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A class of Bianchi IX cosmological models is shown to have
chaotic gravitational collapse, due to Poincare's homoclinic
phenomena. We can program such models so that for any given
positive integer N(N=» included) the universe undergoes N non
-periodic oscillations (each oscillation requiring a long time)
before collapsing. For N== the universe undergoes periodic os

cillations.
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Stochastic properties in the gravitational collapse of a cos
mological model were first discussed in the papers of Belinekii,
Khalatnikov and Lifshitz.! They showed that the approach to the
singularity (t>0) of a general Bianchi IX cosmological solution
is an oscillatory mode, consisting of an infinite sequence of
periods (called eras) during which two of the scale functions
oscillate and the third oﬁe decreases monotonically; on passing
from one era to another the monotonic behaviour is transferred
to another of the three scale functions. The "length" of each
era is determined by a sequence of numbers {XS|O<XS<1, s = inte
ger}, each of which arises from the preceding one by the trans

formation XS+1=Fractional Part of %L. From the properties of
S

this map it is obtained that the behaviour of the model becomes
stochastic on approaching to the singularity (t=0) for arbi-
trary initial condition given at a t_>0. For the vacuum case
(Mixmaster universe?) and other variables, Chernoff and Barrow’
derived maps which also exhibit strong stochastié properties.
The stochasticity is an intrinsic feature of the maps which ap-
proximate the dynamics of the model (described by Einstein e-
quations) close to the cosmological singularity.

In the present letter we produce an exact example in which
the stochastic behaviour in the gravitational collapse of a
Bianchi IX cosmological model is due to Poincaré's homoclinic
phenomena." This strongly suggests that these phenomena are the
basic feature of chaotic behaviour in a general case.!’? ‘We
use some new modes of doing exact perturbations of the Einstein
universe. The necessary mathematical prerequisites are given

without proof but we provide a number of references.
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The topology of the Einstein universe® is RxS®. Here S°® is
Hopf's fiber bundle with base space S? and fiber homeomorphic
to 8'.® Let (X, /X, ,X,) be left invariant vector fields over

S?, with X, tangent to the fiber S. and o' its corresponding

1 1
dual l-form. The tangent space of S?® at any point can then be

split into the X, component with line element gv=(01)2 and in

1
to the orthogonal complement whose line element Iy is pulled
back from the geometry of the base space S?. The temporal co-

ordinate is defined on R, and the geometry of the Einstein u-~

niverse is then split into
ds? = dtz—)\z(gv+ gy) (1)

according to the local fibering RxS'xU where UC S?, and A? is
a constant parameter. Starting from the geometry (l) we con-
struct the following family of models: the radius of the 2-
-sphere S? and the radius of S! are made time-dependent, with
respective time dependence B(t) and A(t). We then obtain in

RxS® the time-dependent geometry
ds? = dt? - {Az(t)gV+B2(t)gH} (2)

The dynamics of the models is described by Einstein equations
with the cosmological constant term. We take for the matter
content of the model a perfect fluid with matter-energy den-
sity p, pressure p and four-velocity field 3/9t. Einstein e-
quations for (2) reduce to three independent differential e-

quations. Two of them define p and p, whereas the third one
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yields the differential equation

B. B2 A AB _ 1 A2

=+ (B) - 222 = oA

B B A AB B2 B*

=0 (3)

The physically admissible solution of (3) are restricted by
the energy conditions’ which p and p must satisfy. For all cases
considered in this letter the energy conditions are always sat-
isfied.

We distinguish from (3) the following cases: (I) The Enstein
undivense: A? =B? = 1% and the field equations imply kp = -2A =

= —l—-, p=0. (II) Kxact pertunbation of the Sector {base space)

2
52235 the geometry: A?=1?, and from (3) the dynamics can be
‘described by the Hamiltonian H = 3 (3)?+V(q) =C with v(q) =
=2q - 2A?£ng and C = const, where we have denoted g =B?(t). The
graph of V(g) is depicted in Fig. 1. The minimum of the po-
tential occurs for g = A2 =BE, that is, the configuration of

the Einstein universe is a point of stability of the class of

models (II).

