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tion, we build a parametrized Kerr solution depending on three parameters.
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1 Introduction

In a preceding paper [1] we have presented a new three parameters axisymmetric sta-

tionary solution of Ernst equation by using Ehlers and unitary transformations on the

Bonanos [2] solution. The parameters are associated with the total mass M of the source

and its angular momentum per unit mass a. The third parameter produces a topological

deformation of the ergosphere.

Here we apply these transformations to the Kerr metric and we obtain again a solution

with three parameters. The two parameters, M and a, are present here too, and we call

the third parameter m1. We show that with a simple transformation the solution reduces

to that of Kerr again, but notwithstanding, m1 has a peculiar role. It allows to classify the

three topological families of Kerr solutions obtained for the three casesM > a,M = a and

M < a, which until now were discussed separately ([3] see p 375). Varying the parameter

m1 we can pass continuously from one family to the other. We illustrate clearly this

passage by drawing the ergospheres and horizons for different values of m1.

2 Method of solution of Ernst equation

The element of a general axisymmetric stationary spacetime is the so called Papapetrou

metric, which in cylindrical coordinates, ρ, z and φ, reads

ds2 = f(dt− ωdφ)2 − f−1[e2γ(dρ2 + dz2) + ρ2dφ2], (1)

where the gravitational potentials, f , ω and γ, are functions of ρ and z only. The canonical

coordinates of Weyl, ρ and z, can be given in terms of prolate spheroidal coordinates, λ

and µ, by the relations

ρ = k(λ2 − 1)1/2(−µ2)1/2, z = kλµ, (2)

where k > 0 is a constant, λ a radial coordinate and −1 ≤ µ ≤ 1 is an angular coordinate.

The metric (1) with relations (2) can be rewritten like

ds2 = f(dt− ωdφ)2

−k
2

f

[
e2γ(λ2 − µ2)

(
dλ2

λ2 − 1
+

dµ2

1− µ2

)
+ (λ2 − 1)(1− µ2)dφ2

]
, (3)

where the potentials are now functions of λ and µ. Einstein vacuum field equations reduce

to the Ernst equation [4],

(ξξ̄ − 1)∇2ξ = 2ξ̄∇ξ · ∇ξ, (4)

where ∇ and ∇2 are the gradient and the three-dimensional Laplacian operators respec-

tively, ξ̄ is the conjugated complex potential of ξ, and in general its solution can be

expressed as

ξ(λ, µ) = P (λ, µ) + iQ(λ, µ), (5)
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where P and Q are real functions of λ and µ. To determine the potentials f , ω and γ

of the metric (3), the method consists to use the following relation between f , the twist

potential Φ and ξ,

f + iΦ =
ξ − 1

ξ + 1
, (6)

which implies, with (5),

f =
P 2 +Q2 − 1

R2
, Φ =

2Q

R2
, (7)

where

R2 = (P + 1)2 +Q2. (8)

In (6), Φ is a twist potential defined up to a constant and related to the dragging ω by

the following differential equations,

∂ω

∂λ
=
k(1− µ2)

f 2

∂Φ

∂µ
,
∂ω

∂µ
= −k(λ

2 − 1)

f 2

∂Φ

∂λ
. (9)

The potential ω is obtained by integration of (9), and γ is determined by quadratures.

Any solution of Ernst equation is a solution of Einstein equations.

3 Parametrized Kerr solution

We start with the Kerr solution ([5] see p 382),

ξK = PK + iQK , (10)

with

PK = pλ, QK = qµ, (11)

where p and q are real constants satisfying

p2 + q2 = 1. (12)

By means of the following particular Ehlers transformation on (10),

ξ1 =
c1ξK + d1

d̄1ξK + c̄1
, (13)

where c1 and d1 are complex constants satisfying

(
c1 d1

d̄1 c̄1

)
∈ SU(1, 1), |c1|2 − |d1|2 = 1. (14)

We choose for c1 and d1

c1 = 1 + iα1, d1 = iα1, (15)
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being α1 a real constant. Then, a second step consists to perform an unitary transforma-

tion on ξ1,

ξ2 = −eiθ0ξ1 = (m+ in)ξ1, m2 + n2 = 1, (16)

with θ0 an arbitrary real constant, and m and n real constants. Now we find with

(10,13,16)

ξ2 =
A+ iB

C + iD
, (17)

where
A = PK(m− α1n)−QK(α1m+ n)− α1n,

B = PK(α1m+ n) +QK(m− α1n) + α1m,

C = −α1QK − 1,

D = α1(PK + 1).

