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ABSTRACT

Within a real space renormalization group framework Dbased
on self-dual clusters, we discuss the criticality of the quenched
bond-mixed gq-state Potts ferromagnet on square lattice. On qual
itative grounds we exhibit that the crossover from the pure
fixed point to the random one occurs, while q increases, through
a pitchfork bifurcation; the relationship with Harris criterion
is analyzed. On quantitative grounds we present high precision
numerical values for the critical temperatures corresponding
to various concentrations of the coupling constants Jl and Jys
and various ratios Jl/JZ' The pure, random and crossover crit

ical exponents are discussed as well.
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I - INTRODUCTION

During the last few years, considerable theoretical effort
has been dedicated to random magnetism, concerning in particu-
lar models such as the Ising, Heisenberg and Potts ones (for
an excellent review of the latter see Ref. [1]). Because of
its richness the Potts model has recently received special at-
tention, in particular its quenched bond-random version, which
has been studied within effective-fieldJ:z’sj, duahty-basai@_g]
and real space renormalization group (RG)I:Q’lO:I approaches.
One of the interesting features of the gq-state Potts ferromag-

net is related to the Harris criterionLlO—l4],

initially stated
for the Ising model (q = 2) but presumably correct for any value
of q (at least as long as second order phase transitions are
concerned). According to this criterion, if the specific heat
critical exponent o of the pure mddel is negative (positive),
the criticality—to be more precise the set of «critical expo-
nents—of the diluted or more generally the random model is (is
not) that of the pure model; in the RG language, a new fixed
point, namely the random one, is expected to appear for a > 0.
Furthermore if we assume hyperscaling (i.e.,2 -o=dv, where d
is the dimensionality of the system, and v is the correlation
length critical exponent), the frontier between the pure and
- random critical regimes (i.e. a=0) should correspond to v=2/q
for planar Potts ferromagnetics, this implies v =1 hence q=2.
However this fact is of course associated with the thermodynam
ical limit (macroscopic system), and in principle there is no

reason for remaining unchanged within a finite cluster RG ap-
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proach, which frequently is related to hierarchical-like lattices
(and not to Bravais lattices). This problem is analyzed in the
present paper where, by using self-dual clusters and following
along the lines of Ref. [15] (RG treatment of the bond-mixed
Ising ferromagnet) we calculate the critical temperature TC as
well as the critical exponents v and ¢ (crossover exponent) for
the square-lattice Potts ferromagnet.

The present work is organized as follows: in Sections IT and
III we introduce the model and the RG framework respectively,
and, in Section IV, we present the results (which are of con-
siderable precision ones for the critical temperatures but only
approximate for the critical exponents); finally we conclude in

Section V.

IT - MODEL

Let us consider the following Hamiltonian

=-q ) J..S (6.=1,2,...,q9,¥1) (1)
o <ij> 13 %y *

where the sum runs over all pairs of first-neighboring sites
on a square lattice, and Jij is a random variable whose proba-

bility law is given by
P(Jij) = (1"P)6(Jij _Jl) + pd(Jij "Jz) (2)

with J; 20, J,>0and 0 < p < 1. We notice that the pure Potts
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ferromagnet can be recovered with p = 0, VJZ, or p = 1, VJl’
or even Jl = JZ’ Vp; the case y = Jl/J2_= 0 corresponds totthe
diluted model.

The complete critical frontier (in the p-kBT/JZ-Y space,
for example) of this model is still unknown; however a few
partial exact results are already available, namely (see, for

example, Ref. [5] and references therein):

i) for the pure Potts model (e.g. p=1, VJl):
c4J2/kpTe _ /q + 1; (3)
ii) for the bond percolation model (y=0 and T=0):

p. =1/2 , Vq ; (4)
,107 .

iii) for the equal-concentration model (p==1/2)LD

; (5)

qul/kBTC -1
iv) for the q - 1 limit (isomorphic to bond percolationw-léjy
(1-p)(1-e /KBy & p(1 - e I2/kBTey - 1z, (6)

v) for the bond-diluted almost pure Potts limit (y =0 and

p > 1):
1 dTC(p) _ 2/3 (7)
T (1) ~dp T+ V) Zn (T+7q)

p=1
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vi) for the bond-diluted almost bond percolation limit (v = 0
and T - 0):

d -qJ2 /kBTC(p) - 24n
B TF‘% (8)

For arbitrary p,J1 and Iy quite precise approximate numer

ical values for TC can be obtained from the proposal'—sj

enf1+ (q-1)e W1/*BTc]

(1 ‘P) /@qu

oy L1+ (q- 1)eJ2/kBTe] 1 (9)
P Lnq 2

which satisfies Eqs. (3) - (6) and (8), but slightly fails with
regard to Eq. (7) if q # 1.

