CBPF-NF-039/81 COMMENTS ON THE ELECTRONIC STRUCTURE OF DIMERIC COPPER, AS CALCULATED WITH THE HARTREE-FOCK-SLATER METHOD

by

Diana Guenzburger

Centro Brasileiro de Pesquisas Físicas - CBPF/CNPq Av. Wenceslau Braz, 71, fundos 22290 - Rio de Janeiro - R.J. - BRASIL

1. INTRODUCTION

The interest in transition metal dimers has increased rapidly in the last years. Although only a few of these species were actually detected as molecules in the gaseous state, academic interest was revived by the technique known as matrix isolation, which allowed the formation of a great number of these dimers trapped in non-interacting solid noble -gas matrixes (1). These could then be studied by different spectroscopies, which may be helpful in elucidating some aspects of the metal-metal bond.

The investigation of properties of transition metal dimers has also important practical motivations; one of them is related to heterogeneous catalysis and chemisorption (2). It is believed that a better knowledge of the bond between two transition metal atoms may be the first step in understanding larger metal clusters or surfaces (3).

One useful tool to be employed in the study of the electronic structure of transition metal dimers, among other molecular orbital procedures, is the first principles LCAO numerical discrete variational (DVM) method (4), which is self-consistent (SCF) and makes use of the local x2 approximation for the exchange interaction (5). The DVM method has been recently employed in a study of the electronic structure and hyperfine interactions of iron dimers (6). It would be useful to compare the performance of the DVM method with standard "ab initio" procedures, which have been employed to investigate a limited number of homonuclear first-row transition metal dimers. In this letter are reported and discussed some aspects of the electronic structure of Cu as obtained by the DVM method.

30 g 30 g 1500

The choice of Cu was based on the fact that, unlike other dimeric molecules of transition elements which have ground state high-spin configurations as yet undetermined, Cu has a ground state which can be unambiguously assigned to a closed-shells $\frac{1}{\zeta_g}$. Moreover, the equilibrium interatoxic distance is known in the gas state.

2. SUMMARY OF THE CALCULATION PROCEDURE

The DVM method was employed in its standard form $^{(4)}$, with the inclusion of all electrons. The one-electron equations to be solved are of the form

(in Hartrees) where $\psi_{i}(\vec{r})$ are molecular orbitals expressed as linear combinations of symmetry functions obtained from numerical Hartree-Fock- $\chi\alpha^{(5)}$ atomic orbitals. The interelectronic component of the Coulomb potential $V_{\rm coul}$ was approximated expanding the molecular electronic charge density as a sum over spherical densities around each nucleus, weighed by the Mulliken population P_{i} of the orbitals in each atom

$$\rho\left(\hat{x}\right) \in \mathbb{P}_{\hat{\mathbf{I}}}^{2}(\mathbb{P}_{\hat{\mathbf{I}}^{2}(\mathbb{P}_{\hat{\mathbf{I}}}^{2}(\mathbb{P}_{\hat{\mathbf{I}}^{$$

where the sum is over all occupied atomic orbitals of both atoms (7). The populations P_i are iterated to self-consistency.

The exchange term V_{χ_0} in equation (1) is the standard local term proposed by Slater $^{(5)}$

$$V_{\chi\alpha}(\vec{r}) = -3\alpha \left[(3/8\pi) \rho(\vec{r}) \right]^{1/3}$$
 (3)

where a = 2/3 has been used (8) for both atom and molecule.

An expanded numerical Hartree-Fock-Slater atomic basis was used for cooper, with the inclusion of the vacant 4p, 4d, 5s and 5p orbitals. The configuration considered was 3d 4s. For the obtention of the wave functions of such diffuse orbitals, the use of a spherical attractive potencial well in the atomic calculations was necessary.

