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Abstract

We revisit axisymmetric stationary vacuum solutions of the Einstein equations,
like we did for the cylindrical case [1]. We explicitly formulate the simplest hy-
pothesis under which the S(A) solutions, or axisymmetric Lewis solutions can be
found and demonstrate that this hypothesis leads to a linear relation between the
potentials. We show that the field equations still can be associated to the motion of
a classical particle in a central field, where an arbitrary harmonic χ function plays
the role of time. Three classes of solutions are obtained without the need of invoking
the Papapetrou class. They depend on two real parameters, and the potentials are
functions of χ only. The new approach exempts the need of complex parameters.
We interpret one of the parameters as related to the vorticity of the source.
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I Introduction

Axially symmetric stationary vacuum spacetimes in Einstein’s theory are important be-

cause they can describe the exterior fields of massive rotating astrophysical objects [2, 3].

Here we reexamine the S(A) class of solutions of these spacetimes (see [8] p. 204).

In a preceding paper [1] we have already reexamined the vacuum solutions obtained by

Lewis [4], and van Stockum [5], for a stationary cylindrically symmetric spacetime. Lewis

established the existence of three classes of solutions in terms of four parameters. One of

these classes appeared by the introduction of complex parameters. Through our approach

the three classes arised without the need of complexification. We cannot use the Ernst

formalism [6, 7] in the cylindrical case since the partial differential equations which link

the dragging ω to the twist potential Φ become ill defined. Furthermore, we showed that

the structure of the field equations can be associated to the motion of a classical particle

in a central field. This association allowed a kinematical interpretation of the parameters,

describing the Lewis spacetime without the need of specifying a particular matter source

of the field.

Here we extend our analysis to the axisymmetric case. In order to proceed, we formu-

late the fundamental hypothesis (section III) which allows the employment of our method.

By doing this we obtain directly the S(A) solutions without making use of the Papapetrou

class [8] as it is usually done. Thus the S(A) solutions arise as a natural extension to the

axisymmetric case of the Lewis solutions. Hence these solutions could be appropriately

called the axisymmetric Lewis solutions. Then we follow some similar steps of the paper

[1] and show that the classification and mechanical interpretation used in the cylindrical

case can be extended, also, to the axisymmetric case.

The paper is organized as follows. In section II we recall the system of equations to

be solved for the axially symmetric stationary vacuum metrics. We introduce in section

III the fundamental hypothesis from which the linear dependence between the potentials

is deduced. In section IV, we examine the main consequence of the kinematical role of

the arbitrary harmonic functions of these solutions. The solutions and classification are

presented in section V and its vorticity is calculated. We end with a brief conclusion.

II Field equations

The general line element for a stationary axisymmetric spacetime, with signature +2, can

be written like

ds2 = −fdt2 + 2kdtdφ+ eµ(dr2 + dz2) + ldφ2, (1)

where f, l, k and µ are all functions of the Weyl coordinates r and z. Defining for conve-

nience,

f = rF (r, z), l = rL(r, z), k = rK(r, z), (2)
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we obtain from Einstein’s vacuum field equations [4, 5],

�F = −FΩ, (3)

�L = −LΩ, (4)

�K = −KΩ, (5)

µr = − 1

2r
[1 + r2(FrLr − FzLz + K2

r −K2
z )], (6)

µz = −r

2
(FrLz + FzLr + 2KrKz), (7)

with

FL + K2 = 1, (8)

where the Laplacian � and Ω are defined by

�F = Frr +
1

r
Fr + Fzz, (9)

Ω = FrLr + K2
r + FzLz + K2

z , (10)

with the indexes standing for differentiation. The function µ is obtained by quadratures

and, thus, we have only to determine F, L and K.