With respect to the critical exponent v associated with the
bond-random Potts ferromagnet with q < 4 (continuous phase
transitionw:l’li]), it is either well established or commonly

[11,14]

believed that:

i) for 0 £ <2 and T > 0,

o(random) = a, = a{pure Potts) = o, (10)
hence, through 2 - a = 2v,
v(random) = v_ = v(pure Potts) = v, (107")
whereLlS]
-]
v, = %{2 + T - } : (11)
arc cos(z—fq) -7
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i1) for 2< g < 4 and T > 0,
a. < a (12)
“hence
N>V (12')

. . . 18
where v, is still given L .] by Eq. (11);

iii) for T = 0, ¥q

v, = y(percolation) = vp = 4/3 | (13)

as can be recovered from Eq. (11) in the limit q - 1[16].

Finally the crosscver critical exponent ¢_ associated with

the percolation point satisfiesl-lgj

o, = 1 ¥ q (14)

In the next Section we introduce a RG which enables the

calculation of both TC and v, as well as it gives an insight on

how the crossover from the pure to the random behavior occurs.

ITI - RENORMALIZATION GROUP

Before constructing the RG recursive relations, let us as-
sociate, with every bond characterized by an arbitrary cou-
pling constant Jk’ a convenient variable (hereafter referred to

as thermal transmissivity; see Ref. [20_|; also Ref. [5] and

references therein) defined as follows:

1 - e-qu/kBT

ﬁ
W
M
~~
—
U
~—

1+ (q-1)e K/EBT
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The transmissivity tS(tp) of a series (parallel) array of two

bonds with transmissivities tl and t2’ is givenJ:21] by
t, = tltz (series) (16)
tg = t)t) (parallel) (17)
where
0 k = 1,2,p) (18)

k 1+(q—1)tk

(D stands for dual). Any two-terminal array (or graph) reduc-
ible in series/parallel sequences can be solved by using algo-
rithms (16) and (17). More complex two-terminal arrays (e.g.
those appearing in Figs. 1.b and 1l.c) can be solved through the
Break-collapse Method (BCM)]:ZIJ.

; ) . 5
Let us now introduce a second convenient Varlable[- ] [

through

Su)zzﬂi+m—1n]

Znq (19)
which satisfies an interesting property, namely
sPe) = sct?) =1 - s(o) (20)
[4-6,8,15,22]

Because of this property, the variable s has proved
to be extremely performant for the calculation of critical

temperatures; we shall use it later on to construct the present RG.
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Within our RG (which follows along the lines of Ref. [[15])
we shall renormalize the b = 2 graph of Fig. 1(b) into the
graph of Fig. 1(a) (b is the linear scaling factor; it also
characterizes the size of the cluster, as illustratedin Fig.1).
The next-order RG we shall consider consists in renormalizing
the b = 3 graph of Fig. 1(c) into the graph of Fig. 1(a). This
family of graphs preserves a very important topological invari-

ance of the square lattice, namely self-duality, and has al-

ready proved to be extremely performant for the treatment of

random—resistorl-ZS—Z(ij,bondjxntolation[27’28],-IsinngS’ZQ’SIJ ,

HeisenbergLﬁz] and PottsL9’21’3

3] problems. Such choice of clus-
ters systematically provides, among others, the exact critical points
corresponding to all the above models in square lattice; it can
of course be alternatively looked as referring to hierarchical
lattices (see Ref. [ 32] and references therein).

Let us now proceed to the establishment of the b = 2 RG

recursive relations. The distribution law (2) can be rewritten

as follows:
P(t) = (1-p)d(t-ty) + pé(t-t,) (21)

where definition (15) has been used. We associate now this dis
tribution with every bond of the b = 2 Wheatstone—bridge graph

(Fig. 1(b)) and obtain a new and more complex distribution law

PG given by

= ny_5-n -
Po(t) = t2(l-—p) 1p 16[}-—tG(rl,r2,...,r51j

Tty TRt T R,

(22)
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where n, is the number of bonds with transmissivity t; ap-
pearing in the particular configuration (among 25possible
ones) of {rl} we are considering; tg (rl,rz,...,rs) has Dbeen

calculated through the peml-2 1 (see Ref. [[9] for a more stan

dard calculation) and is given by

tG(rl,rz...,rs) =

T Tt Tl T T T 5Ty T (Q=2) (1 T )T 3Ty 4T T T T g4I T T g Ty #T T3X y To4T )T 5T T )

1+(q—l)(rlr3r5+r2r4r5+rlr2r3r4)

+(q—2)(q—3)r1r2r3r4r5

(23)
*(a-1)(q-2) 1y 1,117

We can verify that the sum of the coefficients of the numerator
equals the sum of the coefficients of the denominator and both

equa1L21’34] q~

» where K = cyclomatic number = (number of bonds)-
(number of sites) + 1; for the present graph « = 2.

