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Abstract

We introduce in terms of Astekar Variables, a self-avoiding Quantum Universes representation for
a A¢* Third Quantized Geometrodynamical Field Theory of Gravitation

Introduction

One of the most important not solved problems in Geometrodynamics of Third Quantization for
Einstein Gravitation Theory is related to a description of process involving joining and splitting of
Universes. I address in this paper a formal Path-Integral solution for this problem by proposing a
A¢* - Field Theory of Universes amenable to a description in terms of a Dynamics of
Self-Avoiding Quantum Universes. My framework is a suitable generalization for quantum gravity
processes of a similar geometrical procedure used years ago by Symanzik in his non-perturbative
self-avoiding loop representation for the usual A¢* - Point Like Field Theory ([2]) and by myself in
the proposed Self-Avoiding String Field Theory of ref. ([3]). In section 2 I present my proposed
Geometrodynamical Propagator in terms of Astekar-Sen variables. In section 3 I present mine
many universe path integral. Finally, in appendix A, B, I clarify some remarks presented in the
bulk of this paper.

The Wheeler - De Witt Geometrodynamical Propagator

The starting point in Wheeler - De Witt Geometrodynamics is the Probability Amplitude for
metrics propagation in a cylindrical Space Time R* x [0, 77 ([1]), the so called Wheeler Universe
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G[g™;%g% = | dulhy]exp[-S(hym)] (1)
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where the integration over the four metrics Functional Space on the cylinder

R® x [0,T7] is implemented with the Boundary conditions that the metric field %, (x, ) induces on
the Cylinder Boundaries the Classically Observed metrics *g™(x) and *g®Y" (x) respectivelly. The
Covariant Functional measure averaged with the Einstein action
Shy) = I d*xdt( Jg R(g)) is given explicitly in ref. ([4]).

R3x[0,T]
Unfortunatelly the use of eq.(1) in terms of metrics variables is difficulted by the “Conformal
Factor Problem” in the Euclidean Framework (see appendix A for this result). In order to
overcome such difficulty I follow ref. [5] by using from the begining, the Astekar Variables to
describe the Geometrodynamical Propagation.
Let me, thus, consider Einstein Gravitation Theory Parametrized by the SU(2) Three-Dimensional
Astekar - Sen connection 4§ (x, ) associated to the Projected Spin Connection on the Space - Time
Three - Dimensional Boundaries ([5]).

AFN () = -i0¥(x,0) + S-€505 (x,0) 2)

A3 (x) = —i0f(x, T) + -e50k(x,T) 3)

An appropriate action on the Functional Space of Astekar-Sen connections is proposed by myself
to be given explicitly by a slight modification of that proposed in ref.([S]). My proposed action is
given by a covariant o-model like Path Integral with a scalar intrinsic field £(x,#) on R* x [0,7].
Here p? denotes a scalar “mass” parameter which my be vanishing (massless Wheeler-Universes).

S,2[Af(x, 1), E(x,1)] =

v
]6;(} Jai | x| (%Acw) G‘“’"’*’[A](%)Ab,v] .

0 R3

+ u? }a’t I d*x E(x,1)

0 R3

where the invariant metric on the Wheeler - De Witt Super Space of Astekar Connections is given
by

G_ua,vb[A] i (b(A))_l (J;fava ,.J;beva)(A) (3)

with
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JHa(d) = L €F*PFL,(4) (6)
and
b(d) = det(J(4)) .. (7)

My proposed Quantum Geometrodynamical Propagator will be given now by the following Formal
Path Integral

G[A™N, A°VT] = I d™" (A5 06,1)) % [ (T ey o, (@EG 1) ) %
AG(x0)=A5"N(x), A5(xT)

C))
xexp(—sz[Aﬁ )

where the invariant functional measure over the Astekar -Sen Connections is given by the invariant
functional metric ([5])

A = | B xdi[5A . T [A)(0Av)](x, 1) ©)

R3%[0,7]

In order to show that the Geometrodynamical Propagator eq.(8) satisfies the Wheeler - De Witt
Equation, I follow my procedure to deduce Functional Wave Equations from Geometrical Path
Integrals by exploiting the effective Functional Translation Invariance on the Functional Space of
the Scalar Intrinsic metrics (E(x,?)) at the Boundary ¢ - 07 (see ref. [6]). As a consequence, have
that the propagator eq.(8) satisfies the Wheeler - De Witt Equation with the “mass” parameter p?.