Let us note that the field equations (3)-(5) can also be written in the more symmetric

form,

F�L = L�F, (11)

L�K = K�L, (12)

K�F = F�K. (13)

III The fundamental hypothesis on the F , L and K

functions

In the cylindrically symmetric case, where in (2) F, L and K, depend only on r, we have

demonstrated the existence of a linear dependence between the potentials [1]. However,

in the axially symmetric case, when F, L and K are functions of r and z, such a general

demonstration is no longer possible. Thus, we have to introduce some further hypothesis

to solve the field equations.

Keeping in mind the method used in the cylindrical case [1] we make the hypothesis

that there exists a functional relation, different from (8), between F, L and K,

Φ(F, L,K) = 0. (14)

Then, from (8) and (14) we can obtain two general relations that can be expressed,

for example, as

F = F (K), L = L(K). (15)
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From (15) we have the identities,

∇F · ∇L + (∇K)2 ≡ (1 + FKLK)(∇K)2, (16)

�F ≡ FK�K + FKK(∇K)2, (17)

�L ≡ LK�K + LKK(∇K)2, (18)

where ∇ is the gradient operator. With (15)-(18), we can rewrite the two first field

equations (3) and (4) like

(1 + FKLK)(KFK − F ) = FKK , (19)

(1 + FKLK)(KLK − L) = LKK , (20)

which is a system of two differential equations permitting to determine the functions (15),

as we shall see (equations (41)). Hence, the only partial derivative equation to solve is

the third field equation, (5), for the function K(r, z),

�K = −K(1 + FKLK)(K2
r + K2

z ). (21)

A kinematical interpretation can be given from (19)-(21). Indeed, considering (19)

multiplied by L and (20) by F and subtracting both equations, we obtain,

(1 + FKLK)K =
(LFK − FLK)K

LFK − FLK
. (22)

Without any loss of generality, we can make an arbitrary change of unknown function

by putting K = K(χ), where χ(r, z) is a new unknown function. Then (21) becomes

Kχ�χ = [f(K) −Kχχ] (∇χ)2, (23)

where

f(K) = −K(1 + FKLK). (24)

Always without loss of generality, we can fix this change of function such that K(χ)

satisfies the differential equation
Kχχ

K2
χ

= f(K), (25)

implying that χ is an harmonic function.

Let us examine what (25) implies on the two first field equations (19) and (20). Sub-

stituting (25) into (22) and integrating we obtain

LFχ − FLχ = C1, (26)

where C1 is an integration constant. In a similar way, but starting from (4) and (5) with

L = L(F ) and K = K(F ), and considering (3) with F (χ); and repeating again from (3)

and (5) with F (L) and K(L) and considering (4) with L(χ), we obtain

KLχ − LKχ = C2, (27)

FKχ −KFχ = C3, (28)
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respectively, where C2 and C3 are also integration constants.

The equations (26)-(28) express the conservation of an angular momentum �C =

(C1, C2, C3) in the space (F, L,K), like in the cylindrical case [1], but here it is χ which

plays the role of time, instead of τ = ln r in [1]. In section IV we study consequences of

this fact. Besides, from (26)-(28), we can immediately deduce a linear relation between

the potentials,

K = αL + βF, (29)

where α and β are constants. The relation (29) is the one that we were looking for when

we stated (14), and it describes a family of 2 parameters planes in the space (F, L,K).

Hence, most of the interpretation in terms of a classical particle in a central field made

in [1] holds here again. In particular, the discussion about the nature of the conic, which

is the intersection of the surfaces (8) and (29) in the (F, L,K) space, followed in [1] for

the cylindrical case, remains the same in the axisymmetric case.

Let us stress that all the results of this section can be obtained in the axisymmetric

case only under the hypothesis (14), that we call the fundamental hypothesis for the S(A)

class, while in the cylindrical case they were general, i.e. valid without any hypothesis.

A well known counter example of an axisymmetric solution that does not satisfy this

hypothesis is Kerr solution.