Equation (22) can be rewritten in a more explicit form,

namely
14 m, S5-m
Po(t) = } M (1-p) tp” The(t-t,) (24)
=1
where the multiplicity factors {Mg}, the exponents {mz} and

transmissivities {tg} are presented in Table I.
As exhibited above, a single scaling transformed the 2 Dirac-
delta distribution law of Eq. (21) into the 14 Dirac-deltadis-

tribution law of Eq. (24). Under sucessive scalings, the distribution
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law becomes more and more complex, envolying a  rapidly in-
creasing.number of Dirac-delta's. We could in principle lelow
the evolution, under renormalization, of the distribution law
until it attains an invariant form (fixed point). This proce-
dure has in fact been used.|:35:j for random-resistor problems.
However an operationally much simpler and numerically excellent
procedure can be followed[ls:l instead, namely to approximate

the distribution PG(t) (Eq. (24)) by a binary one, given by
P'(t) = (1-p')o(t-t]) + p'é(t-t)) (25)

where p', ti and té are completely determined by imposing the
preserval of three appropriate momenta. One natural possible
choice could be the first three momenta of t(this choice has
been testedwzlsj for the Ising case). Herein we shall adopt
instead a more -sophisticated choice, namely the first three mo-
menta of s(t) (see definition (19)); this choice has already

15,22 to be extremely performant

proved in similar problems
from the numerical. standpoint.

So,to be precise,we impose

<s(t)>P, = <s(t)>P (26..a)
G

<[s(0)]%>p = <[s(t)]%>) (26 .b)
‘ G

<[s(t)F°>p, = <|Isct)]3>PG (26.¢)

hence (by using Eqs. (24) and (25))
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14

(1-p')sp *+ p's) = 121 My (L= )07 Mhs ) 2 F(pysysy) (27.2)
2=
14

i

2 ' [ m 5-m _
(1-—p)sl2 + p'522 221 Mg(l-p) Lp 253 = G(p,sl,sz) (27.b)

14
1 ' vt m 5-m —
(1-p )513 +p 523 = 221 Mk(l-p) Lp 25; = H(p,sl,sz) (27.¢)

where

sk = s(ti) (k = 1,2) (28)
and

Sy = s(tz) (2 =1,2,...,14) (29)
Let us recall (see Table I) that the {tz} are functions of

(tl,tz), and therefore (through definition (19)) functions of

(sl,sz) = (s(tl),s(tz)).

The solution of Egs. (27) is given by

2
p' = & (30 .a)

1+L%2
si = F + L/K (30 .b)
s! = FF ix (30 .c)

2 L .
where

K=G-F*>0 (31)

and
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_ /(H-3FK-F?)% + 4K® - (H-3FK-F®)

(32)

287/ %
The upper (lower) signs in Eqs. 30.b and 30.c are to be used
in the region s, > S, (sl< 52) hence tl > tz(t1< tz) hence

1

J, > JZ(J1< JZ). Eqs. (30) (together with Egs. (31)and (32)) arein.

1
variant through the (p,sl,sz) T (1 -p,sz,sl) transformation. and
completely determine the RG flow in the p - s;-S, space (which
determines in turn all the important properties associated with
the p-—kBT/J2 - vy space). In particular the calculation of the

fixed points and relevant Jacobians

ap’ ap ' op'

op asl 852

St 1 1
J = asl 851 asl (33)

ap 851 352

1 1 '

852 852 852

ap Ssl 352

is now perfectly feasible.

We have also established, through analytic implementation
in computer of the BCML-le, the full set of equations asso-

ciated with the b

are however too lengthy to be quoted here. Let us
this by mentioning that:
2'® terms (instead of 2°%); (ii) to(ry.Ty,..-
function whose numerator and denominator respectively

765 and 397 different terms (instead of 10 and 5

in Eq. (23));

3 Wheatstone-bridge (Fig. 1(c)).; the results

(iii) the analogue of

(1) the analogue of Eq.

illustrate
(22) contains
’r13) is arational
contailn
respectively

Eq. (24) contains 2204
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terms (instead of 14).

next

Our main b = 2 and b = 3 RG results are presented in the

Section.

IV- RESULTS

Both b = 2 and b = 3 present RG's provide the following re

sults (see Figs. 2and 3) which are in  fact expected to be common to

all values of b:

i)

ii)

iii)

iv)

the points (p,sl,sz) = (0,0,0) and (1,1,1) are fully stable
fixed ones, respectively corresponding to the T » « (para
magnetic phase) and T - 0 (ferromagnetic phase) limits;
the points (0,0,1), (1,0,0), (1,1,0), (0,1,0),(1,0,1) and
(0,1,1) are semistable fixed ones (the first three be-
long to the paramagnetic region; the second three to the
ferromagnetic one);

in the critical surface (the hexagon-like one in the interior
of the unit cube in Fig. 2.(a)) the points (1/2,0,1) and
(1/2,1,0) are fully unstable fixed ones, corresponding to
the bond percolation limit, and located at the exact posi
tion p. = 1/2 (see Eq. (4));