. 52 e 4. o
Cabcﬂv(AIN)(x)WG(AI ,A°UT) =

(10)
= _“ZG(AIN;AOC)T) _I_S(F)(ALN,;: —A?W’a)

where we have used the Euclidean commutation relation (which does not have (: v-1 ) to obtain
eq.(10).

[(CF  (Ztn) )i Aty | = 8905 an

It is mstructive to remark that classical Canonical Momentum written in eq.(11) is given by the
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Schroringer Functional Representation in the quantum mechanical equation (10).

]___[,Uﬂ(x) = m (12)

It is worth point out that the usual Covariant Polyakov Path Integral for Klein - Gordon Particles
my be considered as the 0-dimensional reduction of the Geometrodynamical Propagator eq. (8)
(see eq. 2.1: second reference of [4]).

At this point I remark that by fixing the Gauge E(x,?) = ::—? with p? the “mass” parameter, we

arrive at the analogous Proper-Time Schwinger Representation for this Geometrodynamical
Quantum Gravity propagator ;

Gz[A™,49VT] = jdze-(f"ff) x j'dff\’V(Aﬁ) x exp(-S[A%(x,1)]) (13)
0

where E = (F, u?) x vol(R?) is the renormalized mass parameter in the Schwinger Proper-Time
representation.

In the next section I will use the Proper-Time dependent Propagator given below, as usually 1s
done in the Symanzik’s Loop Space approach for Quantum Field Theories ([2]) to write a
Third-Quantized Theory for Gravitation Einstein theory in terms of Astekar-Sen variables.

G[A‘W,AOUT; T] = j’ dINV(Aﬁ) »

Al 0)=AFN(x); 45(@TIAET (x)

xexp{—gikss [t [ o3[ (ZAan) x G [A)(FAup) ) }

(14)

Unfortunatelly exactly solutions for eq.(10) with u? # 0 or eq.(14) were not found yet. However
its o —like structure and SU(2) Gauge Invariance may afford to truncated aproximate solutions as
usually done for the Wheeler-De Witt equations by means of the Mini-Super Space Ansatz. Finally
let me comment on the introduction of a Quantized Matter Field represented by a massless field
@(x, 1) on the Space Time.

By considering the effect of the introduction of this quantized field as a fluctuation on the
Geometrodynamical Propagator eq.(8) one should consider the following functional representing
the interaction of this massless quantized matter and the Astekar-Sen connection as one can easily
see by making E(x, ¢) variations




CBPF-NF-039/98

swtag o1~ o on{[o(- (53 oo

R3

(e[ hotran» e an)o. Jo) e}

Now the effect on integrating at the scalar matter field in eq. (14) is the appearence of the further
effective action to be added on the o —like action of our Proposed Geometrodynamical Propagator.

SErr[Ag, B, T] = —L1g detr {—%( gt) +8,( LG E’F[A] Aps x G4 [4]2 Acm)av}
(16)

The Coupling with (Weyl) Fermionic Matter is straight forward and leading to the Left-Handed
Fermionic Functional Determinant in the presence of the Astekar-Sen connection Afi(x,1)

([71.[9D).
The joint probability for the massless field propagator in the presence of a fluctuating geometry
parametrized by the Astekar-Sen connection is given by

GIAN; AU ;< o(x1,11)p(x2,12) >] = [d™NV[AG]d[E] x A% (x,~o0) .