(18)

Choosing

α1 = − n

2(1 +m)
(19)

and applying the method recalled in section 2, we find the potentials corresponding to

the solution (1), with (7), of the Ernst equation,

f =
p2λ2 + q2µ2 − 1

(pλ− 1)2 + q2µ2
cos−2 θ0

2
, (20)

Φ = − 2pµ

(pλ− 1)2 + q2µ2
cos−2 θ0

2
, (21)

ω =
2kq(pλ− 1)(1− µ2)

p(p2λ2 + q2µ2 − 1)
cos2

θ0

2
. (22)

We observe that for the calculation of Φ in (21) an adding constant that can be

transformed away since has no role for the calculation of ω in (22). The factor cos−2(θ0/2)

in (20) can be absorbed by a rescaling process, such as ds2
2 = cos−2(θ0/2)ds

2. Introducing

the coordinates r and θ through the Boyer-Lindquist transformation

λ =
r −M

k
, µ = cos θ, (23)

we obtain asymptotically r → ∞ for (20) and (22)

f ≈ 1 +
2k

p

1

r
+O

(
1

r2

)
, (24)

ω ≈ 2

(
k

p

)2
sin2 θ

r
cos2

θ0

2
+O

(
1

r2

)
, (25)

which shows that the solution is asymptotically flat. From (24,25), differently from Kerr

metric, we have

p = − k

M
, q =

a

M
cos−2 θ0

2
(26)
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and from (12) we have,

k2 = M2 −m2
1a

2, (27)

where

m1 = cos−2 θ0

2
. (28)

with m1 ∈ [1,∞).

Finally, with the above choice for the constants we can rewrite the potentials like

f = 1− 2Mr

r2 +m2
1a

2 cos2 θ
, (29)

ω =
2aMr sin2 θ

r2 − 2Mr +m2
1a

2 cos2 θ
, (30)

e2γ =
r2 − 2Mr +m2

1a
2 cos2 θ

r2 − 2Mr +m2
1a

2 cos2 θ +M2 sin2 θ
. (31)

We see from (29-31) that when m1 = 1 the Kerr metric is reobtained. Asymptotically,

r → ∞, (29,30) now becomes

f ≈ 1− 2M

r
+

2m2
1a

2M cos2 θ

r3
+O

(
1

r5

)
, (32)

ω ≈ 2aM sin2 θ

r
+

6aM2 sin2 θ

r2

+
2aM sin2 θ(4M2 −m2

1a
2 cos2 θ)

r3
+O

(
1

r4

)
. (33)

Now writing the metric (29-31) in the form

ds2 = gttdt
2 + 2gtφdtdφ+ grrdr

2gθθdθ
2 + gφφdφ

2, (34)

we obtain for the metric coefficients,

gtt = 1− 2Mr

r2 +m2
1a

2 cos2 θ
, (35)

gtφ = − 2Mar sin2 θ

r2 +m2
1a

2 cos2 θ
, (36)

grr = − r2 +m2
1a

2 cos2 θ

r2 − 2Mr +m2
1a

2
, (37)

gθθ = −r2 −m2
1a

2 cos2 θ, (38)

gφφ = −
{
r2 +m2

1a
2 +

2Ma2r sin2 θ

r2 +m2
1a

2 cos2 θ

×
[
m2

1 +
(m2

1 − 1)2Mr

r2 − 2Mr +m2
1a

2 cos2 θ

]}
sin2 θ. (39)

On (29-31) we can make the transformation

M1 =
M

m1

, r1 =
r

m1

(40)
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producing

f = 1− 2M1r1
r2
1 + a2 cos2 θ

, (41)

ω =
2aM1r1 sin

2 θ

r2
1 − 2M1r1 + a2 cos2 θ

, (42)

e2γ =
r2
1 −M1r1 + a2 cos2 θ

r2
1 − 2M1r1 + a2 cos2 θ +M2

1 sin θ
, (43)

which shows that solution (29-31) corresponds to a Kerr solution with parameters M1

and a. We see too from (41-43) that this solution is valid too for 0 < m1 < 1, hence the

solution (29-31) is valid for

m1 ∈]0,∞[. (44)

The mapping m1 = 0 is not allowed since then (40) has no meaning.