in the critical surface, the twisted H-like region deter-
mined by (sl=sz=l/2,Vp), (51=l/2,p=O,V52) and (52=1/2,pﬁl,
Vsl) corresponds to the pure Potts model, and its location
is the exact one (see Eq. (3)); three fixed points (namely
(p,sl;sz) = (1/2,1/2,1/2), (0,1/2,1/2) and (1,1/2,1/2)

are found which belong to this region. If we restrict our-
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selves to the analysis of the RG flow in the critical sur
face, thé fixed points (p,sl,sz) = (0,1/2,1/2) and (1,
1/2,1/2) are semistable whereas the central one (p=sl=sz=
1/2) is fully stable for g = q*(b) (q*(2) 2 5.3 and q*(3) v 4.9)
but becomes semistable for g > q*(b) (see point (v) below
and Figs. 1(b)-(e)).

v) in the critical surface, the straight line S *ts,= 1 at
p=1/2 flows within itself, corresponds to the equal con-
centration model and recovers the exact result (see Eq.
(5)); this line contains the central point p= S1=5, 7 1/2,
which, as said in point (iv), attracts, for q<q*(b), ev-
ery one of its points, (it attracts in fact all the'points
of the critical surface, excepting the bond percclation
points and the pure Potts (p,sl,sz) = (0,1/2,1/2)
and (1,1/2,1/2) ones); this central point becomes unsta-
ble at q = q*(b) and bifurcates (in pitchfork manner; see
Fig . 4) into two new fixed points (which, for q>q*(b),
play the attracting role within the.critical surface) lo-

) (r

stands for random; see Figs. 2(d), 2(e) and (4); the

cated at (p,sl,sz) = (1/2’Sr’l—sr) and (1/2,1—sr,sr
q * q*(b) 1imit presents an interesting behavior, .namely
that s (q) - 1/2 ~ A{h/q*(b)—l]l/zvmereA:E 0.29 for both
b = 2 and b = 3, thus suggesting a quasi-universal (inde-
pendent from b) curve, which in the b » = limit could
be s.(q) - 1/2 ~ A(q/2-1)1/2,

vi) the q = 1 critical surface is given by

(1 - p)s1 * ps, = 1/2 (34)
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which coincides with both the g - 1 case of Eq. (9), and

the exact result (see Eq. (6)).

We shall now focuse the Jacobians (see Eq. (533)) -associdted
with the fixed points we have mentioned.

i) At the (0,0,0) and (1,1,1) fixed points the vrvespective
Jacobians identically vanish for all values of q, thus in
dicating that their stability is due to higher order terms.

ii) At the semi-stable fixed points (1,0,1),(1,1,0) and (1,0,0)

the Jacobians are given respectively by

0 0 0
0 2 0
0 0 0
@ 0 O
0 0 O
0 2 0
and
g 0 0
0 0 0
0 0 O

where g & 4 for all values of q(the Jacobians corresponding
to the (0,1,0), (0,0,1) and (0,1,1) fixed points are ana
logous). As above we verify that the stability is related

to higher order terms.
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The Jacobian at the percolation fixed points independs

from q, and is proportional to unity (therefore the cros

sover exponent ¢p equals 1, thus recovering the exact re
sult expressed in Eq. (14)); the three times degenerate
eigenvalue:kp equals 1.62500, 2,21729, 2.76579 and 3.27894
for b = 2,3,4 and 5 respectively (the values assoctdted
with b = 4,5 have been calculated as well; see also Ref.
[21]). Through the RG expressicn vp(b) = an/ﬁnkp(b) we
obtain the results indicated in Table II (g=1 column)

The Jacobian associated with the pure Potts central fixed

point (p=sl=sz=1/2) presents the following simple structure:

a(q) 0 0
0 b(q) c(q) (35)
0 ©oc(q) b(q)

where a(q) ~ 0.5 for all values of q in the range [1,16].
The cther two eingenvalues (respectively associated with
the eigenvectors (0,1,-1) and (0,1,1))are)'(q) =b(q) - c(q)
and Xt(q) = b(q) + c(q); A'(q) depends slcwly on g, it
is smaller (higher) than unity for q < q*(b) (q > q*(b))
and, at the bifurcation point, it satisfies A'(q*(b)) =1.

