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ABSTRACT

In this paper we present the analysis of an algorithm
of Uzawa type to compute solutions of the quasi variational ;
inequality
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which is a model for the dynamics of a pile driven into the ground
under the action of a pilé hammer. In (QVI) (:>-) is the scalar

. 2 : . '
product in L (0,1) and J(u;-.) is a convex functional on Hl(O,l),

- for each u, describing the soil-pile friction effect.

1. INTRODUCTION

Our purpose is to approximate the solution of an initial
value problem for a quasi variational inequality of evolution
type, introduced in [4] as a model of a problem appearing in

Foundation Engineering. The general idea is to discretize the



a

time variable and solve at each time level a mathematical
pregramming probiem for the approximate solution at that level.

With the usual notation
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where a, kq, b, k2’ c, T are positive physical parameters and V
n

can be either L(Q) or H](Q), the centinucus prodblem is to find

uel™(0, T30 (2)) such that
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w(0) = 0 (1.3)
Mgy = 0 (1.4)
at ?
(B8, v 2 e sy - 2 .
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b(% 5 v - )+ I(usv) - I(us 5¢) 2 (1.5)

with f and F given.

The justification of (1.3)-(1.5) as a description of
the motion of a one-dimensional visco-elastic pile penetrating
into the soil under the action of the characteristic force of
the pile driver, the resistance force of the soi] and the
friction on the contact surface, is made in [4] . The unknown
function u(x,t) is the'displacement field, which mapé a "particle"
x from the.initial configuration of the pile to its position
X + u(x,t) at time t;-

From the mathematical side, the basis for that jﬁsti—

fication is the following theorem, quoted here for future

reference:

Theorem 1.1 - Given f e L2(0,=3L2(2)) and F e L2(0,=3R) such
that %{ e L2(0,=;1%(0)) , 2% € L%(0,=5R) and F(0) = 0 , then,

for any given 0 < T < «, there exists a unique ueLw(O,T;H1(Q))
satisfying (1.1)-(1.5). Furthermore, the motion is stable and

tends to rest as t » «, in the sense that

lul{(t) is bounded on [0,+ =)

3



wheve |v

Proof. See [4]

We shall be concerned with appreximations of the

function u(x,t) and its related fields
To define the approximation scheme we

cretizations

Ca,

x, = jh , h =

tn = nk , k =

2l Z—

where T is a fixed time level and M, N

After that, take the basic functions

with physical significance.

first introduce the dis-
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are given positive integers.

.

. 1 " jh < X < (j+]) h s

J - < -

A (x) =
0 otherwise, j = 0,1,..., M-1 ,
\ . : , ’
r ) . '

n 1 nk <t < (n+l) k ,

oy (t)

otherwise, n

o
P-A
o

that allow wus to introduce the spaces

1 1 , L N PR TS N T B
V, = tve H(@)vix) = } {}3+(VJ+T~VJ)(A - Ji}lg(X) , v) e R}

i=0 °
o, 2, o N
Ve = e LR vy = ] v

If we have a functien S defi

we denote by S" the value of S at tn;

SPF1/2 1 (Sn+1 ; Sn)

? s
“* n Sn+? _ Sn
(v} t S = "‘“"—"T«m————— N

= 0,1,..., N-1

of approximants

1

—_—

, V e R }

ned at the time levels tn’

and define
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t 2 - k

N n,
Sh,k(x’t) = Z S(x)e (t) ,

n=0
: NoT N n
atsh;k(x,t) = nzb 3,57 (x)8 (t) -,
N-1 n n
atsh k(X,t) 2] 'Sts (X)Gk(t) s
i n= .
N-1
2. '\2 n +
ey p(x>t) = 2]' 35S (x)6p(t) s
L) n= .

-
where Sn€V5 , n =90,1,...,N.