= Ag(x); A3, 40) = 45OV (x) exp {‘— J di [ dx>

—on R3

(g * (B ) Gt AY (GAs) ) +12 [ e r>}

-

xdet s [~-Z (EL) +0,(LGHP[A1-LAup x GEI[A] X ZAop)d, | %

3 ) ) 3 3
X llm(x‘;)...(} mm exp{—— I dtd! I d’xd y X

=00

JE\)( ahcep"p Ga‘u’brpr AiA ty X va’pr 3 A ” n x (GP3 b’”p’”i p" " s L)
n arip'b b b

[_%(‘E%) +8#(%(}aﬂ’bp[A]%APbG§3 gIAcp)av]}((x,t),(y,f)) X

n..n

X{Eh?abce;wp (Ga'u blp! 6 A iy X Gbvb'p g R ch;bmpm %Apr”,bm}(y,f)}
(17)
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A ¢A* Geometrodynamical Field Theory for Quantum Gravity

Let me start the analysis by considering the generating functional of the following
Geometrodynamical Field Path Integral as the simplest generalization for Quantum Gravity of
Similar well-defined Quantum Field Theory Path Integrals os Strings and Particles ([2],[3]).

Z4)] = [D7(@A]) x exp{~[dvi)p(A] x ([dx(eane Fi(4) 527 ) ) ) 4141 } X

FAG6A4%
xexp{-A[d*xd’y [dv(A)dv(4) ($*[Ax)]$*[A() ]) x 6P (4,x)-4,0)) }

exp{~[dv(4)J (4)$[A]}
(18)

The notation is a follows: (i) The Universe Third Quantized field is given by a functional ¢[4]
defined over the space of all Astekar-Sen connections configurations M = {4%(x);x € R*}. The
sum over the functional space M is defined by the Gauge and Diffeomorphism invariant and

Topological - Non - Trivial Path Integral of a Chern - Simons Field Theory on the Astekar - Sen
connections

dv(d) = [(L,cp dAZ()) X exp{-jaﬁx(A AdA + %A AA /\A)(x)} (19)

(iii) The Third Quantized Functional Measure in eq.(16) is given formally by the usual Feynman
product measure

DF(9[A]) = [ | do14] (20)

AeM

and (iv) The x¢* - like interaction vertex is given by a self-avoiding Geometrical Interaction among
the Astekar - Sen Field Configurations in the Extrinsic Space R>.

3
2 8@ (4a(x) -4,0)) (21)

The proposed interaction vertex was defined in such way that allows the replacement of the Four
Universe interaction in eq.(18) by an independent interaction of each Astekar-Sen correction with
an extrinsic triplet of Gaussian stochastic field W9(x) followed by an average over W¢. Similar
procedure is well know in many-body and many Random Surface paht integral quantum field
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theory ([2],[3]). So, I can write equation (18) in the following form
3
Z[J(A)] = <jDF(¢[A]) x exp{ jdv(A)[gb[A](L(A) = ifljaﬂx(zi: W"(Aﬁ(x))) ) ><>
xP[4(x)] +J(A)9[A]]}),

(22)

Here, W“(A“) means the external a-component of the triplet of the external stochastic field {W}}
projected on the Astekar-Sen Connection {4 }, namelly

WFtar) = _[a” x WA (x),45(x),45(x)) (23)

and has the white noise stochastic correlation function
(Wex")WP (') = A6 (xH — yH)6% (24)

The L(A4) operator on the functional space of the universe field is the Wheeler-De Witt operator
defining the quadratic action in eq.(18).

In the free case A = 0. The Third Quantized Universe Path Integral eq.(18) is exactly soluble with
the following Generating Functional

ZJA)] 3
Z[O] = exp{—l—— IdV(A)dV(A)J(A)(Id X € abe ;W(A) 5Aﬁ5Ab ) (A A) XJ(A)}
(25)

Here the functional inverse of the Wheeler-De Witt is given explicity by the Geometrodynamical
Propagator eq.(13) with £ = 0 (see eqs.(13)-(14)).