The linear dependence between the potentials (29) allow us to write this relation using

the well known Papapetrou functions fP and ω giving

fP = r

(
ω2 +

ω

α
− β

α

)−1/2

. (30)

We recognize from (30) the class S(A) (see [8] p. 204) of stationary vacuum solutions,

which thus presents itself as the most natural generalization of the cylindrical class of

Lewis solutions.

These solutions can also be named the axisymmetric Lewis solutions.

IV Consequences of the kinematical role of the har-

monic function χ

In order to analyse these consequences we return to the cylindrically symmetric case.

We give now an integration method of the K(r) equation slightly different from the one

presented in [1]. By doing this, we want to enlight the common feature of the two types

of Lewis solutions, cylindric and axisymmetric, namely the fact that they only depend on

a harmonic function. However, this function is imposed in the cylindric case, whereas it

is arbitrary in the axial case.

In the cylindrical case, (21) with (29) reduces to

Krr +
1

r
Kr − δKK2

r

∆
= 0, (31)
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with

∆ ≡ δK2 − 4αβ, δ ≡ 1 + 4αβ. (32)

Changing the unknown function K = K(χ) in (31) in such a way that

Kχχ

Kχ

=
δKKχ

∆
(33)

leads to
χrr

χr
= −1

r
. (34)

Consequently, after integration of (34), we obtain

χ = k1 ln
(
r

r0

)
, (35)

where k1 and r0 are integration constants, and, by integration of (33),

∫
dK√

∆
= k1 ln

r

r0

+ k2, (36)

where k2 is an integration constant. The study of the integral (36) leads to the cylindrical

solutions of Lewis [1]. Let us note that all these solutions depend only on the solution of

the differential equation (34), i.e.,

�χ = χrr +
1

r
χr = 0, (37)

which means that χ is a harmonic function. In this special case, of cylindrical symmetry,

the differential equation (37) can be explicitly integrated, giving the only solution (35).

It is no longer the case in the more general axisymmetric situation, for which the

corresponding equation (hereafter (40)) is a partial differential equation, even though the

line reasoning remains the same. Indeed, coming back to (21), it can be written as

�K = f(K)(∇K)2. (38)

The standard procedure of changing the unknown function K = K(χ) used in (23), gives

now with (29),
Kχχ

Kχ
− δKKχ

∆
= 0. (39)

With (39), (38) reduces to

�χ = 0. (40)

We have that (39) is (33) with χ(r, z) arbitrary harmonic functions in place of the par-

ticular harmonic function, ln r, convenient for the cylindrical case.

So, we can obtain from the functional hypothesis (14) the different classes of the Lewis

solution by an analysis similar to the one used in the cylindric case [1].
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V Three classes of axisymmetric solutions obtained

from (29)

The solutions K(χ) of (39), expressed in terms of an arbitrary harmonic function χ(r, z)

can be classified following the sign of δ, defined in (32), like in the procedure used in the

cylindrical case [1].

The corresponding functions F (χ) and L(χ) are deduced from the relations

F =
K ∓√

∆

2α
, L =

K ±√
∆

2β
, (41)

obtained from (8) and (29). From (6)-(8) and (41) the potential µ obeys the equations

µr = − 1

2r
+ ε

r

2
(χ2

r − χ2
z), (42)

µz = εrχrχz, (43)

with the following values for ε,

ε =




+1, δ > 0

0, δ = 0

−1, δ < 0.

For this axisymmetric spacetime we can calculate its vorticity vector Ωα given by

Ωα =
εαβγδ

2
√
g
uβ(u[γ;δ] + u[α;µuδ]u

µ), (44)

where uα is a time like vector

uα =
1√−gtt

δα
t .

Calculating the scalar of (44) for (1) we obtain

Ω2 = gαβΩαΩβ =
(KFχ − FKχ)2

4eµF 2

(
χ2

r + χ2
z

)
. (45)

Some remarks about the vorticity of the S(A) solutions is presented in the conclusion.

Finally, we present the three classes of solutions obtained, which are the following.