4
Viq) f
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The trajectories of the system in the phase plane (q}é) are
closed curves about (qE,O). Each periodic trajectory corresponds
to an exact stable cosmological solution depending on the ener-
gy parameter C and which can be confined to any neighborhood. of
the stability point (qE,O) by a suitable variation of C.In this
sense these are denoted exaci stable perturbations of the Einstein
universe. (III) txact Penturbation of the Secton ( fiber) S': BZ=)\?

and the dynamics of A(t) is described by the time independent Ha-
1

4)*"
graph of V(A) is depicted in Fig. 2. The minimum of the poten-

miltonian H=%‘- (A)2 + V(A) =D, where V(A) = (a"*-212A2%). The

tial also corresponds to the configuration of the Einstein u-

niverse.

fvia

We restrict ourselves to the non-negative range of A since 2a=0
corresponds to the physical singularity of the model. From the
point of view of mathematical dynamical systems, both regions
are admissible. The trajectories of the system in the phase

plane (A,A) are depicted in Fig. 3. It is most important to re
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mark that the unstable equilibrium point (0,0) is homoclinic®’?

. . + -
and its homoclinic trajectories H and H correspond to the

value of the energy parameter D=0,

>o

Homoclinic fixed point

Homoclinic curve H™
Homoclinic curve H*

NN .
=N

Fig. 3

(IV) This is the case of interest, the interaction (via gravi-
tation) of the degrees of freedom of the two sectors S!' and S°.
We consider the special mode in which the oscillations in the
sector S? excite the degree of freedom of the sector S!, via
gravitational interaction. Namely, taking for B(t,C) a periodic
exact solution of (II) and substituting in (3) we obtain

A"+ 1 (a%-x%a) = 0 (4)

B2
Here a prime denotes d/dn where the variable n is defined by
dn =B~ 'dt. For B2 = const = A? the curves in the phase plane are
given as in Fig. 3. The Hamiltonian system obtained from (4)

0

is ergordic and even mixing ** for a large set of initial con-
g g

ditions, which depend on the value of C determining the ampli
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tude and period of B?(t,C) in (II). We shall not discuss these
properties here, but for our purposes in the present letter it

2

is sufficient to consider C:=VEr}€2, £’ infinitesimal. We ob-

tain from (II), with A% =1,
B2 =1+¢ cos/2n (5)

This infinitesimal oscillation is ehough to generate chaotic evo
lution of the universe, as we proceed to show.

The phase—plane trajectories of the dynamical system (4) are
perturbations of the curves of Fig. 3 for the conservative case
(II1). We concentrate now on the homoclinic curves of Fig. 3
and we use a method due to Melnikov!!' to detect Poincaré's ho-

moclinic phenomena.®’?*?

In our case the homoclinic fixed point
(0,0) is unchanged under the perturbation. By a general result
of dynamical systems, the Poincaré map'® to period T=/21 pos-
sesses invariant curves I'° and I'“ (respectively called the stable
and unstable 1-dim manifoids), élose (to order ¢, for future

and past times, respectively) to the umperturbed homoclinic curve,

as in Fig. 4).
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The Mefnikov's distance function de(no) can be written as
- 2
ds(no) = eM(n,) +0(e”)

where n, is the variable n corresponding to the initial unper
turbed homoclinic trajectory.If the function M has simple ze-
ros, then for ¢ >0 sufficiently small r'® and I'" intersect trans

versally. This is our case since we obtain
M(n,) = K sin/-fnO

"where K is a non-zero constant, given by a residue integral.'"
In fact M(no) has an infinity of simple zeros which implies
that T'° and I'" intersect transversally infinite times. Due to
unicity of solutions none of the two curves intersect it
self,. but the area-preserving property of the Poincaré

