations of the columns

of the matrix X .
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Now, if we define permutation matrices U
and V , of elements Uij= Z:Gin'ajn sz = Z:aik ij.,
where the sums are over the pairs (n,n'}) and (k,k') ob-

. 1 .

tained from \f: x, + x,, and f o €, » C,, respective-
ly, relations (3) and (4) can be writtemas U X =XV .
Since X is a unitary matrix, the matrices U and V have
equal traces. Then, they exchange the same number of
rows and columns of the matrix X . This proves the theo

rem.
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CAPTION TO THE TABLES

TABLE 1

TABLE 2

Irreps symmetry adapted to the sequences b1 and
b, belonging to Dza lattice. m runs from 1 to

2022y

Irreps symmetry adapted to the sequences c, Cy
c, and Cz corresponding to the group Dg -

o; ({=x,y,z) are the Pauli matrices.

oo is the two-dimensional unit matrix.
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CAPTION TO THE FIGURES

FIGURE 1 . Relation P(gi) = ﬁ%\f:gi) valid for all
g€ G and P € Aut G.

FIGURE 2 . Blocks to construct a lattice of a dihedral Dza-
FIGURE 3 . Fundamental lattice for a dihedral D,q

FIGURE 4 . Lattice of the group D8' Heavy lines show one
of the possible fundamental lattices. The au-
tomorphisms needed to obtain the complete lat-
tice from the fundamental one are indicated by
arrows on the broken lines.
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