The approximation we propose for the solution u of

n

(1.1)-(1.5) is the function Uh k(x,t) = {U (x)}‘n=O » charac-

terized by the following conditions:

e v L nm 0,1, N
TR ,
ot -0,
qé n n ' n.y_ n
(agu™v - 8,U") + & (UMsv-s.U")
+b(5tu“;v-stu“) + aulsv) -

~a(uMe UM > (fn,v-atu”)+Fn[@(0)—atu”(o{]

1
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where fn = f(x,tn), Foo= F(t,). Such scheme is consistent with

n

(1.1)-(1.5) with local error of order k2

We observe that in view of the relation

inequality (1.9) can be written in the form

(6", v-5.U") + & b(s,uMv-6,0") 4

t
+ 5 auMhy) - S oute ™y >
X (F, V=5, U") - % a(usv-s,0")

k N . n- A
+ 3 Fn[?(O) - otu"(oi] + (0" ‘,v-atU") ,

Hence, if we define

{u,vl > (u,v) + % b(usv) ,

L. . s X 1
bilinear, symmetric, continuous and coercive form on H ()

. 1 ‘
L, H () - R ) . (1
v o> 5 (fo,v) + L v(0) +
2 n?’ 2 'n
n-1 k n
+ (atU, ,V) - 5 a(lsv) ,

linear and continuous forms on Hi(Q)

(Q) - R (1.

10)

J11)



jooH@ - R » C(1.12)
v S,

conveyx and continucus forms on H (Q), the defining conditions

(1.6)-(1.9) are equivalent to

T T PN (1.13)

TR L R | (1.14)
n ) n . " n

A(s UMv-s UMY w5 (V) - 3 (8,07 > (1.15)

n \ :
Lv-8.U") o ¥vev

" sy ks UYL n = 1,2, 0-1 L (1.06)

Two facts must be observed at this point:

2 2

(0,2;02(2)) and F ¢ LZ

(i) if we assume f e L (0,=3R) , the

families of functions {Ln} and {jn} are equicontinuous on H](Q)

by virtue of the stability results we shall prove for u" and

atU”"] in section 3.

(ii) At each time level we can uniquely solve the ”stétionary
probiem" (1.15) for 6tUn, since A{(-5+), jn(-) and Ln(-) satisfy

the hypothesis of a theorem of Lions-Stampacchia's. Furthermore,

n

U’ can be characterized as the solution of the optimization

S¢

problem

- 1 .
1”51 U Alvpsvy) - Loy + 3. (V) . (1.17)
vi eV _

Hence equations (1.13)-(1.16) can give uc an explicit



_a]gorithm to compute step by step the approximations at the
various time levels if we ‘are ab]e‘to produce a anerical
solution of the optimizétion problem (1.17) at each step.

The objective of thif paper is to analize a lower
level scheme of computation cgupling (1.13), (1.14) and (1.16)
with an Uzawa type aTgorwihm to generate the solution of problem
(1.17). We shall prove a convergence result in section 4, but
first we present and analize the optimization algorithm in
section 2, in a more general framework, and discuss two stability

lemimas in section 3.

2. THE OPTIMIZATION ALGORITHM

In this section we drop the lower indices from jn and
L . We-consider the "stationary" problem, equivalent to (1.17),

n
r

=
-

(i) we V

\ I . | (2.1)
(i1) Afusv-u) + 3(v)-iu) > L(v-u) , veV

L
where A, j and L retain the properties assumed in section 1 and,

in particular,

i = [ etalviala
«Q C s
where g is assumed given, positive and bounded on Q.

Let us start proving the existence of multipliers for

problem (2.1). Defining

b= da e LAY lalx)] < g(x) a.e. },



we have

Theorem 2.1 The solution u of (2.1) is characterized by the

existence of a.multiplier p such that

1
fu o Vh >
! (2.2)
LA(MVN-IFNXM(de= HVLV‘VEV&:
Q
Pe A s
(2.3)
| pu = glul a.e
Proof. Assume (2.1) and take v = 0 to get
A(usu) + j(u) < L(u) ,
and then v = 2u to get
A(usu) + j(u) > L(u)
that 1is,

A(usu) + j(u) = L(u) . : (2.4)

With ¢ > 0 we regularize j by j€ defined by

Je(v) = J g(x) Ve vo(x)  dx
0

Since je is convex and continuous on Vg, the regularized problem

(ue) > L(v—ug) .
. 1
V V ¢ Vh >

has a unigue sclution.