Xt(q) is always higher than unity, and is given by

g + 13q1/2

1/2

* 29 (b =2) (36.a)
q

Ae(q) =
8+ 7q
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_ 576 +2092qY/2 +3051q+ 2272q¥* +901q* +177q%> +13q°
576 +1388qY2 +1323q+ 632q%/2 + 157q2 +19q¥% + g3

{b = 3) (36.b)

Ae ()

_ 161128382464 +1697859502080qY 2 + 8483753136128¢ + 26753044992000q ¥ ?
161128382464 + 1447535050752 2 + 6179539095552 + 16682662418944q ¥ >

A (Q)

+ 59776725996784q% + 100721462408584q7 2 +132981697848499g°
+ 31974143639184q2 + 46299588621448q%/ * + 52626772572121q°

+141113527133368q7/2 +122475851169593q" + 88012263034920q%
+48157988221974q7 /2 + 36100260892173q" + 22438276696524q7 °

+ 528078534048269° + 26600381596312q" > +11282937714602¢°
+11660435998306G° + 5093660852058 2 +1876055420530q°

+4033410386968¢% 2 + 1213716439993 + 3064274397329 Y2 + 645479964409
+ 583142336798 Y2 + 152826115579q7 + 3367174001697 > +6206221404q°

+ 1125103511672 + 16038741257 + 183922732¢Y2 +16564782q"® + 1129660q 2/>

+949827808q""/ % +119415951q° +12142442q/ % +975746q1° + 59778q%/>

+54907q" ! + 1696q°% 2 + 25q* 2 b = 4) (36.¢)
N 2629q]_1 + 74q23/2' +q12

By using Eqs. (36) we have obtained the results for V¢ in-
cated in Table II (the b=5 case has been treated . numeri-
cally). Furthermore the crossover exponent ¢ = Enk’/ﬂnkt (as
sociated with the appearence of a new universality class due
to bond randomness) has also been calculated: the results

are presented in Fig. 5.
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We recall that with the pure Potts model two other
fixed points (namely QL51,52)={0J12,1/Z)and Uﬂl/ZJJZ))are

associated. The corresponding Jacobians are respectively

d(q) 0 0
0 Xt(q) 0 (37.a)
0 A (@)-el@)  ela)
and
d(q) 0 0
0 e(q) re(a)-e(q) (37.b)
¢ 0 _At(q)

where the eigenvalue d(q) > 1, ¥q (its eigenvector is (1,0,0)),
the eigenvalue e(q) satisfies (< e(q)< 1, Vq (itseigenvec
tor is (0,0,1) for the p = 0 fixed point and (0,1,0) for

the p = 1 one), and the eigenvalue At(q) is given be Eqgs.

(36) (its eigenvector is (0,1,1)).

The Jacobian associdted with the random fixed points (name-

1y (p,sl,sz) = (l/Z,Sr,l—sr) and (1/2,1—sr,sr)) presents

no symmetry at all, 1its 9 elements are nen vanishing and

different among them, the eigenvectors constitute a fully

non orthogonal basis, and its eigenvalues are kl(q) (it

smoothly decreases from about 0.5 to about 0.3 when q in-

creases from q*(b) to 10; its associated eigenvector is

roughly along the (1,0,0) direction), Az(q)@i smoothly de-
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creases from 1 to about 0.8 when q increases from g*(b) tQ
10), and Ks(q) = xr(q) (it smoothly decreases from about
2.2 to about 2 when q increases from g*(b) to 10; itsasso
ciated eigenvector is roughly along the (0,1,1) direction).
From Ar(q) we can calculate the correlation length critical
exponent v = Knb/ﬁnkr correspanding to the new universality
class (see Fig. 6). By using the scaling relaticn 2-a(q) =
dv(q) (d=12) we can calculate the discrepancy ap = for
q>q* (as long as we do not attain the first order transi
tion regime); see Fig. 7. Our results are sensibly dif-
ferent from those obtained by Kinzel and Domanyl:lo:I . While
our difference a, - oo monotonously increases.  with Oy s
theirs presents a maximum; furthermore the scales are quite
different, as mn'reaﬂts:iggem:that(%ﬂeMﬂI)—ar(exact)is(for
G > 2 and second order transitions) roughly proportional to
at(exact) with a proportionality coefficient close to unity,
while they obtain differences about 10 times smaller. Qur

suggestion (ut—a jgat) implies urj:O for 2 < g < 4, which

T
is perfectly consistent with both Monte Carlol:lz:l and ex-
perimental[36] data[13’14].

In Fig. 8 we present, as functions of size b, the
values we obtain for q*(b) (where the bifurcation appears)
and for qc(b) (where at(b) vanishes or equhkdentb/vtﬁﬂ =
1). We verify that Harris criterion[11:| (q*(b) = qc(b) in
the present language) is not satisfied for finite 'size
clusters. As this criterion refers to macroscopic systems,
one can speculate that £im q* (b) =.KM1qC(b) (=2, in the pres

-+ oo > o
ent case).
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With respect to the derivatives asscciated with the di

luted <case (J1=0, i.e.s;=0) we obtain (for all b in

1

fact) (dsz/dp) -2, Y¥q, which recovers the exact re-

p=1/2
sult expressed in Eq. (8). The derivatives obtained in the
p * 1 limit are indicated in Table III: small errors are
unfortunately present for q# 1.