=1
(Id X € abe 'IW(A)W) (A,Z) =2 JO dTG[A,Z,T] (26)

In order to reformulate the Third Quantized Universe Field Theory as a dynamics of Self-Avoiding
Geometrodynamical Propagators, I evaluate formally the Gaussian ¢[4] Functional Path Integral in
eq.(18) with the following result
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a=1

3
Z[JA)] = <det“[_[ dPreq, W(A)WM,, z‘z(z W "(x)))] x

) =1
xexp{ jdv(A)dv(A)xJ(A)[j dPX € abe W(A)Mwb iA(EW“(Aﬁ(x))) }(A,Z)XJ(Z)}
a=1

(

Let me follow the previous studies implemented for particles and strings ([2],[3]) by defining the
Functional Determinant of the Wheeler - De Witt operator by the Proper-Time technique

—21 log det|:L(A) +id | d%(i W“(Aﬁ(x))) } = —T%{jdv(A)dv(Z)es(F) (4-4) x
a=1 0

Rf!

x<A ; exp[—-T(L(A) +iﬂ.d3x(i W“(Afj(x)))) ]|Z>}
a=1

(28)

with the Geometrodynamical Propagator (see eq.(14)) in the presence of the Extrinsic Potential
{W{(x)} being given explicity by the Path Integral below

<A

zjdﬂ\’V[Bg(x,x)]exp{ - jdrjaﬁx[( 2 Bay) x G*P[BI(LBy) ](x, 1)}

R'!

R"

exp[ ~T(L(A)) +iA [ d®x (ZW"(A (x)))]gz> =

R}

xexp{_z; [dt | dx (Z W B, r)))}

(29)

By substituing eq.(29) and eq.(28) into eq.(27) and making a Loop Expansion of the functional
determinant, I obtain eq.(18) as a Theory of an Ensemble of Geometrodynamical Propagators
interacting with the Extrinsic Gaussian Stochastic Field {W*“(x)}. The Gaussian average ( )w
may be straightforwardly evaluated at each loop expansion order and producting the self-avoiding
interaction among the Geometrodynamical Propagators (the Wheeler Quantum Universes) and
leading to the picture of Joining and Sppliting of These Wheeler Universes as necessary for the
description of the Universe in its Space-Time Third Quantized foam picture of Wheeler.

For instance, by neglecting the functional determinant in eq.(27), I have the following expression
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for the Geometrodynamical Third Quantized Propagator.

a N a, (ﬂ) a
((I)[A I\] A OU? J'di( J At INV[B (x I)]

ot (a3 (£8.,) G101 ($.) 1o | 3¢

rabies
xexp{ﬁg_z [aifal [ dxdy (25“)(8 CORE off)))}
0 =0 R3?

Next corrections will involve self - avoiding interactions among differents Wheeler Universes
associated to different Astekar-Sen connections associated to different Geometrodynamical
Propagators appearing from the Functional Determinant Loop Expansion eq.(28).

Finally, I comment that calculations will be done sucessfully only if one is able to handle correctly
the Geometrodynamical Propagator eq.(14) on eq.(17) and, thus, proceed to generalized for this
Quantum Gravity case the analogous framework used in the Theory of Random Lines and
Surfaces ([2],[3]). Work is on the progress to solve eq.(10) and eq.(14) by means of strings
theories ([7]).

Acknowledgements the author is grateful to Professor Helayel-Neto from DCP-CBPF for support
and warm hospitality. This work is supported by a CNPq grant.

Appendix A

In this appendix we briefly describe the Functional Integral of the Geometrodynamical Propagator
in terms of the metrics field A, (x,7) on RPx(0,7). In this framework, the metric boundary
condition and the conformal factor (regarded as an independent dynamical degree of freedom as in
2D Quantum Gravity - ([6]) are taken into account by using the metric decomposition

ho(x,t) = p(x, 0)[ =N?(x,1)(d)? + gi;(x, 1) (dx’ + N'(x,1)dr)(dx’ + N/ (x,1)dr) ]
(d=1)

where p(x, 1) is the conformal factor; {N(x,#),N'(x, )} are the lapse-shift pieces of the metric field
satisfying the boundary metric piece of eq.(4 — 1) with the boundary condition