We claim that Ue converges strongly to u in Vé when

e » 0. Taking v = U, in (2.1), v = u in (2.5) and adding we ¢get
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-

A(ug—u;ug—u) + ;E(u

S i.(»tlc) < 3 (u) = 3(u). (2.6)

Now, from the inequality

2. 2 . 52
- x|

0 < v/x +e & ~-
: /2 2
x“+e" 4] x|

valid for any xe R, we deduce

0 <j_(v) - i(v) < Ce E Vv e Vg' ,
which,together with (2.6), implies that

A(uE—u;ua-u) < Ce s o (2.7)
and thus the claim is proved.

The functional j6 being differentiable on V;, problem

(2.5) is equivalent to the variational equation

[ .

(-1) u, e Vh, "

. _ , (2.8)
(i) A(qe;v) ¥ (jé(ue),v)'= L(v), ¥ ve Vo .
where
.(jé(w),v) - [ g(x)w(x)v(x) dx, v e‘V;, W e V;. , '(2.9)
o f2 2
QO Vet o+ lw]
If we define
g u, ) |
Pe = > : > s (2.10)
eS|
we have that p. € A and from (2.8):
,(m uoe v, »
i (2.11)
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The set A is bounded and closed in'LZ(Q), hence it is

weakly compact and we can ‘extract from'{pe}E a sub-sequence,

>0

stiil denoted by {p€}€>0,’su¢h that

. (e)
' (2.12)
1}11) pe A . | o

The function p is the candidate for multiplier. Indeed,

((1) p > p weakly in L2

passing (2.11) to the limit, in view of (2.12) and (2.7) we

obtain (2.2). Now, if we take v = u 1in this equation, we get

CAQusu) + (pau) = L(u)

‘which compared with (2.4) gives

(pou) - 3(uw) = | (pu - glulydx = 0
. Q2 ‘
But p & A, hence pu < gfu| and so

pu = glu|l a.e. in @,

that is, (2.3) is satisfied.

The converse implication results from a direct calcu-

n

lation: to obtain (2.1) we just take v W-u, any w-evg, in (2.2),

L(w-u) ,

A(usw-u) + J pwdx ~ f pudx
9 Y/
and then use the information contained in (2.3) to get

A(usw-u) + j glwldx - ( aluldx > L(w-u) ,

j e
Q 2

which is (2.1)(ii).

The proof of the theorem is ended.
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At this peint we recall that problem (2.1) is equiva-
Tent to (1.17), that is,

r

. 1
(1)U€Vha

‘ (2.13)
L (ii) F(u) = dinf F(v) ,
( v
wheve
F(v) = % A{viv) + §(v) - L(v) . (2.14)

Now, since a continuous and convex function 1is the
upper envelope of all affine functions lying bellow it, we can

represent i as

iv) =sup (av) . voevl o, | (2.15)
geh
in view of
. i [ , .
[ avax < | Jallviex < [ glvlax
Q ' Q Q .

Formulas (2.13)-{2.15) suggest us to introduce a’

Lagrangian function

>,

£ (v.q) = 5 A(viv) + (q,v) - L{v) , (2.76)

| —

. 1 . 2
defined on Vh x A { A= closed, bounded and convex in L°(Q)).

In this situation problem (2.13) is eguivalent to

( 1
(1) u e Vh >
T A e
: (13} F{u) = inf sun <0 (v,q) '
| VEV} Geh
% b
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We can say more about the characterjzation of the
o » . . .
solution u in terms of «2{(v,a): (u,p), where p is the multiplier
of theorem 2.1 , is a saddle point of & (v,q). In fact we

shall prove now the following

Theorem 2.2 7The solution u of (2.1) is characterized by

v y y ,
F(u) = ‘inf sup «2 (v,q) = sup Inf] 23 (v,q) . (2.18)