Typical numerical results obtained through the b=2 RG
are presented in Tables IV and V. The q= 2 case recovers
the results obtained through the s-RG of Ref. | 15]. Note
in Table IV that the critical surface in the p-s;-S, space
is almost independent from q, and very close to that deter
mined by Eq. (9) (i.e. (l-p)sl+psz=l/2). The great quantity
of exact results (in fact, among those presently known for

the critical surface, all but one derivative analysed in

Table III) that are recovered by the present RG tends to sup
port the numerical results as being high precision ones.
We estimate (see also Ref. [ 15]) that the results pres-
ented 1in Table IV (and consistently in Table V) are exact
everywhere within an error ﬁlszless than lﬂ_s(error which

is attained only in the worse region, most probably the

neighborhood of (p,sl) A~ (0.8,0.25)).
V - CONCLUSION
We have discussed several aspects of the criticality of

the quenched bond-mixed g-state Potts ferromagnet in square

lattice. The analysis has been done within a real space re-
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normalization group (RG) framework by using twowterminal
self-dual clusters which have already proved to ~be extremely
performant for the square lattice, although rigorously speak-
ing they are to be related to a (self-dual) hierarchical Iat
tice. Through the renormalization operations the coupling con
stant distribution law (originally binary) quickly evolves in
to a multi-delta distribution. Rather than following this dis
tribution until arrival into a fixed form, we have reeestablished
the binary form by imposing the preserval of the first three

monenta (we recall that our model has three free parameters)

of a quite convenient variable (the s-variable).

The present RG recovers several exact results already avail-

able in the literature, such as the critical points corre-
sponding to bond percolation, pure Potts and equal concentra-
tion models, as well as the T - 0 limit asymptotic behavior
of the critical line associated with the bond-dilute case, the
percolation crossover critical exponent ¢p and the g~-1 limit
critical point (e.i. it satisfies the Kasteleyn and Fortuin
theorem).

The present treatment introduces a small error (which, for
cluster size b=2, grows from 0% to 1.5% while g increases
from 1 to 4) in thep~+1 limit derivative of the critical line
associated with the bond-dilute particular case, as well asin

the correlaticn length: critical exponent v_ (which, for cluster

t
size b=5, grows frem 1.6% to 34.5% while q increases from 1
to 4). The growing of the errors when we approach q=4 comes
from the fact that the present RG does not reproduce the ap-

pearence c¢f the first-order transition regime (expected at least
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for the pure case); to overcome this difficulty larger param

eter space would have to be considered.

Let us finally summarize the main aspects that have re-

ceived some improvemeént within our discussion:

(1)

(ii)

(111)

iv)

the critical temperatures asscciated with arbitrary val
ues of concentration p and ratio Jl/J2 have been numer-
ically established with high precision (the error
in the s-variable being less than 1073 in the worse re
gion); the results are, for 1 < g < 4, consistently re-
covered by the simple analytic approximation exppeSSed
in Eq. (9) 51,

when q increases above a critical value g* (expected to
be g* =12 for macroscopic systems), a new type of fixed
point (namely the random fixed point) appears through
a pitchfork bifurcation, and ccnsequently the random mod
el enters into a new universality class (as long as the
first-order transition regime is not attained); the bi-

furcation does not occur simultaneously with the van-

ishing of the specific heat critical exponent o of the
pure model, and therefore the Harris criterion appears
to be intimately related to the thermodynamic limit, as
only in the b » « l1imit it could possibly be recovered;
the random specific heat critical exponent o is «close
to zero for all values above g*, which is consistent: with
available Monte Carlol:lzj and experimental|-_-36:l data
for the q = 4 case;

the g-dependence (above q*) of the pure to random cros

sover critical exponeht ¢t is approximately established.
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Treatments of the random Potts ferromagnet simultaneous

ly incorporating beth pure-random crossover and second-first
order regime changement would be very welcome.

We acknowledge useful discussions with E.F. Sarmento, E.
M.F. Curado, G. Schwachheim and M. Schick; one of us (C.TJ) also
acknowledges interesting remarks from R.B. Stinchcombe and
P. Beale. U.M.S.C. has benefitted from a CAPES Fellowship (Bra
zilian Agency); C.T. benefitted from partial support through a

Guggenheim Fellowship-tenure.
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CAPTION FOR FIGURES AND TABLES

Fig. 1 - Self-dual two-rooted graphs: @ (o) denotes internal
(terminal) node.

