Parametrization of Kerr Solution

J. Gariel ${ }^{1 *}$, G. Marcilhacy ${ }^{1}$ and N.O. Santos ${ }^{1,2,3 \dagger}$
${ }^{1}$ Université Pierre et Marie Curie - CNRS/FRE 2460,
LERMA/ERGA, Tour 22-12, 4éme étage, Boîte 142, 4 place Jussieu, 75252 Paris Cedex 05, France.
${ }^{2}$ Laboratório Nacional de Computação Científica, 25651-070 Petrópolis RJ, Brazil.
${ }^{3}$ Centro Brasileiro de Pesquisas Físicas
22290-180 Rio de Janeiro RJ, Brazil.

Abstract

Using Ehlers and unitary transformations, from Kerr solution of the Ernst equation, we build a parametrized Kerr solution depending on three parameters.

[^0]
1 Introduction

In a preceding paper [1] we have presented a new three parameters axisymmetric stationary solution of Ernst equation by using Ehlers and unitary transformations on the Bonanos [2] solution. The parameters are associated with the total mass M of the source and its angular momentum per unit mass a. The third parameter produces a topological deformation of the ergosphere.

Here we apply these transformations to the Kerr metric and we obtain again a solution with three parameters. The two parameters, M and a, are present here too, and we call the third parameter m_{1}. We show that with a simple transformation the solution reduces to that of Kerr again, but notwithstanding, m_{1} has a peculiar role. It allows to classify the three topological families of Kerr solutions obtained for the three cases $M>a, M=a$ and $M<a$, which until now were discussed separately ([3] see p 375). Varying the parameter m_{1} we can pass continuously from one family to the other. We illustrate clearly this passage by drawing the ergospheres and horizons for different values of m_{1}.

2 Method of solution of Ernst equation

The element of a general axisymmetric stationary spacetime is the so called Papapetrou metric, which in cylindrical coordinates, ρ, z and ϕ, reads

$$
\begin{equation*}
d s^{2}=f(d t-\omega d \phi)^{2}-f^{-1}\left[e^{2 \gamma}\left(d \rho^{2}+d z^{2}\right)+\rho^{2} d \phi^{2}\right] \tag{1}
\end{equation*}
$$

where the gravitational potentials, f, ω and γ, are functions of ρ and z only. The canonical coordinates of Weyl, ρ and z, can be given in terms of prolate spheroidal coordinates, λ and μ, by the relations

$$
\begin{equation*}
\rho=k\left(\lambda^{2}-1\right)^{1 / 2}\left(-\mu^{2}\right)^{1 / 2}, \quad z=k \lambda \mu \tag{2}
\end{equation*}
$$

where $k>0$ is a constant, λ a radial coordinate and $-1 \leq \mu \leq 1$ is an angular coordinate. The metric (1) with relations (2) can be rewritten like

$$
\begin{array}{r}
d s^{2}=f(d t-\omega d \phi)^{2} \\
-\frac{k^{2}}{f}\left[e^{2 \gamma}\left(\lambda^{2}-\mu^{2}\right)\left(\frac{d \lambda^{2}}{\lambda^{2}-1}+\frac{d \mu^{2}}{1-\mu^{2}}\right)+\left(\lambda^{2}-1\right)\left(1-\mu^{2}\right) d \phi^{2}\right] \tag{3}
\end{array}
$$

where the potentials are now functions of λ and μ. Einstein vacuum field equations reduce to the Ernst equation [4],

$$
\begin{equation*}
(\xi \bar{\xi}-1) \nabla^{2} \xi=2 \bar{\xi} \nabla \xi \cdot \nabla \xi \tag{4}
\end{equation*}
$$

where ∇ and ∇^{2} are the gradient and the three-dimensional Laplacian operators respectively, $\bar{\xi}$ is the conjugated complex potential of ξ, and in general its solution can be expressed as

$$
\begin{equation*}
\xi(\lambda, \mu)=P(\lambda, \mu)+i Q(\lambda, \mu) \tag{5}
\end{equation*}
$$