VEV; el qu Vevh

Proof. The first relation is already clear, and since we have

in general sup inf < inf sup ,

.y
sup inf <2 (v,q) < F(u) . , (2.19)
aed VeV;

The claim is: equality holds. For this we éa}cu1ate

explicitly

inf ip (V,Q) s

]
VEVh

which is reached at v(q), the solution of

(i1) A(v(q)sw) - L(w) + (q,w) =0 , ¥welV

The last equation implies

o
4
L

(v(a),a) = - % A(v(a);v(a))

and then

sup inf ¥ (v,q) = sup - - A(v(q)iv(q))}
VCV; Ged ’
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Now if we take q = peA , a multiplier from theorem 2.1,

and v(p) = u , we have

F(u) = - % Alusu) < sup inf1;f§ (v,q) >
Vth
whicnh togethey with (2.19) proves the theorem.

Those twe theorems put us in position to define the
algorithm fcr the computation of the solution of problem (1.17)
or (2.1). We are in the general framework considered by Glowinski,
Lions and Trémoliéres in [1] (Chapter 2, section 4) for the

searching of saddle points of functions of the type ﬁ? (v,q),

satisfying

ot S g | 1
o (u.q) 222 (usp) < b (vop) » ¥ veVy , ¥ge d . (2.21)

~In this situation we define the following procedure:

( (1) initialize with pO e A3
pﬂ e A, L >0, known;
¢ (1i1) minimize ib (V,Pz) in V; to obtain uE € Vg ; (2.22)
.. 2+1 £ £ |
(iii) p =Py (p7 + ppu)
N

Here PA is the projector operator froem LZ(Q) onto A and Pp is a
parameter to be conveniently chosen for convergence.

We must remark that:

1 - Froblem (2.22) (ii) is equivalent to solve the Neumann

probiem

3V)s ‘V"VE \,:] . (2c2)(11)'



ENd

2 - The projection operator PA is given by the expticit fornuia

P v(x) = 9(x) v (x) . ve L) . (2.23)
sup{g/x);]v{x)|}

3 -~ After theorem 4.1 of [1] , procedure (2.22) is convergent, in
the sense that uﬁ >~ u strongly in V; as £ - o. For this we
have to take p, in between two bounds defined in the proof of

this result.

4 - The sequence {pz} may have more than one Tlimit point, and

each of them,tuvgether with u, is a saddle point of iﬁ(v,q) on
1 '
Vh X A.

We end this section with the final version of the

complete algorithm:

f

1
h

(£ sufficiently large) is obtained by ihe convergent it-

(C) forn =1,2,...,N-1, StUn(x) = uﬁ(n;k)ev

erative procedure

(C-1) pg e A given,

pﬁ known, £ = 0,1,...,

] . , ](2.24)
(C=2) Alupns=)svy) = Lnévh)*(pn,vn), ¥ou e v,
: '
{ y .
. £+] _ (Pn\X)FOEuh(n,x))
(C-3) p, (x)=g,(x)

Sup{gn(x);!pﬁ(x)+p£uﬁ(n;x)l}

' f v Y — L i’ L0
where gn(x)muh(x+u (X)) (x+U 7 {x%)-1)
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3. STABILITY OF THE EVGLUTIONARY SCHEME

In this section we establish some stability properties
of scheme (1.]3)-(1.16). We shall have to impose a stability condi
tion for k in terms of the stability function S(h) associated

with the spaces H](Q) and LZ(Q) (see [3]).

Theorem 3.} If k and h satisfy

Ksm? < @+ k™t L ' (3.1)
then
!a‘U ["w " < constant , (3.2)
ELAEIT IS SRS

|Uh k' - 1 < constant , (3.3)

L (0,T;H (Q)) . .
Iﬁtuh,k! ) ] < constant , (3.4)

LY(0,TsH () '

where the constants depend only on the data, but not on T, which

can be even T = + o,

Proof. We take V =0 in (1.9) and multiply by (-1). Since

J(Un;ﬁtun) > 0 , we have

: 2
-‘ I n {»\ In—] o "n.
5K {lBtU ‘O - lotlJ Po+roa (U058

+ b(stun;atu
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where lv]O = J(v,v)

