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Abstract

The discrete spectrum solutions corresponding to dually-charged mesoatom
on the space of constant negative curvature are obtained. The discrete spec-
trum of energies is finite and vanishes, when the magnetic charge of the
nucleus exceeds the critical value.
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1 Introduction

The behaviour of atom-like systems in curved backgrounds is of interest due
to the problem of stability of atoms and basic standards in external fields.
Such systems were studied by many authors (see, for example, [1-10] and
references cited there).A lot of papers were devoted to calculations of the
curvature-induced energy-level shifts within the framework of the perturba-
tion theory.

In this paper we consider the "motion” of massive charged scalar particle
(meson) in the field of static dually-charged nucleus on the space of constant
negative curvature. We find the discrete spectrum solutions of the Klein-
Gordon equation (see formulas (3.29) and (3.31)). The discrete spectrum of
the mesoatom is finite. The largest principle number Ny (see (3.26)) depends
on the radius of curvature a and the magnetic charge g,,. For sufficiently
small values of a or large values of g,, the discrete spectrum is empty.

It should be noted that the expression for the energy levels (formula (3.24)
of this paper) was obtained earlier in [8]. But the expressions for N and the
wave functions in [8] were wrong [10].

[
t-
1

2 The model

We consider the space-time R x L3(a) with the metric

g=cdt@dt — v = g..(z)dz* ® dz¥, (2.1)
14
LPla)y={zlz= (%) € R, 2 > 0, (2°)% - (2)* = o} (2.2)

is 3-dimensional space of constant negative curvature (a is radius of curva-
ture) with the canonical metric

where

v = 7;(Z)dz' ® dz’ = a*[dx ® dx + sinh® x(df ® df + sin? Odyp ® de)], (2.3)

0 < x < +oo {asinhy = |7]).

We consider a static dually-charged nucleus with the electric charge (—Ze)
and a magnetic charge gn, placed in the coordinate origin x = 0. Let
U C L3(a) be a domain with the trivial cohomology group H*(U,R) = 0
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and {x = 0} ¢ U. The electromagnetic 4-potential A, on R x U, corre-
sponding to the nucleus has the following form

A=A ds" = (—%)(cothx - 1)dt + A, (2.4)
where

F =dA = g, sin8df A dp (2.5)

is the strength of the electromagnetic field, corresponding to the magnetic
charge gn,. The relation (2.5) is correct, since due to H?(U,R) = 0 any
closed 2-form on U is exact, i.e. dF = 0 entails the existence of A such that
dA=F. For U =U, , where

Us=P@\{0=5%3), " (26)
the 1-form on U = Uy
A=A = g, (1 — cos )dy (2.7).

satisfies the relation (2.5). "
A massive charged scalar particle {meson), moving in the field of the
static dually-charged nucleus, has the following action

-

Stel = [ ds(=det )20 (BTATR(DUAA Yp.) — micpup.).

(2.8)
where D, = D,(A*) = V, + (ie/hec)A;, V, is covarianf derivative, corre-
sponding to the metric (2.1); the symbol * = + and A = A% is a result of
substitution of A% from (2.7) to (2.4); mo is mass of the scalar particle and
e is its charge (opposite in sign to the nucleus charge). The pair of functions

¢¢:M¢=RXU¢—>C (29)
satisfy the overlapping condition
p+(t,7) = YZ)p-(8,2), (2.10)

FeU,uU_, where |
Q:U, vl — U1 (2.11)
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is a smooth overlapping function. The scalar particle (meson) wave function _
is a smooth section of a vector C-bundle with the base R x (L3(a)\ {x = 0}).
This section is defined by the pair of functions (2.9), satisfying the condition
(2.10). (The function ¢4 is the representation of the function ¢|My in the
local trivialization over My ).