which is a sufficient to the $m{r}$ and $m{r}$ and $m{r}$ and $m{r}$

3. ELECTRONIC STRUCTURE OF DIATOMIC COPPER

bonding in Cu_2 results from the combination of 4s orbitals which form $\mathfrak G$ orbitals and of 3d orbitals which form $\mathfrak G$, $\mathfrak G$ and $\mathfrak G$. The 3d orbitals need shorter distances to interact, since they are considerably more contracted. In Fig. 1 are shown the valence eigenvalues $\mathfrak G_i$ obtained for $\mathfrak G_2$ with the DVM method, for $\mathfrak D_{\mathrm{ch}}$ symmetry at several interatomic distances and configuration (6c $_{\mathbf g}^2$ 3 $_{\mathbf g}^4$ 16 $_{\mathbf g}^4$ 3 $_{\mathbf g}^4$ 6 $_{\mathbf g}^2$). The experimental equilibrium distance is 2.22 $_{\mathbf g}^{(9)}$. Also shown in Fig. 1 are the 3d and 4s level energies for atomic copper in configuration 3d $_{\mathbf g}^{(1)}$ 4s obtained from a Hartree-Pock-Slater spin-restricted calculation. It may be seen that at large distances the energies of the orbitals $_{\mathbf g}^{(1)}$ and $_{\mathbf g}^{(2)}$ converge to the 4s level and the remaining molecular orbitals to the 3d. At shorter distances and in the vicinity of the equilibrium distance, there is considerable splitting of all leves indicating strong interaction between both 4s and 3d orbitals.

tals at 2.22Å and 4.76Å, after self-consistency was achieved. It may be seen that the populations are very similar to that of atomic copper in configuration 30 4s1. At 2.22Å another calculation

was perfomed with basis functions corresponding to Cu $3d^9$ $4s^2$, but still the final configuration of copper in the dimer was very much near $3d^{10}$ $4s^1$. The diffuse orbitals 4d, 5s and 5p have very small populations; however, their inclusion in the basis was found to have an important effect in the eigenvalues s.

In Table 2 is shown the population analysis of the valence levels, for the equilibrium distance and for 4.76\AA . Observing this table and Fig. 1, it is clear that 4s electrons form a bond through the $7\sigma_g$ orbital, which at short distances also has some 3d character. The antibonding counterpart of $7\sigma_g$ is the first empty $7\sigma_u^*$ orbital which at 2.22Å has some 4p character. At large distances, $7\sigma_g$ and $7\sigma_u^*$ become pure 4s as their eigenvalues approach, and the other orbitals merge to form the 3d level.

It is known that homonuclear diatomic molecules, as theat ed by an LCAO molecular orbital model, may present different self consistent solutions depending on whether or not the full point symmetry $D_{\infty}h$ is imposed for the orbitals $^{\{10\}}$. Lowering the symmetry to $C_{\infty}v$, that is, removing the mirror plane between the atoms, may lead to another self-consistent solution which in principle will have a lower total energy since the variational freedom is larger. It would be interesting to investigate this effect on the one-electron eigenvalues of the present case. In Table 3 are shown for $Cu_{\overline{z}}$ at 2.22Å the valence eigenvalues for symmetries $D_{\infty}h$ and $C_{\infty}v$. It is seen that the values are slightly lower (~0.2eV) for $C_{\infty}v$. Calculations at other distances showed this effect to be more pronounced at shorter distances. At very large distances, levels for $C_{\infty}v$ also converge to the atomic values. The difference for the two symmetries is less pronounced for the more

diffuse orbitals $7\sigma_{\rm g}$ ($\equiv 12\sigma$) and $7\sigma_{\rm u}^{*}$ ($\equiv 14\sigma^{*}$). In Table 1 are compared the self-consistent populations for both symmetries. At shorter distances, the general trend is a slight increase in the 4s population and decrease in 3d, when lowering the symmetry to $C_{\infty v}$: This may be understood considering that the more stable solution will represent a stronger bond, which is achieved mainly via 4s electrons.

In Table 3 are displayed eigenvalues for Cu_2 , reported by other authors, for the purpose of comparison. One may observe that the $\chi\alpha$ -multiple scattering (MS- $\chi\alpha$) method produces energies (11) that are quite similar to the DVM values. However, the LCAO-Hartree Fock ("ab initio") (12) one ectron levels are very different, in two respects. First, they are much lower than the $\chi\alpha$ values; second, the last occupied level is the $7\sigma_g$ of almost pure 4s character (12) (13), whereas in the $\chi\alpha$ calculations the last occupied level is $6\sigma_u$ (13 σ in $C_{\sigma V}$) which is part of the 3d "band". In the DVM and MS- $\chi\alpha$ calculations, the $7\sigma_g$ level (12 σ in $C_{\sigma V}$) is found at lower energies, among the 3d levels, and shows considerable 3d-4s mixing.

This apparent discrepancy may be understood if one takes into account the different meanings of the Fock operator—eigenvalues and the eigenvalues of the DVM and MS models with the xx exchange approximation. The former eigenvalues, according to Koopmans' theorem, represent approximatly the ionization potentials of the electrons in the molecule; the latter have no such physical meaning. However, ionizations potentials may be obtained through the use—of—the transition state concept (5)—a SCF calculation is perfomed (spin-polarized) for a "transition state" in which 1/2 electron—has been removed from the orbital in question. The eigenvalue of this

orbital will then represent, to a good approximation, the ionization potential with reversed sign.