By the Cauchy-Schwarz inequality and Sobolev's embed-

ding theorem we can bound the right hand side of (3.5) by

n
(1f 1o+ IF 1) 1s U]
Now,

. -_ ) - . -1 —
a(Un;UnH _yn 1) } % a(Un+1;Un+1) j.a(Un yn 1):E

: % {%(Un+1 ETLTLERNTL I a(Un—Un—];Un~Un_]é] ’
"so that if we multiply (3.5) by 2k and sum from 1 to j, we get

.1 2 . . ' . .
’BtUJ‘O vy Laudttudtly o 5 a(ulsudy -

2
1 541 G541 5 J neoon
- - a(y -uYsu -uY) + 2k Y b(s,U"s6,U")
. n=1 ,
J _ n
P S IER AT
n= )

or
W 2 j.pyd . n n
!atUI+a(U,U)+2§kb(aU,5U)
.. . j "2
< —aquiudttogdy 4o ) k}GtUn + (3.6
n=1 1
% 2 2
v Cle) k(lf l + |F ’ y
n=1 Nl n

where £ is any positive number to be chosen conveniently.

We have the foilowing norm equivalences:
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.‘ 2 s . L
ey olvsw) < luly < 2 mex (aiky) afusu)
1 . 2 ~ N
o b(usu) < |ul] < 2 max (bik,) b{usu)

-
.

Hence, the first term in the right of inequality (3.6) is esti

mated as

1
2

L2 i.-
k™ a(a,U%509,

caqudsudtlaudy < Laudsudy 4

1 ;
7 )

2

N—J

in

Lawdsudy « 3 k%, + k])}atUJ‘

o} —

1

a(Uj;UJ) +

<

N} —

)

1 (a+ky) k2s(n)? ‘a ud

If we choose e carefully, we obtain from (3.6):

Iy 2 . j 2
.1 2 71 j 1 iod 1 n
1 - 3 (arkkTs(h)7] |ogU ‘0 + 5 a(ulul) + 5 nzlk 5, U .
j PRCNIL
< constant ) k({f + ‘
. afy inlg I
This inequality, together with (3.1), implies
L2 o j 2
!‘atUJ + a(UJ;UJ) + Yk 6tUnH < constant R
0 n=1 1

that is (3.2). (3.3) and (3.4).

Theorem 3.2 If k and h satisfy (3.1) and F(k) = 0, then
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laiuh e ) < constant (3.7)
K0, 5L () \
|9,U [ < constant , , (3.8)
Eh R0, TR () T |
2
[asu, | < constant (3.9)
sk 2o ot ) :

where the constants depend on the data, including T.

Proof. We write (1.9) at the levels n and n+1:

n

U, v-5, 0" 4 a(u™sv-s,u") 4

2
(9

: oan n on
+ b(atU ;V—GtU ) + (U V) -

- J(uMss U™y > (F V-6, UM | (3.10)

V) - (3.11)

¥ Fn+][y(Q) -_@tu”*‘(o{}

Now we take V = 6tUnH in (3.10), v

i}
O
[

to get
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2, n+1 2

(a U™ - o

4 mAc:+d _ c:wawc:+d _ s c:v. N

T LA I\ PP SR TUL NP S TL

. + 9(UMss UMy - Juss Uy
. gﬁc:+dwa+c:v _ QAc:+dw@ﬂc:+dv.
But
’ n+1 n-1
9, U - 2,U _
n+1 N t t k 2, n+1 wln
S - S U = . =" % (9,U + 3.U") >
t t 2 2 t t
so that if we scwﬁﬂndk {(3.12) by m,zm obtain:
2 2
2 - .
_wmc:+~wo - mm:: ) a(a, UM UM 2, U" Ny s
: wmc:+_ + wmc: wmc:+d + ch: | :
) + 2k b{ 5 ; 5 )
A R me3~ |
< 2k 90, f . > + : (3.13)
0 - _o
| lefuM oy 4 a%u" 0y
+ o2k} a.F \ +
| 2
2 | ]
N ¢ n+1i n
o {g(x;U") 6 U ,t - |8, U +
2 J
.::+d 5 ::m s cs+~w gw .
g(x; ) LS _ | dx
[

where g is defined after the notation introduced in section 1 as
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Y

g(x3A) = c H(x + A = 1)(x+ x - 1),

The last term in the right of (3.13) can be estimated

as follows: .