where P and Q are real functions of λ and μ. To determine the potentials f, ω and γ of the metric (3), the method consists to use the following relation between f, the twist potential Φ and ξ,

$$
\begin{equation*}
f+i \Phi=\frac{\xi-1}{\xi+1} \tag{6}
\end{equation*}
$$

which implies, with (5),

$$
\begin{equation*}
f=\frac{P^{2}+Q^{2}-1}{R^{2}}, \quad \Phi=\frac{2 Q}{R^{2}}, \tag{7}
\end{equation*}
$$

where

$$
\begin{equation*}
R^{2}=(P+1)^{2}+Q^{2} . \tag{8}
\end{equation*}
$$

In (6), Φ is a twist potential defined up to a constant and related to the dragging ω by the following differential equations,

$$
\begin{equation*}
\frac{\partial \omega}{\partial \lambda}=\frac{k\left(1-\mu^{2}\right)}{f^{2}} \frac{\partial \Phi}{\partial \mu}, \quad \frac{\partial \omega}{\partial \mu}=-\frac{k\left(\lambda^{2}-1\right)}{f^{2}} \frac{\partial \Phi}{\partial \lambda} \tag{9}
\end{equation*}
$$

The potential ω is obtained by integration of (9), and γ is determined by quadratures. Any solution of Ernst equation is a solution of Einstein equations.

3 Parametrized Kerr solution

We start with the Kerr solution ([5] see p 382),

$$
\begin{equation*}
\xi_{K}=P_{K}+i Q_{K}, \tag{10}
\end{equation*}
$$

with

$$
\begin{equation*}
P_{K}=p \lambda, \quad Q_{K}=q \mu, \tag{11}
\end{equation*}
$$

where p and q are real constants satisfying

$$
\begin{equation*}
p^{2}+q^{2}=1 \tag{12}
\end{equation*}
$$

By means of the following particular Ehlers transformation on (10),

$$
\begin{equation*}
\xi_{1}=\frac{c_{1} \xi_{K}+d_{1}}{\bar{d}_{1} \xi_{K}+\bar{c}_{1}}, \tag{13}
\end{equation*}
$$

where c_{1} and d_{1} are complex constants satisfying

$$
\left(\begin{array}{ll}
c_{1} & d_{1} \tag{14}\\
\bar{d}_{1} & \bar{c}_{1}
\end{array}\right) \in S U(1,1),\left|c_{1}\right|^{2}-\left|d_{1}\right|^{2}=1
$$

We choose for c_{1} and d_{1}

$$
\begin{equation*}
c_{1}=1+i \alpha_{1}, \quad d_{1}=i \alpha_{1}, \tag{15}
\end{equation*}
$$

being α_{1} a real constant. Then, a second step consists to perform an unitary transformation on ξ_{1},

$$
\begin{equation*}
\xi_{2}=-e^{i \theta_{0}} \xi_{1}=(m+i n) \xi_{1}, \quad m^{2}+n^{2}=1 \tag{16}
\end{equation*}
$$

with θ_{0} an arbitrary real constant, and m and n real constants. Now we find with $(10,13,16)$

$$
\begin{equation*}
\xi_{2}=\frac{A+i B}{C+i D} \tag{17}
\end{equation*}
$$

where

$$
\begin{align*}
& A=P_{K}\left(m-\alpha_{1} n\right)-Q_{K}\left(\alpha_{1} m+n\right)-\alpha_{1} n \\
& B=P_{K}\left(\alpha_{1} m+n\right)+Q_{K}\left(m-\alpha_{1} n\right)+\alpha_{1} m \tag{18}\\
& C=-\alpha_{1} Q_{K}-1 \\
& D=\alpha_{1}\left(P_{K}+1\right)
\end{align*}
$$

