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ABSTRACT - It is shown the role played by temporal (Ag = 0)
and axial (A; = 0) gauges in a non-Abelian gauge
theory, within the methods of Dirac's Hamiltonian
formulation. The necessary equations of the theory
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INTRODUCTION

We intend here to discuss the procedures of axial and
temporal gauge fixing in a non-Abe]ian theory like Yang -
Mills, from the viewpoint of its solutions. For simplicity,
we have worked with the theory without external soufqes. In
section 1, wé analyze the work done 'in the A; =0 gauge ,
putting this restriction ih the‘eﬁuations of mofion, and
also, a priori, ‘in the Lagrangiah. As a éonsequence s
Coleman's non-Abe]Taﬁ'p1ane wave is revisited . In section
2, we make some observations and discussions about gauge
fixing, and compare the work in the temporal and axial gauges.
In section 3 apd 4, we introduce the fundamentals of the
Hamiltonian formulation for the canonical quanfization of
constrained non-Abelian theories. The Dirac's canonical
prbcedures are used to deduce the equations of motion . In
section 5, the particular case of electrodynamics is
considered; we observe the possibility for doing tfivia]
quantization in axial gauge. In section 6 we assert the
requirements which a solution should satisfy, and we
comp]gte the discussions of section 2. 1In Ag =0 ‘ gauge
Coleman's non-Abelian plane wavevis studied again with the
methodsintroduced in sections 3 and 4, and we present . a
solution in A§v= 0 gauge. Finally, in section 7, we put
emphasis in the difficulties for finding bther non-trivial

solutions and we sketch the guidelines for future work.



1. AXIAL GAUGE - INTRODUCTORY WORK

Let us consider the equations of Yang-Mills:

2

SA; :
where
) - - 1 - a U\) Y |
S = - 0 I Flo Fa d'x (2)
and Dﬁb , the covariant derivatives in the adjoint represen

tation are given by:

Cc
u u abc Au o (3)

tet us work in the axial gauge A} = 0 with the

"Ansatz":
2 . 0 - Al -
Aa 0 Aa Aa Uy - (4)
So, .» for the field strengths which are given by
UV Nl AV Vpu WAV
Fa 3 Aa ) Aa + g-fabc Ab Ac (5)
2 ’ - . . R
a,b=1,...,n, and we are using a n-parameter semi -

simple Lie group.



We have:

For = (5 + 23 )u

13~
s Fa 3 u (6)

Our work is done -in Minkowski's space-time, with the
‘signature of the metric: (+,-,-,-) as -g°%=g!l=g2?=g3°= -1.

The equations of motion are£
V=0: (2 497+ 97 49 9 ) up 9 Fap u (3 + 3 ) u=9,(7)
v=l: (92 ~ 32 ~ 32 ~23 3 )u, -9 f ~u(do +23) u=0,(8)
. 1 . T
=< . = 0. . . 9
v=2: 3 (3 +9) U (9)

. 3
The fourth equation need not be considered, since by

n

the choice of the gauge A} 0, we have only Al , A and

Ag as independent variables in the initial Lagrangian /1/. A

self-evident solution of the above equations is:

u. = h{(x2, x3, x%,x') f_(x° - x!) (10)

a a

.

3 P -
”

We mean by "fourth equation" the set of }a‘ equations of

motion for v=3, Analogously for "first equation".

e~



where

h=x%(x? - x!) + x?n(x® - x}) + £ (x° - x'). (11)
Equation (10) with (11) is the solution introduced by
Coleman/2/ We should observe that Coleman's work does not impose
Ag = 0, "a priori" in the Lagrangian, so, we have four

equations of motion.

Solution (10) satisfies this fourth equation or:

<
o
w

3 (3 +23) u, =0, | ' (12)
3 0 1 .

In the beginning of section 6 wegive a proof that it is

. necessary "for the solution (10) to satisfy:

2, [.33 (5 +2 ) u, ] -0 (13)
From (12) and (13) , we see that there is no contradiction
with the previous work (at least for this solution), if we
put A; = 0 in the Lagrangian, acording to Fradkin and
Tyiytin's prescription. |

We know that the axial gauge is very adequate for the
quantization procedures, since in the .resulting commutation
relations there are no fields in the right-hand side, and so,
no ghost loops in ‘the diagramg. It would ‘be very interesting

to, repeat the deduction of the above solutions with the



methods of the Hamiltonian formulation. That is what we do in

the sixth section.

2. SOME OBSERVATIONS ABOUT GAUGE FIXING

We have mentioned above, that in the work done in

the axial gauge, the fourth equation of motion,

5 -0 | : (14)
jéAa :
need not be considered. This is due to the fact that there
are only 3n independent variables in the Lagrangian.

The same thing occurs in- the temporal A; = 0 gauge.

Here, the first equation“

650 = 0 (15)
5A?

is missing. This equafion is Gauss'law. There must be a
way of saving gauss'law. Actually, we have to implement
Gauss'law by imposing it on the physical states of the
quantized theory. This leads to a fundamental difference
between the two gauges. We cannot save the fourth equation
in A; = 0 gauge, since it cannot be imposed on the

physical states. These facté are also inherent to the

[N
See note on page 3.