V.1 Class I: δ > 0

V.1.1 αβ > 0

K = 2

(
αβ

δ

)1/2

coshχ, (46)

F =

(
α

β

)1/2 (
1√
δ

coshχ∓ sinhχ

)
, (47)

L =

(
β

α

)1/2 (
1√
δ

coshχ± sinhχ

)
. (48)
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V.1.2 αβ < 0 with −αβ < 1/4

K = 2

(
−αβ

δ

)1/2

sinhχ, (49)

F =

(
−α

β

)1/2 (
1√
δ

sinhχ∓ coshχ

)
, (50)

L =

(
−β

α

)1/2 (
1√
δ

sinhχ± coshχ

)
. (51)

V.1.3 αβ = 0

Here we use (8) and (29), instead of (41).

Case α = 0 and β 	= 0

K = eχ, (52)

F =
1

β
eχ, (53)

L = β(e−χ − eχ). (54)

From (45) with (52) and (53) we have Ω2 = 0.

Case α 	= 0 and β = 0

K = eχ, (55)

F = α(e−χ − eχ), (56)

L =
1

α
eχ. (57)

From (45) with (55) and (56) we have Ω2 	= 0.

Case α = β = 0

We use (3), (8) and (29) obtaining the Weyl static metric,

K = 0, (58)

F = eχ, (59)

L = e−χ. (60)

This solution, without dragging, is an axisymmetric extension of the cylindrical Levi-

Civita solution.

V.2 Class II: δ < 0

We remark here, as we did in [1], that there is no need of introducing complex parameters

in our approach, as it is usually done in the corresponding cylindrical case [8, 9, 10].

K = 2

(
αβ

δ

)1/2

sinχ, (61)
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F =

(
−α

β

)1/2 (
1√−δ sinχ∓ cosχ

)
, (62)

L =

(
−β

α

)1/2 (
1√−δ sinχ± cosχ

)
. (63)

V.3 Class III: δ = 0 or αβ = −1/4

K = χ, (64)

F =
1

2β
(χ∓ 1), (65)

L =
1

2α
(χ± 1). (66)

Here we can integrate (42) and (43) obtaining eµ = c/
√
r where c is an integration

constant. This class corresponds to the van Stockum’s class [5] (see [8] p. 205).

VI Conclusion

The general solution of the cylindrically symmetric stationary vacuum Einstein’s field

equations is the Lewis solution. It is no longer the case for the more general equations

with axial symmetry. We precised here the most general hypothesis under which we

can find the axisymmetric solutions obtained by Lewis [4, 5]. This hypothesis (14) is a

functional dependence between the potentials F , L and K different from (8), and allowed

us to demonstrate a linear relation between the potentials. This fact implied that the field

equations can be interpreted as describing the motion of a classical particle in a central

force field, like in the cylindrical symmetric case [1]. We can recognize the solutions as

belonging to the S(A) class (see [8] p. 204). We obtained these solutions without recalling

to the Papapetrou class, as is usually done. These solutions depend upon an arbitrary

harmonic function, and its classification in three classes is similar to the cylindrically

symmetric case. Here again, as in [1], we do not need to appeal to complex constants, like

in [9, 10]. This harmonic function plays the role of time in the motion of the precedent

classical particle interpretation. It is interesting to observe in V.1.3, that for α = 0 and

β 	= 0 the vorticity scalar Ω vanishes, while for α 	= 0 and β = 0 it does not. This

shows a similarity with the corresponding solutions for the cylindrical case [1] where α

is associated to the parameter that produces the vorticity of the source, as showed by

[11, 9]. On the other hand, β in spite of being also associated to the stationarity of the

source does not produce vorticity, but topological defect as shown in [11] and topological

frame dragging demonstrated in [12]. For δ = 0, in V.3, we have eµ = c/
√
r which has the

same r dependence as in the cylindrical system [11, 9] with energy density per unit length

σ = 1/4. This class of solutions, like in the cylindrical case, is in the frontier between the

two other corresponding classes.
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