2 N n+1} _ n+1 (1 n| -
% 1 fa(x;um) aaﬁc _ I g(x;U vw_awc |
Q
- “&ﬁc3+d } dx = m (30" - g(x;u™Ny]
- )
(1« (n+1] g :_-
. _..nw.nc &.nc ] dx
L [T T I LT
0 0
. . _wmc=+_ + wmcz_
= MO_A w.ﬁc — _ .
0 2 _o

a

Hence if we put this result into (3.13) and add from 1 to j-1,

taking into consideration Sobolev's embedding ﬁ:mowmsw

2 J=1
J _ 2,1 N n. n+1 n-1
“m U * ~wﬁc _o + :w_ mAwﬂc 33, U7 -3, U )
j-1
+ 9 M k b(o m :+a\m m :Td\mv
n=1 .
) 5 Kf]a, e |
< cfe <1 {9 ~ \w F + 3.14)
- n=1 t t A
3-1
+(4420) emax (bik,) § k b(aZunt1/2,52yn+1/2
n=1
. 3 onl?
+ c(e) N x_wﬁ: ,
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where 85Un+|/2 = ]/Z(aiumI + 2Un) and e > 0 is any number.

Bt |
By (3.2) and a proper choice of ¢ we have

- j-1 -
|a§UJtS + 51 a(BtUn;BtUn+] - 3, u" N
n= -
j.,.'] . 5 .
v E] (b (aluMt/E L R2ynel/e, (3.15)
n= .

Now we focus our attention on the second term in the

Teft hand side of (3.15). We. have the splitting

n+1_a Un-]) ynt1

I[:a(a g+ 3

n n-1 n n-
- - - ylo
a(atU atU ,atJ atU

Hence if we sum and consider (1.7) and (1.8):

n n+l n-1, 1 Jj. iy o . -1, Jj-1
nZ] a(o,u%a,0" gyt 2 ] [E(atu 3o,U7) + a(a,ud sa ud )
- J_o yd=T. o i (3-14] _
e g 3T
= afn pd-t. j~1 NE J j-1
(5,077 50,0970+ aga w3t e 03a 03T

Moreovey, the second tevrm can be bounded as



s . s _ ' ' L 2 3 ,
la(a a0 09T = a (o U byoatuhyg
] '_] —«] ] 2 2 j ,Z'j
27 30U 0 07T e g kT aaiUligud)
1 -1, i~ 11,2,3,2
< a(atU ,BtU ) + > IBtU IO o

where we made use of the stability condition (3.1).

Carrying this information into (3.15) we reach the

following 1nequa]ity:'

1,.2,312 . 1 i~1. . -1 | -
S1aLUI g + 5 a(a, w7 e il 4 (3.16)
izl 2 ?

DL bCa;Un+]/2;a§Un+]/2) < iaEU]|5 + const

n:-l . " - 19 .

so that to complete the proof of the present theorem we must

bound lagUl!O in terms of the data of the probiem.

For this we write inequality (1.9) for n =1, consid-

ering the initial conditions:

2.0 e ] oy .oy 1
'(atb ,J—dtU )+ b(atU ;V-otU ) > (f1,V-6tU )
Then we take V = atUO = 0 and ohserve that
_ 1 o Tk 2,1,
v étU = “tU 61U =5 Btd
We shall get, multipiying the inequality by - % :
gtz o, 2 1. 1 1 2 1 ,.2,1,2
oWl + g pleUse ) < 5 Iflg + 5 [3yU ]y

and this implies

2 ] |
IDtU %O =< lf]

o
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ending the demonstration of the theorem.