B (x,0) = *2MG&) Ay T) = 2% (x)

The Differomorphism invariant functional measure m eq.(1) may be expressed in terms of
decomposition eq.(4 — 1) by evaluating the associated invariant functional volume from the De
Witt functional metric expressed in terms of this new parametrization
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ds} = [ dPxdt{NJh (5gasN;N;h, p)) (g% 8" ) (N;N 'sh,p) x 88 (N:N s, p) }
4-2)

Here we have used a notation which emphasizes the dependence on the new parametrization
eq.(4 —2). For the case where one supposes that the conformal factor does not play any
dynamical-role we have the relationship

ol = %’i;agm = 2(6N*)g N’ — 2NSN — N*(6hy ;)N ';
0gio = hiy(6N7) — (6h;;N/)
08i; = Ohy

After substituing eq.(4 —3) intoeq.(4 —2) we, thus, obtain the associated volume element (The
Functional Covariant Metric) in terms of the A.D.M. variables. Unfortunatly the present use of
such parametrization in Path Integrals for Quantum Gravity is an open question.

In the case of a dynamical conformal factor
gu (1) = e &0 gy (x, 1) (4.=4)

One is lead to consider the following Higher Derivative Invariant Path Integral

o uig) [ ago (e Tx {exp{~ [ dRdt(JER) }I; = e } x exp{-l(@.2)}
4-5)

with the Conformal Factor Four Dimensional Anomaly Action ([4],[9])

I(0,8) = [dPxdt (g {[ciRwR" + AgR](®) X @ + ¢3[Ruw (VaVE) (@) +
(4-6)
—4ore,A0 + 00" 0,) +3(0z0) } (x,1)

and the covariant functional measure for the conformal factor

10
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dg()y[e—“’TD :I = H(@e‘%)dm(}(’!) (A —7)

xeR*

It is worth point out that neither of the above displayed Quantum Gravity Propagator
Parametrizations allows to express the interaction with our external disorder field eq.(23) in a local
form.

Finally we remark that our proposed action in eq.(14) i1s similar (but not equal) with that action
proposed in eq.(8) - ref [8] with zero cosmological constant and by integrating their conjugate field
variable with a Feynman Measure in the Gauge of a vanishing Gauss law and zero shift function.
Further study will be necessary to clarify the above cited similarities ([5],[8]).

References

[1] - S.B.Giddings and A.Strominger - Nucl. Phys. B321,(1989), 481
- C.Teitelboin, Phys. Rev. D25 (1982), 3159

[2] - K. Symanzik, in Local Quantum Theory, Ed. R. Jost (Academic, London, 1969)
- Luiz C.L. Botelho, Mod. Phys. Lett. B, vol. 5 (1991), 391
- S. Albeverio at al, Phys. Letts. 104 A, (1984), 396

[3] - Luiz C.L. Botelho, Mod. Phys. Lett. B, vol. 6 n24, (1992), 203
- Luiz C.L. Botelho, Brazilian Journal of Physics, vol.22 n?4, (1992), 323

[4] - Luiz C.L. Botelho, Phys. Rev. D38, (1988), 2464
- E. Mottola, J. Math. Phys. Rev. 36, (1995), 2470

[5] - R. Cappovilla, T. Jacobson, J. Dell; Phys. Rev. Letters, 63, (1989), 2325
- S00 and Smolin, Nucl. Phys. B449, (1995), 289

[6] - Luiz C.L. Botelho, J. Math. Phys. 39, (1989), 2160

[7] - Luiz C.L. Botelho, Phys. Rev. 52D, (1995), 6941
- Luiz C.L. Botelho, Phys. Lett. 415B, (1997), 231

[8] - Lay Nam Chang and Chopin Soo, Phys. Rev. 53D, (1995), 5683

[9] - Thomas L. Bronson and Bent Orsted, Proccedings of the American Mathematical
Society, vol. 13 n?3,(1991), 669.

1l