Choosing

$$
\begin{equation*}
\alpha_{1}=-\frac{n}{2(1+m)} \tag{19}
\end{equation*}
$$

and applying the method recalled in section 2 , we find the potentials corresponding to the solution (1), with (7), of the Ernst equation,

$$
\begin{gather*}
f=\frac{p^{2} \lambda^{2}+q^{2} \mu^{2}-1}{(p \lambda-1)^{2}+q^{2} \mu^{2}} \cos ^{-2} \frac{\theta_{0}}{2}, \tag{20}\\
\Phi=-\frac{2 p \mu}{(p \lambda-1)^{2}+q^{2} \mu^{2}} \cos ^{-2} \frac{\theta_{0}}{2}, \tag{21}\\
\omega=\frac{2 k q(p \lambda-1)\left(1-\mu^{2}\right)}{p\left(p^{2} \lambda^{2}+q^{2} \mu^{2}-1\right)} \cos ^{2} \frac{\theta_{0}}{2} . \tag{22}
\end{gather*}
$$

We observe that for the calculation of Φ in (21) an adding constant that can be transformed away since has no role for the calculation of ω in (22). The factor $\cos ^{-2}\left(\theta_{0} / 2\right)$ in (20) can be absorbed by a rescaling process, such as $d s_{2}^{2}=\cos ^{-2}\left(\theta_{0} / 2\right) d s^{2}$. Introducing the coordinates r and θ through the Boyer-Lindquist transformation

$$
\begin{equation*}
\lambda=\frac{r-M}{k}, \quad \mu=\cos \theta \tag{23}
\end{equation*}
$$

we obtain asymptotically $r \rightarrow \infty$ for (20) and (22)

$$
\begin{array}{r}
f \approx 1+\frac{2 k}{p} \frac{1}{r}+O\left(\frac{1}{r^{2}}\right), \\
\omega \approx 2\left(\frac{k}{p}\right)^{2} \frac{\sin ^{2} \theta}{r} \cos ^{2} \frac{\theta_{0}}{2}+O\left(\frac{1}{r^{2}}\right), \tag{25}
\end{array}
$$

which shows that the solution is asymptotically flat. From $(24,25)$, differently from Kerr metric, we have

$$
\begin{equation*}
p=-\frac{k}{M}, \quad q=\frac{a}{M} \cos ^{-2} \frac{\theta_{0}}{2} \tag{26}
\end{equation*}
$$

and from (12) we have,

$$
\begin{equation*}
k^{2}=M^{2}-m_{1}^{2} a^{2}, \tag{27}
\end{equation*}
$$

where

$$
\begin{equation*}
m_{1}=\cos ^{-2} \frac{\theta_{0}}{2} \tag{28}
\end{equation*}
$$

with $m_{1} \in[1, \infty)$.
Finally, with the above choice for the constants we can rewrite the potentials like

$$
\begin{array}{r}
f=1-\frac{2 M r}{r^{2}+m_{1}^{2} a^{2} \cos ^{2} \theta}, \\
\omega=\frac{2 a M r \sin ^{2} \theta}{r^{2}-2 M r+m_{1}^{2} a^{2} \cos ^{2} \theta}, \\
e^{2 \gamma}=\frac{r^{2}-2 M r+m_{1}^{2} a^{2} \cos ^{2} \theta}{r^{2}-2 M r+m_{1}^{2} a^{2} \cos ^{2} \theta+M^{2} \sin ^{2} \theta}, \tag{31}
\end{array}
$$

We see from (29-31) that when $m_{1}=1$ the Kerr metric is reobtained. Asymptotically, $r \rightarrow \infty,(29,30)$ now becomes

$$
\begin{array}{r}
f \approx 1-\frac{2 M}{r}+\frac{2 m_{1}^{2} a^{2} M \cos ^{2} \theta}{r^{3}}+O\left(\frac{1}{r^{5}}\right), \\
\omega \approx \frac{2 a M \sin ^{2} \theta}{r}+\frac{6 a M^{2} \sin ^{2} \theta}{r^{2}} \\
+\frac{2 a M \sin ^{2} \theta\left(4 M^{2}-m_{1}^{2} a^{2} \cos ^{2} \theta\right)}{r^{3}}+O\left(\frac{1}{r^{4}}\right) . \tag{33}
\end{array}
$$