Fig. 2 - RG flow in the (p,sl,sz) space (the arrows indicate
the sense of flew). (a) critical surface (heavy linesg
separating the para (P) and ferro (F) magnetic pha-
ses; it 1s invariant under the (p,sl,sz)-+(1—p,52,sﬁ

> (p.1-s 1-52) transformations, and depends very

1°
slightly on q (let us say for q > 1) and on the RG
linear scaling factor b; the twisted H-like region
corresponds to the pure ferromagnet; the p = 1/2 1line
constitutes an invariant subspace corresponding to
the equal corncentration model; o, e and ® respectively
denote fully stable, fully unstable and semi-stable
fixed points; the central fixed point (1/2,1/2,1/2)
bifurcates along the p = 1/2 critical line for q>q*.
(b) and (d) ((c) and (e)) are projections onthe(p,sz)
((p,sl)) subspace of the critical surface RG flow;
(b) and (c) ((d) and (e)) correspond toq<q* (q>q*);
D denotes the new semi-stable fixed point generated
through the bifurcation; the dashed lines correspond
to the bond-dilute model.

Fig. 3 - RG (b=2) critical temperature as a function of chqg
centration p for typical values of q and Jl/J2 (num-
bers parametrizing the curves).

Fig. 4 - Position of the fixed pointswhichattract almost every point of

the critical surface (b denotes the RG 1linear scaling factor).



CBPF-NF-039/82

Fig. 5 -

Fig. 6 -

Fig. 7 -

Fig. 8 -

Table L -

Table 1T -

Table III -

q-dependence of the pure to.random crossover critical
exponent ¢; b denotes the RG linear scaling factor;
q* denotes the bifurcation value of q (see Fig. 4 ).
q-dependence of the RG(b=2) pure (——) and random

(——+—+) critical exponents v_ and vrcmmmredtothee§

t
act pure (----- 3 value[lgj. For b=2 gq* ~ 5.3; for the
exact case we have assumed q* = 2 (we recall that for
q > 4 the phase transition corresponding to the pure
model 1is a first order one).

Discrepancy between pure and random critical exponents
o, and a. as a function of the<ﬁscrqmncyut(Q)-aéqﬂ:
our RG (b =2) result (——) compared to that (------ )
obtained from Ref. [[10] (the exact o (q) is still
unknown) .

Variations of the bifurcation value q* and the o = 0
value q. as functions of the RG linear scaling factor
b. The dashed lines are speculative ones assuming the
Harris criterion to be recovered (i.e q* = qQ.=2) in
the b » « limit.

Elements of the distribution PG(t) (Eq. (24)) asso-
ciated with the graph of Fig. 1(b) (q= 2 recovers Eq.
(4) of Ref. [[15]).

RG and exactI:IB:I critical exponent v for the pure
g-state Potts model (b denotes the linear scaling

factor). This Table is consistent (through 2 -a = 2v)

with Table 1 of Ref. [ 33 ]

RG (b=2) results associated with the dilute model

(both percolation and pure model critical points as
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well as the asymptotic behavior at T - 0 are ex=
actly recovered for all q)

Table IV - Value for s, on the RG (b=2) critical surface,
for typical values of (p,sl). Note the quasi-in-
dependence with respect to q.

Table V - Values of p on the same critical surface appearing
in Table IV, for typical values of Jl/J2 and

kBT/qJZ'
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TABLE I
3 ty
) 2t5+2t3+5(q-2)t5+(q-2) (q-3)t;
1+(q—1)(2t§+t§)+(q-1)(q-2)t§
. 2t§+2t§tl+(q-Z)(t§+4t§tl)+(q—2)(q-S)tltE
1+(g-1) (t5+2t5t,)+(q-1) (a-2) t,yt;
2 2 3 _ 3 4 - - b
X t2t1+t2+t2tl+t2+(q 2)(4t2t1+t2)+(q 2)(q S)tztl
1+(q-1)(t5ty+t3+t5 1) +(a-1) (a-2) t5t;
2 _ 2,2 3 - - 3g2
. 2t +2t5t +(q-2) (3tht]+2t5t,)+(q-2) (q-3)t t]
1+(q-1)(tzti+t§ti+t;)+(q—l)(q—Z)t;ti
2,..3 - 242 3 - - 3,2
. 2t,ty+t,ti+tS+(q-2) (3tht]+2t5t )+ (q-2) (a-3)t 1]
1+(q-1) (2tity+tit]) +(q-1) (q-2)t5t]
2 2 2 _ 242 340 _ _ 3;2
’ ‘t2+2t2tl+t1+(q 2)(3t2t1+2t2t1;(q 2)(q S)tztl
1+(q—1)(2t§tl+t§ti)+(q—1)(q—2)t§fi
2,.2 2 _ 2.2 3 - - 3,2
, t2t1+t2+t2tl+t2tl+(q 2)(3t2tl+2t2t1)+(q 2)(q 3)t2t1
l+(q—1)(tzti+t§tl+t§tl)+(q-l)(q-2)t§ti
! 2,42 2 _ 2.2 3 _ - 342
. Tty rt ittt ittt tor(q 2)(3t1t2+2t1t2)+(q 2)(q-3)t t;
1+(q-1)(tlt§+tit2+tit2)+(q-1)(q-2)tit§
2 2 2 oYy f2+242 3 _ - 3,2
; t1+2t1t2+t2+(q 2)(3tlt2+2tltz)+(q 2)(q S)tlt2
- 2 2.2 _ - 3.2
1+(q-1) (2t]t,+t3t5) +(q-1) (a-2) t}t}
2,43 - 242 3 - _ 3.2
Lo 2t1t2+t1t2+t1+(q 2)(3t1t2+2t1t2)+(q 2)(q S)tltz
1+(q-1) (2t t,+t1t5)+(q-1) (q-2)tjt]
2 _ 242 3 _ - 3.2
N 2t ty*2tit,+(q-2) (3tfti+2tit,)+(a-2) (a-3)tjt}
1+(q—1)(t1t§+tit§+tp+(q-1)(q—2)tit§
2 2 3 - 3 L — - b
. tyty*t+tit+ty+(q-2) (4tyt,+t1)+(q-2) (q-3)t; ¢,
1+(q—1)(tit2+ti+tit2)+(q-1)(q-2)t;t2
2 2 _ 4 3 - - 4
- 2t1+211t2+(q 2)(t1+4tlt2)+(q 2)(q S)tzt1
1+(q-1) (ty*2t7t,)+(q-1) (a-2) tjt,
2 3 _ 4 - _ 5
» 2t7+2t7+5(q-2)t1+(q-2) (q-3)t]

