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Abstract

Using Ehlers and unitary transformations, from Kerr solution of the Ernst equa-
tion, we build a parametrized Kerr solution depending on three parameters.
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1 Introduction

In a preceding paper [1] we have presented a new three parameters axisymmetric sta-
tionary solution of Ernst equation by using Ehlers and unitary transformations on the
Bonanos [2] solution. The parameters are associated with the total mass M of the source
and its angular momentum per unit mass a. The third parameter produces a topological
deformation of the ergosphere.

Here we apply these transformations to the Kerr metric and we obtain again a solution
with three parameters. The two parameters, M and a, are present here too, and we call
the third parameter m;. We show that with a simple transformation the solution reduces
to that of Kerr again, but notwithstanding, m, has a peculiar role. It allows to classify the
three topological families of Kerr solutions obtained for the three cases M > a, M = a and
M < a, which until now were discussed separately ([3] see p 375). Varying the parameter
my we can pass continuously from one family to the other. We illustrate clearly this
passage by drawing the ergospheres and horizons for different values of m;.

2 Method of solution of Ernst equation

The element of a general axisymmetric stationary spacetime is the so called Papapetrou
metric, which in cylindrical coordinates, p, z and ¢, reads

ds® = f(dt — wdo)* — [ (dp* + d=*) + pd?), (1)

where the gravitational potentials, f, w and v, are functions of p and z only. The canonical
coordinates of Weyl, p and z, can be given in terms of prolate spheroidal coordinates, A
and p, by the relations

p= k()\Q o 1)1/2(_N2)1/2, z = k)‘,ua (2)

where £ > 0 is a constant, A a radial coordinate and —1 < p < 1 is an angular coordinate.
The metric (1) with relations (2) can be rewritten like

ds* = f(dt — wdg)?
2 A2 dp2

- [62”’(}\2 — 1) <A2 T M2> + (N =11 - p?)de?| (3)

where the potentials are now functions of A and y. Einstein vacuum field equations reduce

to the Ernst equation [4],
(£ — 1)V = 26VE - VE, (4)
where V and V? are the gradient and the three-dimensional Laplacian operators respec-

tively, € is the conjugated complex potential of &, and in general its solution can be
expressed as

A\ ) = P(A p) +iQ(A, ), (5)
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where P and @) are real functions of A and pu. To determine the potentials f, w and
of the metric (3), the method consists to use the following relation between f, the twist
potential ® and &,

. §—1
b= -
fi R (6)
which implies, with (5),
P4+ Q* -1 2Q
f = T? ¢ = ﬁu (7)
where
R = (P+1)*+ Q% (8)

In (6), ¢ is a twist potential defined up to a constant and related to the dragging w by
the following differential equations,

ow  k(1—p?) 0P Ow k(A —1) 0%

F N R P A TR (9)

The potential w is obtained by integration of (9), and + is determined by quadratures.
Any solution of Ernst equation is a solution of Einstein equations.

3 Parametrized Kerr solution
We start with the Kerr solution ([5] see p 382),
{k = P +1Qk, (10)
with
Pg =p\, Qk = qu, (11)
where p and ¢ are real constants satisfying

P’ +¢ =1 (12)

By means of the following particular Ehlers transformation on (10),

ik +dy
== - 13
& dilkx +C1 (13)
where ¢; and d; are complex constants satisfying
;| €SUMLL), al —lda]" =1 (14)
d1 C1

We choose for ¢; and d;
C1 = 1 + iO[l, d1 == iOél, (15)
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being «; a real constant. Then, a second step consists to perform an unitary transforma-
tion on &,
£2 = —6“90{1 = (m + in){l, m2 + n2 = ]., (16)

with 6y an arbitrary real constant, and m and n real constants. Now we find with
(10,13,16)

A+1iB
_ 17
where
A= Px(m—an) — Qrglaym+n) — ayn,
B = Pg(agm +n) + Qx(m — agn) + aym, (18)
C= _&1QK - 17
D = C(l(pK + 1)
Choosing n
_ 1
Qi 2(1 +m) (19)

and applying the method recalled in section 2, we find the potentials corresponding to
the solution (1), with (7), of the Ernst equation,

_p2>\2+q2u2—1 , 0o

= 22 2
d A —1)2+¢2 " 2 (20)
2p,u -2 00
d=— 20 21
P12+ @i 2 1)
2 —1)(1 — p?
_ kq(p) )( %) 052 @' (22)
p(P*A? + ¢*p® — 1) 2

We observe that for the calculation of ® in (21) an adding constant that can be
transformed away since has no role for the calculation of w in (22). The factor cos™2(/2)
in (20) can be absorbed by a rescaling process, such as ds3 = cos™%(y/2)ds*. Introducing
the coordinates r and 6 through the Boyer-Lindquist transformation

r—M
A:
k

, b =cosé, (23)

we obtain asymptotically r — oo for (20) and (22)

2k 1 1
fz1+——+0(3), (24)

pr r

E\ sin?0 6, 1
w2 <5> ” COS 5 + O <7“_2> s (25)

which shows that the solution is asymptotically flat. From (24,25), differently from Kerr
metric, we have

(26)
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and from (12) we have,
k= M? —miad?, (27)
where

200

mq = Cos = —

(28)

with my € [1, 00).
Finally, with the above choice for the constants we can rewrite the potentials like

2Mr
=1- 29
/ r2 +m2a?cos? 6§’ (29)
Y 2aMrsin® 0 (30)

r2 — 2Mr 4+ mia? cos? 0’