Now writing the metric (29-31) in the form

$$
\begin{equation*}
d s^{2}=g_{t t} d t^{2}+2 g_{t \phi} d t d \phi+g_{r r} d r^{2} g_{\theta \theta} d \theta^{2}+g_{\phi \phi} d \phi^{2} \tag{34}
\end{equation*}
$$

we obtain for the metric coefficients,

$$
\begin{array}{r}
g_{t t}=1-\frac{2 M r}{r^{2}+m_{1}^{2} a^{2} \cos ^{2} \theta}, \\
g_{t \phi}=-\frac{2 M a r \sin ^{2} \theta}{r^{2}+m_{1}^{2} a^{2} \cos ^{2} \theta}, \\
g_{r r}=-\frac{r^{2}+m_{1}^{2} a^{2} \cos ^{2} \theta}{r^{2}-2 M r+m_{1}^{2} a^{2}}, \\
g_{\theta \theta}=-r^{2}-m_{1}^{2} a^{2} \cos ^{2} \theta, \\
g_{\phi \phi}=-\left\{r^{2}+m_{1}^{2} a^{2}+\frac{2 M a^{2} r \sin ^{2} \theta}{r^{2}+m_{1}^{2} a^{2} \cos ^{2} \theta}\right. \\
\left.\times\left[m_{1}^{2}+\frac{\left(m_{1}^{2}-1\right) 2 M r}{r^{2}-2 M r+m_{1}^{2} a^{2} \cos ^{2} \theta}\right]\right\} \sin ^{2} \theta \tag{39}
\end{array}
$$

On (29-31) we can make the transformation

$$
\begin{equation*}
M_{1}=\frac{M}{m_{1}}, \quad r_{1}=\frac{r}{m_{1}} \tag{40}
\end{equation*}
$$

producing

$$
\begin{array}{r}
f=1-\frac{2 M_{1} r_{1}}{r_{1}^{2}+a^{2} \cos ^{2} \theta}, \\
\omega=\frac{2 a M_{1} r_{1} \sin ^{2} \theta}{r_{1}^{2}-2 M_{1} r_{1}+a^{2} \cos ^{2} \theta}, \\
e^{2 \gamma}=\frac{r_{1}^{2}-M_{1} r_{1}+a^{2} \cos ^{2} \theta}{r_{1}^{2}-2 M_{1} r_{1}+a^{2} \cos ^{2} \theta+M_{1}^{2} \sin \theta}, \tag{43}
\end{array}
$$

which shows that solution (29-31) corresponds to a Kerr solution with parameters M_{1} and a. We see too from (41-43) that this solution is valid too for $0<m_{1}<1$, hence the solution (29-31) is valid for

$$
\begin{equation*}
\left.m_{1} \in\right] 0, \infty[. \tag{44}
\end{equation*}
$$

The mapping $m_{1}=0$ is not allowed since then (40) has no meaning.
From $(32,33)$ we see that the difference between classic Kerr solution and $(29,30)$ lies in the third order asymptotical behaviour for f and for ω. The parameters M and a can be deduced from observations implying the potentials f and ω up to second order in $1 / r$. Once these parameters are determined, we can find m_{1} if the observations are refined up to third order in $1 / r$ for f and ω, which is the postpost Newtonian approximation.

For given M and $a, m_{1} \neq 1$ changes the geometry of spacetime, so we can classify the solutions like,

$$
\begin{array}{r}
\text { i) } m_{1}>\frac{M}{a}, \text { Kerr black hole, } \\
\text { ii) } m_{1}=\frac{M}{a}, \quad \text { extreme Kerr black hole, } \\
\text { iii) } m_{1}<\frac{M}{a}, \text { Kerr without event horizon. }
\end{array}
$$

In figure 1 we have plotted the ergospheres and event horizons, when they are defined, for different values of m_{1}. We obtain the following interesting features.