1+(q-1) (2t{+t])+(a-1) (q-2)t]
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TABLE II
b d 1 2 3 4
2 L4277 .1486 .0236 0.9484
3 .3797 .1094 .9883 0.9156
4 .3627 .0950 L9752 0.9033
5 .3553 L0879 .9684 0.8966
Exact 4/3 1 5/6 2/3
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TABLE III
ds v, dT _.(p)
-2 % ) ‘dc error
p sl=0 o p p=1 (see Eq. (7))
P2=1
1/2 1.4453 0%
0.495 1.329 0.1%
0.490 1.267 0.4%
0.488 1.232 . 1.5%
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TABLE IV

o1 0 0.1 0.2 0.3 0.4 0.5
q=1 | 1.0000 | 0.9000 | 0.8000 | 0.7000 | 0.6000 | 0.5000
q=2 | 1.0000 | 0.9000 | 0.8000 | 0.7000 | 0.6000 | 0.5000
" q=3 | 1.0000 | 0.9000 | 0.8000 | 0.7000 | 0.6¢00 | 0.5000
q=4 | 1.0000 | 0.9000 | 0.8000 | €.7000 | 0.6000 | 0.5000
q=1 | 0.8333 | 0.7667 | 0.7000 | 0.633% | 0.5667 | 0.5000
q=2 | 0.8328 | 0.7662 | 0.6997 | 0.6332 | 0.5667 | 0.5000
q=3 | 0.8321 | 0.7657 | 0.6994 | 0.6331 | 0.5666 | 0.5000
q=4 | 0.8315 | 0.7652 | 0.6991 | 0.6330 | 0.5666 | 0.5000
q=1 | 0.7143 | 0.6714 | 6.6286 | 0.5857 | 0.5429 | 0.5000
q=2 | 0.7135 | 0.6709 | 0.6283 | 0.5856 | 0.5428 | 0..5000
q=3 | 0.7124 | 6.6702 | 0.6279 | 0.5855 | ©.5428 | 0.5000
q=4 | 0.7115 | 0.6695 | 0.6275 | 0.5853 | 0.5428 | 0.5000
g=1 | 0.6250 | 0.6000 | 0.5750 | 0.5500 | 0.5250 | 0.5000
q=2 | 0.6243 | 0.5995 | 0.5748 | 0.5499 | 0.5250 | C.5000
g=3 | 0.6232 | 0.5989 | 0.5745 | 0.5498 | 0.5250 | 0.5000
q=4 | 0.6223 | 0.5984 | 0.5742 | 0.5498 | 0.5250 | 0.5000
q=1 | 0.5556 | 0.5444 | 0.5333 | 0.5222 | 0.5111 | 0.5000
=2 | 0.5551 | 0.5442 | 0.5332 | 0.5222 | 0.5111 | 0.5000
q=3 | 0.5545 | 0.5438 | 0.5331 | 0.5221 | 0.5111 | 0.5000
=4 | 0.5539 | 0.5435 | 0.5329 | 0.5221 | 0.5111 | 0.5000
q=1 | 0.5000 | ¢.5000 | 0.5000 | 0.5000 | 0.5000 | 0.5000
q=2 | 0.5002 .5002 | 0.5002 | 0.5002 | 0.5002 | 0.5000
4=3 | 0.5004 .5004 | 0.5004 | 0.5004 | 0.5004 | 0.5000
g=4 | 0.5005 | 0.5005 | 0.5005 | 0.5005 | 0.5005 | 0.5000
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