2 r? —2Mr + mia® cos® 6 ' (31)
72 — 2M7r 4+ m2a? cos? 0 + M2 sin? 0

We see from (29-31) that when m; = 1 the Kerr metric is reobtained. Asymptotically,
r — 00, (29,30) now becomes

2M  2m2a*M cos?# 1
fr1- SRy THESEEE 0 (). (32)
2aM sin?6  6aM?sin’0
w = . —+ 2
2aM sin? 0(4M? — m2a® cos® 0 1
| 2aMsin ( - mia® cos )"‘O(ﬁ)- (33)

Now writing the metric (29-31) in the form
ds® = gudt® + 2gidtdd + grdr®geedd® + gssdd?®, (34)

we obtain for the metric coefficients,

2Mr

=1- 35
I r2 +m2a?cos? 6’ (35)
2Mar sin® 0
_— 36
Jié r2 + m2a?cos? 6’ (36)
o= — r? + mia? 005220 | (37)
r2 —2Mr + mia?
goo = —1° — mia’cos’ b, (38)
Y (RN 2Ma*r sin® 0
oo = ! r2 + m?a? cos? 0
2—1)2Mr
x |m?2 m, in” 6. 39
[ml T o0y + mia? cos? 0 S (39)
On (29-31) we can make the transformation
M
M= r=— (40)

my my
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producing
2M17"1

=1—- 41
/ r? 4+ a?cos? 6’ (41)
2a M1y sin? 6 (42)

12 —2Myry 4 a2cos?f’

2 2 2

2 r{ — Myry 4+ a” cos® 6 (43)

©r? —2Myry 4+ a%cos?f + Misind’

which shows that solution (29-31) corresponds to a Kerr solution with parameters M
and a. We see too from (41-43) that this solution is valid too for 0 < m; < 1, hence the
solution (29-31) is valid for

my €0, 0o]. (44)

The mapping m; = 0 is not allowed since then (40) has no meaning.

From (32,33) we see that the difference between classic Kerr solution and (29,30) lies
in the third order asymptotical behaviour for f and for w. The parameters M and a can
be deduced from observations implying the potentials f and w up to second order in 1/7.
Once these parameters are determined, we can find m; if the observations are refined up
to third order in 1/r for f and w, which is the postpost Newtonian approximation.

For given M and a, m; # 1 changes the geometry of spacetime, so we can classify the
solutions like,

M
i) m; > —, Kerr black hole,
a
. M
it) my = —, extreme Kerr black hole,
a
i11) m; < —, Kerr without event horizon.

a

In figure 1 we have plotted the ergospheres and event horizons, when they are defined,
for different values of m;. We obtain the following interesting features.

e The topology of the exterior ergospheres change according to the values of m;: a)
For 0 < m; < M/a (curves a and b) we have the usual spherical topology of Kerr.
b) For my = M/a (curve ¢) we have the topology of an extreme black hole of Kerr.
c) For my > M/a (curves d, e and f) the topology of the ergospheres is toroidal.
When m; — oo the ergosphere tends to a disc in the equatorial plane.

e The radius of the event horizon decreases and the radius of the Cauchy horizon
increases when m; (< M/a) increases, until its limiting value when m; = M/a. For
my > M /a the horizons are no more defined.

e The interior ergosphere, for m; < M/a, increases with increasing m; and is dis-
connected of the exterior ergosphere (curves ¢ and a). When m; attains the value
my = M /a, the interior ergosphere joins the exterior ergosphere continuously (curve
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¢). For my > M/a, the interior and exterior ergospheres are connected forming one
ergosphere (curves d, e and f).

e For m; > M/a, from the fact that both ergospheres are connected and the horizons
disappear, the singularity, forming a ring, becomes naked for certain values of the
angle aperture centered at the axis z. The angle increases with increasing values of
my. This configuration is identical to Kerr spacetime for M < a ([3] see p 375).

4 Concluding remarks

The solution that we obtained (29-31), in spite of the transformation (40) leading to the
Kerr solution, is different from it for the following reasons. For a given source (M, a),
the solution (29-31) can produce a toroidal topology for its exterior ergosphere even in
the case M > a, which is never the case for the Kerr solution with the same (M, a):
to be produced, it is sufficient that its third parameter satifies my > M/a. Likewise, if
M < a, the solution (29-31) can produce a spherical topology for its exterior ergosphere, -
it suffices that m; < M/a -, which is never the case for the Kerr solution with that source
(M,a). If, far from the source, we can associate the potentials f and w to observable
quantities, then up to the post-Newtonian approximation, O(r~2), we can determine the
parameters M and a. The metric up to this order is indescernible from that of Kerr.
But if we make observations up to O(r=3), then, in principle, we can determine m;, and
if m; # 1 then we can conclude that the metric is different from Kerr with a topology
depending upon its value.

Furthermore, if we compare the solution (29-31) to the one found in [1] we observe
that the topology of the ergospheres are different. The angle aperture in [1] appeared in
the equatorial plane, while here the equatorial plane includes, on both sides the axis z,
the ergosphere for any value of my.

For (29-31) the horizons do not exist when m; > M/a, while the singularity is naked
for increasing angle apertures, centered at the axis z, while m; increases. While in the

solution found in [1] the singularity is always dressed because the event horizon is always
defined.
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Figure 1: Plots of the exterior and interior ergospheres (a to f), and the corresponding
event horizons (dashed lines) for M = 4, a = 2 and different values of the parameter m;:
i) my < M/a, my =1 (Kerr) curves a, m; = 1.8 curves b; ii) m; = M/a = 2 (extreme
black hole where the two horizons are the same), curve c ; iii) m; > M/a (the horizons
are no more defined), m; = 2.1 curve d, m; = 2.5 curve e, m; = 10 curve f.