Hamiltonian formulation. On the set of equations, n"  of
them are always missing, if we put the gauge restrictions
Ag =0 or A} =0 in the Lagrangian. We will come back

to this point in section 6.

3. HAMILTONIAN FORMULATION /3,4/

In phase space, the momenta associated with Aé, A;,

A;, are given by

a _(SL _ ok _
Hk. = =% - Fa s k—1,2,3. (16)
aka
where
o] a LUV ,3
L = 7 [ Fuv Fa d3x (17)

The first component H; is a "primary constraint” of the

theory
=0 . (18)
we mean by this notation, as is known /4/, that the Poisson

bracket of Hi with some dynamical.-variable may be different

from.zero. This can be seen from



LN ] v ' - _a V 3 v !
{Hn(x)’ Ag(x )%=t' =9, 83p O (x-x'). (19)
wé aré $ing f6r the equal time Poisson brackets of two
arbitrary functionals A(x), B(x'):
thixi s Bx)_ H s _sn__ s 8 g,
) Lshgly) om (y) s (y) SA(Y)
(20)
The &quations 6f motion must be written as
&8 . .ab .u\) | b UV ~ ’
i 80 3 FpMVe g f ACFL 0 (21)
s
are

We obs&rve that these equations, like equation (18) ,

ineompatible with the relations (19).
E§.(Z1) for v=0 (Gauss'law) can be also obtained, if

We ifipésé that the condition (18) is maintained in time.

_8H -, -~ (22)

82 53 - m¥(x), HY= -
GA;(X)

where H i§ the modified Hamiltonian:

H ef Foo g3y 4 J(xa v 4 xj u:) d3x (23)

1 1

*5’ é‘ U ' .. . -
Xi; X2 &F€ &rbitrary functions; surface terms are disregarded.
THE abéve Ham?ttonian should be consistent with the equations

6f Motion,; 6F:



R = (AY(x), H) = L N (24)
anz(x)

2 (2(x), Hy = - S (25)

gt M §AL (x)

From (24), (25), using *(23), we deduce that:

2 = 0. | ’ (26)

4., GRUGE FIXING

Working with the Hamiltonian formulation, let us

consider the imposition of a gauge

= A% = 27
v, Aa 0. ( .)
If we require v® to be maintained in time, using
3 .
(24), we have:
vr =1 -3 A" ZoO. . (28)
4 3 3 a ]

From (28) and (22) we see that the third component of

momehtum is dependent on the other tWo.



Equations (18), (22), (27), (28) are the first class
constraints of the constrained system studied here.

We should calculate now, according to. Dirac's
method /3 / thePoisson bracket matrix of the first class

constraints:

DaB(X?X ) = {v (x), UB(X )}}tat' s a,821,2,3,4

(29)

With (29), we can introduce the Dirac brackets, which for two

arbitrary dynamical variables are given by
. * . -
TA(X),B(x ") T ={A(x),B(x ')} - j{A(x), U (X") DI (x"x" )

(x"'),B(x')} dx" dk (30)

.{UB
A11 the brackets are calculated under the requirement of
equal times.

The brackets (30) satisfy: (i,j = 1,2)

nf0, mxny =0, (29)
W0, et o, (30)

§%(x=x"') , (31)
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we have then, for the equations of motion /5/:

* ab

.a _,_a _ i
i _ pd * .3 _ pab '
Aa "{Aas H} = H.I D.I ub ° ) (33)
together with Gauss'law derived from (22):
p?0 1P - o, (34)
k k
Equations (34) and (28) lead to:
u = -f G(x,x')D! 2P D (xry dax (35)
a i i :
where the Green's function G(x,x') satisfies:
3: G(x,x') = 8§3%(x-x"). (36)

Analogous, working in the temporal Ag = 0 gauge, with
the same procedure as above, we readily obtain for the

equations of motion /5/:

12 = 03P FRE, k,£=1,2,3 ' (37)
K 2
AX - po (38)
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5. A PARTICULAR CASE: ELECTRODYNAMICS

A interesting result is deduced in the axial gauge
for an Abelian theory like electrodynamics. The limit of

electrodynamics is reached when we put g=0, in all equations

above.

The equations of motion are, then:

e _ ik '
7 _ ga .
a
9 =0 , 41
¢ I (41)

where u = Ag is given by:

o
i

- J G(x,x') a3 MI(x') d*x' . (42)

Taking the temporal derivative of the last equation,

using (39),  and integrating successively by parts, we
have:

Y - - 3 oy ! ' i 31 i

u, f s (x-x") 3 Aa d3x ,ai Aa . (43)

From (39) and (40), we have, using (43):

.

Al -o. (44)
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where [:]

au 3" is the d'Alembertian.

' 0
We note that the function wu_= Aa also satisfies (44).

a
From (40) we get:

u = aiaiu - 9. I, (45)

Using now (41) and:(28), we obtain from (45):

Dua = 0 (46)

Starting from this equation, we can try to .make canonical

quantization in the axial gauge.