In Table 3 are given the ionization potentials relative to the four outer orbitals of Cu₂, calculated with the DVM method in the manner described above. It is seen that there is indeed a large difference with respect to the orbital eigenvalues. The transition state procedure produces ionization potentials which are much higher, and also reverses the result indicated by mere observation of the eigenvalues in that the first ionized electron is in the orbital 70 with mainly 4s character. These results are now qualitatively consistent with the "ab initio" calculation. The DVM ionization potentials are somewhat lower; in theory, the XXX transition state values should be more accurate in the sense that it takes into account relaxation effects. The author is not aware of reliable experimental values with which to compare.

The lower symmetry calculations of transition state ionization potentials show an increase of as much as -0.8eV for the 3d electrons, but a much smaller effect for the σ electrons of 4s character.

A similar discrepancy between one-electron energies—and transition state ionization potentials is obtained for atomic copper with the Hartree-Fock-Slater method. As seen in Table 3, the spin polarized calculation of Cu(3d 10 4s 1) gives a level ordering $4s_{\uparrow}$ <3d $_{\uparrow}$ <3d $_{\downarrow}$, but the first ionization is from the 4s level. The calculated value 7.56eV compares well with the experimental value 7.73eV $^{(14)}$.

In summary, this calculation for dimeric copper shows that the $\chi\alpha$ approximation has to be used with caution, when one is considering such molecules with valence levels of very different natu-

res as to spacial delocalization. The ordering of the orbital energies obtained may be misleading, as well as orbital composition. In the present case, the $6\sigma_{\rm g}$ and $7\sigma_{\rm g}$ orbitals present considerable 4s 3d mixing; however, as seen in Table 1, SCF calculations for ${\rm Cu}_2^{+1}$ indicate that an electron removed from $6\sigma_{\rm u}$ is almost purely 3d, and from $7\sigma_{\rm g}$ is almost purely 4s.

然,一种重要,在1000年,1000年度,他只有通过,自然的第三人称:1000年,

· Proposition of the Control of the

> 。 - 「最後の表現」としまし、中国ではある。 New Segretary Company

entre de la companie de la companie

en de la companya de la co

1976 - Kontrol Germania (1994) - Propinski propinski politik i politik i propinski propinski propinski politik

Carry and American

- x + ('N flu) - x qeti -

REFERENCES

- 1) See, for example, M.Moskovitz and J.E.Hulse, J.Chem. Phys. 66, 3988(1977);

 T.C. De Vore, A.Ewing, H.F. Fransen, and V.Calder, Chem.Phys. Lett. 35, 78(1975);
 - T.K. Mc Nab, H.Micklitz, and P.H.Barrett, Phys. Rev. B 4, 3787 (1971).
- 2) E.L. Muetterties, T.N.Rhodin, Elliot Band, C.F.Brucker, and W.R.Pretzer, Chem. Revs. 79, 91 (1979);
 J.H.Sinfelt, Science 195, 641 (1977).
- 3) E.Borello, Int. J. Quant. Chem. 19, 1065 (1981).
- 4) D.E.Ellis, and G.S.Painter, Phys. Rev. B 2, 2887 (1970);
 D.E.Ellis, Int. J. Quant. Chem. 52, 35 (1968).
- 5) J.C.Slater, "Quantum Theory of Molecules and Solids" (Mc Graw-Hill, New York, 1974), vol. IV.
- 6) Diana Guenzburger, and Elisa M.B. Saitovitch, Phys. Rev. B, in press.
- 7) A. Rosen, D.E. Ellis, H.Adachi, and F.W. Averill, J. Chem. Phys. 85, 3629 (1976).
- 8) W. Kohn and L.J. Sham, Phys. Rev. 140, A 1133 (1965).
- 9) B.Rosen, "Spectroscopic Data Relative to Diatomic Molecules",
 Pergamon Press, (1970).
- 10) P.O. Löwdin, Rev. Mod. Phys. 35, 496 (1963).
- 11) G.A. Ozin, Helmut | ber, Douglas McIntosh, Steven Mitchell, Joe G.Norman Jr, and Louis Noodleman, J.Am. Chem. Soc., 101, 3504 (1979).

- 12) Andreas Wolf, and Hans-Herbert Schmidtke, Int. J. Quant. Chem., 18, 1187 (1980).
- 13) P. Joyes, and M. Leleyter, J. Phys. B 6, 150 (1973).
- 14) Alfred B. Anderson, J. Chem. Phys. 68, 1744 (1978).

indigen in the second of the s

The contradiction of the contr

e - Table - Captions (1981) (1984) between the second problem and the contraction of the

Table 1:

Atomic populations for Cu_2 and Cu_2^{+1}

rebea d bomilas.