10-»

map of a Hamiltonian dynamical system®’® implies that each one bends in

a complex way that it intersects all the loops of the other

in infinitely many times.'?’?!?®

The above properties imply that
these invariant curves are "area filling" , namely any arbitrary
point eventually maps arbitrarily close to any other point in
the region considered. These are the so-called homoclinic phe

nomena of Poincaré,"’t2’%®

and the complexity of behaviour of
the curves introduce a stochastic element in the dynamics. In
fact, let us call the first intersection point J (see Fig. .5)
and let N(J) be a neighborhood of J.It can be shown that N(J)

has a certain subset I with the following properties: it is

uncountable, closed, of measure zero'® and contains points: which
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are arbitrarily close to J.'®’!7 This set I is invariant un-
der iterates of the Poincaré map and has chaotic dynamics in
the sense that a suitable power of the Poincaré map is equi-

s.'?’ 1 Introducing

valent to a Bernoulli shift on two symbol
the notation of symbolic dynamics where +1 (respectively -1)
corresponds.to the part of a trajectory which .remains near
(in a neighborhood of order e) the unperturbed homoclinic or
bit H' (respectively the homoclinic orbit H™), cf. Fig. 3 -
until it reaches the neighborhood N again - we can always find

points of I such that orbits of these points wvisit neighbor-

hoods of H' and H™ in any specified order.

AA
u
r -
-~ ~
L7 N
// N\
/ \
\
4 >
N\ J A
\
. / N(J)
\\\ z,
PS S =
Fig. 5

In other words, for any given symbolic sequence of 1l's and
-l's, say (...1111-11-111-1....) there will be a point in I
such that its orbit will be about H' and H™ in the specified
order. Notice that the appearance of two adjacent symbols 1 -1
in the specified symbolic segquence means that the orbit cros
4¢4 the axis A=0 on passing from the neighborhood of gt to

the neighborhood of H™.
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However we know that A=0 corresponds to the physical singu-
larity of the cosmological model (divergence of energy densi-
ty, curvature invariants, etc): thus the appearance of the sym
bol -1 for the first time in the symbolic sequence corresponds
to the gravitational collapse:of the system. Using the above
properties we now make the following progiram for the dynamics
of the universe: for any given positive integer N we construct

the symbolic sequence

111....11-1....
v

N times

and find a point Q,€ I corresponding to the above sequence. We
then have - for Q  as the initial value of our system - that
the model oscillates (more precisely oscillates non-periodical
ly about the homoclinic curve H+, each oscillation requiring
a long time)lé N times before undergoing gravitational col-
lapse. The case N =« deserves a special comment. It is a remar-
kable mathematical fact!’ that the doubly infinite sequence.of
1l's corresponds to a periodic trajectory for which A > 0. There
fore this case corresponds to an universe undergoing periodic
oscillations, without collapsing,

The probabilistic programming of the gravitational collapse
of the present model was shown for exact perturbations of the
sectors S! enhanced via gravitational interaction by oscilla-
tions in the sector S? of the geometry of the Einstein  uni-

verse. This result could in principle be extended to more gen

eral Bianchi IX models. A more complicated interaction of the



CBPF-NF-039/84

oscillations of the sector S* and the sector S? via Einstein
equations could give analogous properties (at last to first
order approximation) although a complete analysis shall re-
quire a more elaborate exam of the general system (3) re-
stricted by the energy conditions.

The important feature of our example is the existence, in
the case (ITIT), of +the homoclinic curves gt and H
linking the fixed point (0,0) to itself, The introduction of
a small perturbation (via gravitational interaction) by the
oscillations of the sector S? is sufficient to break this smooth
link and produce homoclinic phenomena of Poincaré in a small
neighborhood of H+IJH—U{(0,0)}. The homoclinic phenomena are
the basis of the chaotic behaviour of the system and of its
chaotic approach to the cosmological singularity.

Although we have shown this for a particular example, it
strongly suggests that, for the general case, homoclinic phe-
nomena are the basic ingredient of the stochastic behaviour in

the gravitational collapse of closed cosmological models.
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