The action (2.8) is correctly defined, i.e. the right hand side of (2.8) does
not depend on the choice of the symbol * = & (or equivalently on the choise
of local trivialization) if the function €2 (2.11) satisfies the following relation

on U, ulU_
* ke

A* = A7 4 i 070 (2.12)
(A* are defined in (2.7)). It follows from the relations (2.7) and (2.12), that

such function does exist if and only if the Dirac quantization congition is
satisfied [11] '

q = egm/hc= U,i%,ig,.... (2.13)
In this case '
0 = exp[~2ig(y — wo)], - ) (2.14)"
where ¢ = const. r
Varying the action (2.8), we obtain the following equation of motion
(g™ (Du(A%)(D.(A%)) + miclp. = 0. & (2.15)
The Lagrangian, corresponding to the action (2.8), has the following form
R te
_ > a2t e 2 _
Lew)= | EE(dety;;) { Zlv. + TVl

W2y (DAY )(Di(A%)p) - mi*pup.},  (2.16)

where V = (—Ze)(coth x — 1)/a, v4+(Z) = Qv_(&). The Lagrangian (2.16) is
a continuous mapping
L:HxH-— R, (2.17)

where H x H 2 TH and TH is tangent vector bundle over the Hilbert
space H. This Hilbert space is the configuration space of the Lagrange
system. It consists of smooth sections of the monopole vector C- bundle over
L3(a) \ {x = 0} satisfying the restriction

/[; &F(detr;;) {pupu (14 V) +717(Di( A0 )(Di(A Jp.)} < +00. (2.18)
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The scalar product in H is the following

(b, ) = fU L #(detris) {apa(l + V) + 7 (Di( A).)(D;(A ). )}

(2.19)
* = %. Strictly speaking, H is the completion of the pre-Hilbert space (with
scalar product (2.19)) of smooth sections with compact support in U, UU_.
(H is the modified Sobolev space.) The field equation (2.15) is equivalent to
the Euler-Lagrange equations for the Lagrange system (L, H).

3 The discrete spectrum solutions
We seek solutions of the equation of motion (2.15) in the following form

(¢, %) = exp(—iEt[h)F(Z), (3.1)

where E € C and F € H. The substitution of (3.1) into (2.15) leads to the
following relation

[
1

8 8
_1y12 = feinmh? . « 2 — )
{[e+Za(cothxy—1)] +sinh2x3x(smh x@x)+sinh2xA° p}F. =0, (3.2)
where ’
e = Fafke, # = mpac/h, a = e*/he, (3.3)
and -
Ag = BYDi(A°)D;(A”) ! (3.4)

is the "monopole Laplace operator” [12] on 2-dimensional sphere 52 ( 3 is the
canonical metric on §?), written in the local trivialization over 52, *+ = +,
where 52 = 52\ {0 = £ + Z}. The operator A, acts on the sections of the
monopole vector C-bundle over 5% For ¢ = 0 it coincides with the Laplace
operator on S2. The spectrum of A, is well-known {12,13], it is discrete

B Yom = [+ 1) + ¢*Ytm, (3.5)

where .
I=|gllgl+1,...; m==l=l41,...,0 (3.6)
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and Y. are monopole spherical harmonics [13]. For the sake of completeness
the explicit expression for Yy, is presented in the Appendix. The relation
(3.5) follows from the representation for A, [13]

— 128, = (L) - W 3.7

In (3.7) L, is the modified {monopole) momentum operator [13]

‘ F;
(L) = ejuz*(—ihm + A,) hq

o (3.8)

j =1,2,83; where A are the components of the 1-form (2.7) in 2-coordinates
(see (2.2)) o
gmEijaz'dz’ g
|2I(2® £ |2])”

The components of the operator (3.8) satisfy the commutation relations

Ai = A‘.idzi = (39)

(Lé, L) = ihew; LY. (3.10)

N
The monopole harmonics Yy, form a complete orthonormal set (on $?) of
the eigenfunctions of the operators (L,)* and L3:

-

[(Le)? = K1+ 1)]Ygm = 0, (3.11)
(L2 — Am]Yym = 0, (3.12)

where ! and m satisfy (3.6). The equality (3.5) followsfrom the relations
(8.7) and (3.10).
Let F' be an eigenfunction of the operators (L,)? and L?. Then

F“(Xa 81 'P) = Q(X)(qu‘m)'(aa (P) (313)
Substituting {3.13) into (3.2) and taking into account (3.5), we get
{[e + Za(cothy — 1)+ .—l————?—(sinh? xi)

xax
UI+1) - ¢*) - 4*}Q = 0, (3.14)

L}

smh2
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The inclusion ¥ € H is equivalent to the convergence of the integral

* LR - 2 1 2
fo dx sk x{IQP(L+ ) +18Q} < +oo (319)

(this condition follows from (2.18) and (3.13)).
We introduce a new variable «

z=2f(cothx +1) (3.16)
(0 < £ < 1 for x > 0). Then eq. (3.14), written in z-variable,

eQ  2dQ 1
dz? t2 z dz Tt 4z%(1 — z)? ez +22a(1 - :c)] .
—pi2? — 4[:(.'+ D-A1-2))@=0 (3.17)
has a generalyzed-hypergeometric form [14]. The standard procedure (see,
for example [14]) give the substitution

Q= x'%"‘"(l — 3)%"'%1;, r':'t (3.18.)

leading to the hypergeometric equation for the function v = v(z)

-

d? d
a:(l—m)%%+ [1+2n-—(2+2n+/\):c]£+

Zas (s + %)2 ~ (Ze)! = Magt %)]v =0, (3.19)

where

N rserd n=\/(r+§)2—(2a)=—q=, (3.20)

and Vrei® = r1/2¢%/2 g < ¢ < 7. Here and below we put the following
restrictionon Z: Za < %

The solution of (3.19) may be expressed in terms of hypergeometric func-
tions

(m) (A+,B+, C+=I) + d_z _2‘F(A...,B__, C-—a ) (3-21)



-7-- CBPF-NF-040/93

where d,,d_ are arbitrary constants and

A = :I:n+-12-[,\+1—— VA +4Zale - Za)),

1 .
By =+x+ 5[/\ +1+4 /A2 +4Zale - Za)},
Cy=%2x+1.
Using the asymptotic formulas for the hypergeometric functions [14] (for

z — 0 and r — 1), we find that the function Q, defined by (3.18) and (3.21),
satisfies the restriction (3.15), if and only if d_ = 0 and

Ay = —n, - _(3.22_) )
n=0,1,2,.... In this case | .‘ |
v(z) = constP,sz’;"\,(l ~- 27}, (3.23)
where P{*#)(2) is the Jacobi polynomial [14] (see also Appendix). o

Solving the equation (3.22), we get '

i

[6 +1—N? - (Za)?]V/?

(3.24)

= N
£=2Za+t NP+ (Za)ifiia ° »
where :
N=n+s+= (3.25)
2 /
is the principal quantum number satisfying the unequality
N < No = (Za)?(u? 4+ D)V? ~ Za]*2, (3.26)

Thus, there exists only a finite number of normalizable solutions of the
equation of motion (2.15), that have the form (3.1} and are eigenfunctions
of the operators (L,)? and L? . These solutions are the discrete spectrum
solutions. -

It follows from the definitions (3.20}, (3.25) and the unequalitiy (3.26)
that the discrete spectrum is absent for Ny < -;- For Ng > % it is also absent
if

la] 2 lglo = (No)? — No + (Za)? (3.27)
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and exists, if |g| < |glo . In this case ¢ = e(N) = ¢(N(n,1,|q|)), where the
principal quantum number N is defined in {3.25) and

= IQL'--&ZO“QD! : n=0&"‘1n0(l! |Q|)a (328)
In (3.28)

IO(|QD = 'r'n‘ﬂa:{l“I - |Q| = 0$ 1! veed I(I + 1) - 92 < lQID}a

1 .
no(l, |g]) = mazx{njn=0,1,...;n+x + 5 < Ny}

(the relations for Iy and ng follow from the unequality (3.26)).
In the initial notations we have the following expression for the energy
spectrum

Zer | [mict+ (1 — N? — (Za)2)(h*c?/a2)]\/?