Table 2:

Main contributions of atomic orbitals in population analysis of the valence levels of Cu_2 in $\text{D}_{\infty h}$ symmetry; at interatomic distances 2.22Å and 4.76Å.

Table 3:

One-electron levels of atomic and dimeric copper. Energies in eV.

- a) From reference (11). α value used for Cu: 0.707, $r_e = 2.22 \text{Å}$.
- b) Values obtained approximately from Figure 3 in reference (12), for $r_{\rm e}$ = 2.22Å .

TABLE 3

ger upgebreigh Trappertie	Cu(3d ¹⁰ 4s)			Cu ₂ -D _{∞i3}		Cu ₂ -C _{wy}		Cu ₂ -D _{∞h}		Cu2-Doh		
		(DVM)		(byva)		(14s-Xa) (a)		("ab initio") (b)				
spin restricted one-electron eigenvalues		spin polarized cne-electron louization eigenvalues poténtials			ionization potentials	1	ne-electron igenvalues ionization potentials		The state of the specific control of the state of the sta		ore-electron eigenvalues	
3 d	-4.29	34, -4.28	10.34	6σ _a -6.85	yelas	1.15	-7.05	Augusta.	60 ₄	-6.47	600	1-13.4
4s	-3.77	367 -4.11	10.08	38 -6.01	Column Co	50	-6.25	ange sain pain markan pangan menangan menang pangan menangkan sanggah na	3π ц	-5.42	350	-13.1
		45 -4.32	7.56	18 ₉ -5,45	ARES	13	-5.69		lög	-5.00	L8 _g	-12.6
	and the second seco	A COLUMN CONTRACTOR OF THE COLUMN CONTRACTOR OF THE COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN COLUMN CO	€ 1 - 12 - 12 - 13	70 g (45) -5.31	9.33	26 (3d)			~)	18 u (3d)	1
			≹ di na kana a - ₹	$\frac{1\delta_{u}(3d)}{3\pi_{g}(3d)} = 5.21$	13.93	120(4s) 6%(3d)			$\frac{7\sigma_{\mathcal{G}}(3d,4s)}{3\pi_{\mathcal{G}}(3d)}$	3	3 _{11 g} (3d) 6 _{27 u} (3d)	
	ngan terpanggangganggangganggangganggangganggang	Martine T. A. 1944 of The State		$6\sigma_{\rm u}(3d) - 4.92$	13.58	130 (34)	-5.16	14.24	6 a ₁₃ (3d)	-4.38	7 _{0 g} (4s)	-6.3
	a a	уу д. н. о ончиности (Сеньуйн сунтан жүйгээ дэгэ уулгаан оргооруун орчооруу он орчооруу оргооруу оргоо		70* -2.64	Carl Marines anne anne ann an Dersteine Anne ann an Air an Aireann ann an Aireann ann an Aireann ann an Airean Carl ann	14 of	-2.71	and the second s	₹u	-1.99		ige bezoek yinde ya Winasariaadik eedista

- manufacture and manufacture	Cu ₂	P _{∞h}	Cu ₂ - C _{∞v}					
Allera raylandileringianquer	2.22Å	4.76Å	2.22Å	4.76A				
3d	9.961	9.997	9.953	9.996				
45	0.981	0.999	0.988	0.999				
d ye	0.013	0.002	0.008	0.002				
-åd	0.007	0.1	0.013	0.001				
	0.009	100.0	0.013	0.001				
5,2	0.029		0.029	0.001				
	$Cu_2^{+1} - D_{\omega h}$							
	60ut	60 u,	70 °	70 g +				
·····································	spint	spin.	spint	Spine				
3 a	4.46	4.96	4.94	4.97				
48	0.43	0.42	0.03	0.44				
4p	-0.	-0.	~0.	-0.				
į								

	And the state of t	Para Caralla de Cara
	2.22Å	4.75Å
60 g	33%(4s), 64%(3d)	98%(3d)
374	~100% (3d)	~100%(3d)
log	-100%(3d)	-100%(3d)
70 9	62%(4s), 37%(3d)	97%(4s)
18 _U	-100%(3d)	-100%(3d)
3 T	-100%(3d)	~100%(3d)
60	98%(3d)	99% (3d)
70 *	76%(4s), 20%(4p)	99%(4s)

Valence eigenvalues of dimeric copper $(\mathbf{D}_{\infty \mathbf{h}})$ and atomic copper.