- The topology of the exterior ergospheres change according to the values of m_{1} : a) For $0<m_{1}<M / a$ (curves a and b) we have the usual spherical topology of Kerr. b) For $m_{1}=M / a$ (curve c) we have the topology of an extreme black hole of Kerr.
c) For $m_{1}>M / a$ (curves d, e and f) the topology of the ergospheres is toroidal. When $m_{1} \rightarrow \infty$ the ergosphere tends to a disc in the equatorial plane.
- The radius of the event horizon decreases and the radius of the Cauchy horizon increases when $m_{1}(<M / a)$ increases, until its limiting value when $m_{1}=M / a$. For $m_{1}>M / a$ the horizons are no more defined.
- The interior ergosphere, for $m_{1}<M / a$, increases with increasing m_{1} and is disconnected of the exterior ergosphere (curves a and a). When m_{1} attains the value $m_{1}=M / a$, the interior ergosphere joins the exterior ergosphere continuously (curve
$c)$. For $m_{1}>M / a$, the interior and exterior ergospheres are connected forming one ergosphere (curves d, e and f).
- For $m_{1}>M / a$, from the fact that both ergospheres are connected and the horizons disappear, the singularity, forming a ring, becomes naked for certain values of the angle aperture centered at the axis z. The angle increases with increasing values of m_{1}. This configuration is identical to Kerr spacetime for $M<a$ ([3] see p 375).

4 Concluding remarks

The solution that we obtained (29-31), in spite of the transformation (40) leading to the Kerr solution, is different from it for the following reasons. For a given source (M, a), the solution (29-31) can produce a toroidal topology for its exterior ergosphere even in the case $M>a$, which is never the case for the Kerr solution with the same (M, a) : to be produced, it is sufficient that its third parameter satifies $m_{1}>M / a$. Likewise, if $M<a$, the solution (29-31) can produce a spherical topology for its exterior ergosphere, it suffices that $m_{1}<M / a-$, which is never the case for the Kerr solution with that source (M, a). If, far from the source, we can associate the potentials f and ω to observable quantities, then up to the post-Newtonian approximation, $O\left(r^{-2}\right)$, we can determine the parameters M and a. The metric up to this order is indescernible from that of Kerr. But if we make observations up to $O\left(r^{-3}\right)$, then, in principle, we can determine m_{1}, and if $m_{1} \neq 1$ then we can conclude that the metric is different from Kerr with a topology depending upon its value.

Furthermore, if we compare the solution (29-31) to the one found in [1] we observe that the topology of the ergospheres are different. The angle aperture in [1] appeared in the equatorial plane, while here the equatorial plane includes, on both sides the axis z, the ergosphere for any value of m_{1}.

For (29-31) the horizons do not exist when $m_{1}>M / a$, while the singularity is naked for increasing angle apertures, centered at the axis z, while m_{1} increases. While in the solution found in [1] the singularity is always dressed because the event horizon is always defined.

Acknowledgments

NOS gratefully acknowleges financial assistance from CNPq, Brazil.

References

[1] Gariel J, Marcilhacy G and Santos N O 2002 Class. Quantum Grav. 192157
[2] Bonanos S and Kyriakopoulos E 1987 Phys. Rev. D 361257
[3] Chandrasekhar S 1983 The Mathematical Theory of Black Holes (Oxford: Oxford University Press) p 375
[4] Ernst F J 1968 Phys. Rev. 1671175
[5] Carmeli M 1982 Classical Fields: General Relativity and Gauge Theory (New York: Wiley)

Figure 1: Plots of the exterior and interior ergospheres (a to f), and the corresponding event horizons (dashed lines) for $M=4, a=2$ and different values of the parameter m_{1} : i) $m_{1}<M / a, m_{1}=1$ (Kerr) curves $a, m_{1}=1.8$ curves b; ii) $m_{1}=M / a=2$ (extreme black hole where the two horizons are the same), curve c; iii) $m_{1}>M / a$ (the horizons are no more defined), $m_{1}=2.1$ curve $d, m_{1}=2.5$ curve $e, m_{1}=10$ curve f.

[^0]: *e-mail: gariel@ccr.jussieu.fr
 ${ }^{\dagger} \mathrm{e}-\mathrm{mail}:$ santos@ccr.jussieu.fr and nos@cbpf.br