E= o +N [M -{-'(Za)’]‘“ , (3.29)
where N < Ny(a), No(e) > 1/2 and |q| < |glo = |glo(a)- )
Due to (3.29) .

Ze*ja < E < moc®. % (3.30)

The meson wave function, corresponding to the set of quantum numbers
(n,l,m), is .

_ i I N SO (a3 COthx — 3
= C exp(—i Bt/ )" explx(1 + NP (A i,
(3.31)

where C is constant and n,! and m satisfy the rest.rictio,ns (3.28) and (3.6)
correspondingly, & = £(l, |q]} and A = A(E, a) are defined in (3.20).

Now we show that the parameter E is the energy, corresponding to the
meson wave function, appropiatly normalized. The energy functional, corre-
sponding to the Lagrangian (2.16), is

= 1/2 K e 2
E(p,v) = L d33(det‘7;5) {c—zv.v. - E;V PalPu
+5277 (Di( A7) ) (D5 (A%)p.) + mic*Taw.}.  (3.32)

The energy is conserved on the solutions of the equation of motion (2.15):
£ = E(p(t),p(t)) = const. The Lagrangian (2.16) is invariant under the
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U(1)-transformations: ¢ — ¢* = exp{—ise/h)p. Due to the E. Noether’s
theorem we have @} = @(p(?),p(t)) = const, where

Qpyv) = ]U daf(det’fii)ln{ih(ﬁva — Taipu) — 26V, ) (3.33)

is the charge functional (@ : H x H — R). Using (2.15) and (3.1), we
get £ = EQ/e. The physical normalization of the wave function ¢ =
Q(p(t),o(t)) = e entails £ = E. So, E is the energy of the scalar parti-
cle (meson).

Let us consider the flat-space limit:a — +oo . In this case |g|o, Nop — +o0
and the discrete spectrum (3.29) contains an infinite number of levels for all
values of g. For ¢ = 0 and @ — +o0 the formulas (3.29) and (3.31) coincide
with the well-known relations (see, for example [14]). .

For a ~ 10?®cm (present cosmological scale), Z'= 1 and m = m,+ (the
mass of 71-meson) we have: Ny ~ 102 and |g|o ~ 10%°.

From (3.29) it is seen that at present epoch energy shifts due to gravita-
tional cosmological field are small because they are proportional to (A;/a) ~
10749, where ), is a meson compton wavelength. So, we need not worry about”
the stability of our basic units like the second or the meté; in a cosmological
field though some effects may appear in strong local gravitational fields {7].

Appendix .

Here we present the explicit expressions for the monopole spherical har-
monics Yym, I = f¢l,lg| +1,... 3 m = =,-1+1,...,1; Yum are smooth
sections of the monopole vector C-bundle over the sphere S$%. In the local
trivialization over S = 5\ {# = § £ %} the sections },q;m are represented
by the complex-valued functions on $2

(Y;l'm):k = Mq,mP‘ia'ﬁ)(COS 6) exp(i(m == Q)‘P)s (334)
where
o=-—¢—m, B=q-—m, n=Il+m (3.35)
and Pn“‘ﬁ)(:c) is Jacobi polynomial
{o,8} — (_l)ﬂ _ - -ﬁi _ yatn G+n
P‘l’l (‘T') - onnl (1 -'B) (1 + x) dzn [(1 :"':) (1 + z) ]
'n+a+1l)

o + 1) Fl-n,n+a+f+1,a+1,(1-2)/2),
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(Mg are constants).
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