From (32,33) we see that the difference between classic Kerr solution and (29,30) lies

in the third order asymptotical behaviour for f and for ω. The parameters M and a can

be deduced from observations implying the potentials f and ω up to second order in 1/r.

Once these parameters are determined, we can find m1 if the observations are refined up

to third order in 1/r for f and ω, which is the postpost Newtonian approximation.

For given M and a, m1 �= 1 changes the geometry of spacetime, so we can classify the

solutions like,

i) m1 >
M

a
, Kerr black hole,

ii) m1 =
M

a
, extreme Kerr black hole,

iii) m1 <
M

a
, Kerr without event horizon.

In figure 1 we have plotted the ergospheres and event horizons, when they are defined,

for different values of m1. We obtain the following interesting features.

• The topology of the exterior ergospheres change according to the values of m1: a)

For 0 < m1 < M/a (curves a and b) we have the usual spherical topology of Kerr.

b) For m1 = M/a (curve c) we have the topology of an extreme black hole of Kerr.

c) For m1 > M/a (curves d, e and f) the topology of the ergospheres is toroidal.

When m1 → ∞ the ergosphere tends to a disc in the equatorial plane.

• The radius of the event horizon decreases and the radius of the Cauchy horizon

increases when m1(< M/a) increases, until its limiting value when m1 =M/a. For

m1 > M/a the horizons are no more defined.

• The interior ergosphere, for m1 < M/a, increases with increasing m1 and is dis-

connected of the exterior ergosphere (curves a and a). When m1 attains the value

m1 = M/a, the interior ergosphere joins the exterior ergosphere continuously (curve
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c). For m1 > M/a, the interior and exterior ergospheres are connected forming one

ergosphere (curves d, e and f).

• For m1 > M/a, from the fact that both ergospheres are connected and the horizons

disappear, the singularity, forming a ring, becomes naked for certain values of the

angle aperture centered at the axis z. The angle increases with increasing values of

m1. This configuration is identical to Kerr spacetime for M < a ([3] see p 375).

4 Concluding remarks

The solution that we obtained (29-31), in spite of the transformation (40) leading to the

Kerr solution, is different from it for the following reasons. For a given source (M, a),

the solution (29-31) can produce a toroidal topology for its exterior ergosphere even in

the case M > a, which is never the case for the Kerr solution with the same (M, a):

to be produced, it is sufficient that its third parameter satifies m1 > M/a. Likewise, if

M < a, the solution (29-31) can produce a spherical topology for its exterior ergosphere, -

it suffices that m1 < M/a -, which is never the case for the Kerr solution with that source

(M, a). If, far from the source, we can associate the potentials f and ω to observable

quantities, then up to the post-Newtonian approximation, O(r−2), we can determine the

parameters M and a. The metric up to this order is indescernible from that of Kerr.

But if we make observations up to O(r−3), then, in principle, we can determine m1, and

if m1 �= 1 then we can conclude that the metric is different from Kerr with a topology

depending upon its value.

Furthermore, if we compare the solution (29-31) to the one found in [1] we observe

that the topology of the ergospheres are different. The angle aperture in [1] appeared in

the equatorial plane, while here the equatorial plane includes, on both sides the axis z,

the ergosphere for any value of m1.

For (29-31) the horizons do not exist when m1 > M/a, while the singularity is naked

for increasing angle apertures, centered at the axis z, while m1 increases. While in the

solution found in [1] the singularity is always dressed because the event horizon is always

defined.
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Figure 1: Plots of the exterior and interior ergospheres (a to f), and the corresponding

event horizons (dashed lines) for M = 4, a = 2 and different values of the parameter m1:

i) m1 < M/a, m1 = 1 (Kerr) curves a, m1 = 1.8 curves b; ii) m1 = M/a = 2 (extreme

black hole where the two horizons are the same), curve c ; iii) m1 > M/a (the horizons

are no more defined), m1 = 2.1 curve d, m1 = 2.5 curve e, m1 = 10 curve f .