6. SOLUTIONS IN THE HAMILTONIAN FORMULATION

We are going to present the requirements which a solu-

tion should satisfy. Firstly, - returning to configuration

space, we have from (34) and (32), written in the axial gauge:

0
I S I ' (47)
Dab Fui - 0 . :

o= 0, i=1,2 (48)

b ¥
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These are the equations of motion in configuration

0
space in the gauge Aa = 0.

‘With a little algebra it is easy to -prove that,

starting from the identities:

ab

bc ~uv - - 2.3 i
0y D¢ FR 0 TR 0,1,2,3(49)
ab .bc k& _ _
Dp° D¢ FXY = 0 k., = 1,2,3 (50)
ab bc ij _ C s
D, DJ. Folo= 0 1, 1,2 (51)
together with (47), (48) we obtain:
S - ab cusy |
3 | } = o (02 Rl 0 (52)

31 3
GAa

o 4
In temporal gauge Aa = 0, from (37), (38), we can
deduce for the equations of motion in configuration space:

p20 EKM = g k =1,2,3 (53)

Analogously as in the A

0 case, starting from (53)

and (50), it is easy to show that:

§S ) ‘ ab ~%n _
30[ } = 30 (ql Fp© ) =0 : (54)
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Equations (52) and (54) are necessary conditions for
solutions to satisfy the equafions of motion in axial and
temporal gauges respectively. |

From the aspect of (52) and (54) , it is easy to
understand the fundamental difference between the work in the
two gauges. From (54), we see that Dzb Fgu can be diagonalized

simultaneously with the Hamiltonian, then, we can impose

Gauss'law on the physical states, or:

Dﬁb FOu |y>= 0 E (55)
in A; = 0 gauge.

On the contrary, we cannot impose the fourth
equation (14), on the physical states, because its left
hand side is not a constant of the motion.

Now let us make some observations about the possible
solutions. |

In A; = 0 gauge, we have shown that, working with the
"Ansatz" (4), the solution was the non-Abelian plane wave.
Actually, we can infer from -(47), (48) that the solution
should have the wave form:

up = F(xP, %%, x% x}) £ (x°- x1) | (56)

Its Poynting's vector components are calculated by:
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JECBY L k. gem = 1,2,3 (57)

The "magnetic" and "electric" fields are given respectively

by:
a _ 1 Lm - o
Bk I B E%m Fa . . . (58)
k k - -
- _na _ _go .

f, = -1 - - R 69)
We should have:

> - k 2

Ea . Ba = Ea Bk =0 (60)

The energy density is given by:

1

oo_ 1 a2 a kL .
T0O0= —— (qé) + F: Fa . (61)

kL

T°% and T°k z Pk should be related by

: ) .
3, T0+ 2 P =0 ’ (62)

‘ From (56) we have that (60) and (62) are satisfied 2% |
trivially, and the further requirement of bounded énergy ays
that F should be a linear function of x?, x?, which is

evident from:
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v (o, F)2] aox (63)

So, we have:

F =& x2 +n x®+ t (64)

where §&,n ,z are bounded functioﬁs of (x° - x1).

We have mentioned that this‘solution satisfies the
fourth equation. With the remarks = of section 2, we can
infer, that it shduid have solutions 1in A; = 0 which do not

satisfy the fourth equation. Correspondingly, it should have

solutions in temporal gauge Ag = 0 which do not satisfy the

first equation (v=0}).
In order to present a solution in temporal gauge
which does not satisfy the first equation, let us consider ,

the "Ansatz"
A2 - A3 - Al -
Aa Aa Aa Xa . (65)
The resulting equations of motion are:
n2402 _ n2_ - - - =
(32"'33 30 31(32+33))Xa+ g fabC Xb (32 +33» ZBILXC 0 ’ (661

( af+a§ - a§-32(31+ 31X+ 9 Fope Xy ('a1 +3 -2 32)'XC =0 , (67)

- e
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(312"3:’3:'33 (343)0% + 9 Tope Xy (0 azv -2 x, = 0. (68)
The equation>;orrespondiﬁg to (54) is:
30 % ‘af'32+83)xa + . 3¢9 fabc Xp 80 Xc = 0 | (69)
: ﬂe have for so]uFion:
Xy = x°ffa(x1+ x2+ x3) (70)

where fa are - bounded functions.

Solution (70) satisfies the vrequirements mentioned

fof the last case.

7. CONCLUSIONS

We have tried to present a solution which does not
satisfy the fourth equation in AZ = 0 gauge. In temporal
gauge (Ag = 0), we have looked for a solution analogous to

(56). MWorking respectively with the "Ansdtze":

> (71)
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A, = 0 : A2 =0, A} = A =z, (72)

we have not found any non-trivial solutions. Particularly (62)
seems to be a severe restriction on the existence _of  such

solutions.

We think that a cafefu] consideration of surface terms
in the Hamiltonian formulation shoufd be doné for the specific
;ases above /6/. We have to explain .also why it was
possible to find solutions like (56)and (70) with the " wrong"
formulation. This wf11 be the -subject of a forthcoming

publication.
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