4. CONVERGENCE ANALYSIS

In this section we shall go through the convergence
analysis of the algorithm, establishing the adequate setting for

the 1imit process. The following theorem summarizes the question.

Theorem 4.1 Let u be the exact solution of.the pile driver
problem with properties specified in theorem 1.1. Let also Uh,k
be its approximation calculated through a]gorithm (2.24). Then,
if h and‘k_go to zero satisfying the stability condition (3.1)

and F(k) = 0, we have that

. 2
Uh,k +~ u ‘strongly in L (QT) R . (4.1)
du . 2 . |
atUh,k_ > 3% strong]y'1n L (QT) s : (4.2)
2. 2%y 2 1 -
atUh,k > '8-;2- we.akly in L (O,T;H (Q)) s (4.3)

where QT = Q x (0,T). '

Proof. Taking a finite T > 0, theorewms 3.1 and 3.2 say that
the zequences {Uh,k} , {at h .k
(O?T;H](Q)). Hence we can take sub-sequences such that

4 .
] } and {atuh,k} remain bounded
in L

L]

() v, - U weakly in 120,75 (a))
) GAD R MU 8y weakly in LZ(O,T;H](Q)) > (4.4)

ot
(ii1) oa3u > Eéu weakly i L2 0,T;H! Q 7
' t h,k E—t—? y in (0,T;H (Q))
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2
9 , 2 9
The convergences at » =y and Bt > g;z result
from the relations
T
<B+Uh k9¢> ,= - <Uh k’atd)) = - )r Uh,k 3t<b dt s .
’ 0
'\2' P '\2! = 2',L)
Dl gt = Uy g B> T J Up i 3¢ 9t
0

valid for any ¢<D(0,T), k sufficiently small, and the fact that

8t¢ > 20 strongly in L2(O,T;R) s

at
2 2% 2.0
3¢ - A strongly in L7(0,T;R) ,
t 5to

together with (4.4)(3).

Here we understand éé(O,T) as the space of test-func
tioné for vector-valued distributions on (0,T).

Now, since the injection of H](QT) into LZ(QT) is com-

pact (see [2], theorem 3.6), we have

) |
(1) Uy U strongly in Li(0p)

) (4.5)

G Ay o St strongly in L5(0q)

where we are again taking sub-sequences.

Cur objective is to show that UgLZ(QT) is the solution

of the continuous problem, that is, U = u. This would imply our

theorem by (4.5)(1), (4.5)(11) and (4.4)(iii).

Let us take a test function VELZ(D,T;H](Q)) and approx-

P ¢ 1 . N Cd \
imations V' ¢ Vh such that V' =+ v(»,tn} strongly in N (D) . Ve

have, in the notation of the Introduction,
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Vo . > v strongly in L?(0,Tsh

(%)) . (4.6)

n

Well, if we take V = V" in (1.9), multiply by k and

éum from 1 to N-1, we get

N -

)

n:_'
7

f(agu
0
T
0
T

fb(&t
0
T
(

Jocu,
0

n n n n n
(U v s Uy + o F ke auivies ot
1 n=1
N-1 CON-]
+ 3 kob(s U s e Tk auTvy -
n=1 n=1
N-1 N-1 .
- k J(u”,atu”) > § k(f Vs UM (4.7)
n=1 . T n=1 n
N-1 ' -~
+ ¥V kK F [?“(0) - s "0y
n=i n t J
¥ vet?0,T;0 ().
Now,
: T
N-T N-1 : _ ,
e 3 : 2,n .m m n.m_
h,k,vh’k GtUh,k)dt =y Y (8,U7,Vvi-8,U7) f 6,0, dt.
n=1 m=] i)
N-1
= ) k(22U Vs 0™y
n=1 t

. _ n_,n n
Ja(Uh,k,Vh’k-atUh,k)dt = nZ ka(uvi-s u)

N-1 : ‘ :
. L n_,n n
Uh’k,vh’k—ﬁtuh,k)dt = nZ1 k b(8, UV -5, U7)
No n.,n
,k;vh,k)dt = ng} ko d(u™svyy + & (k) .-
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N-1
J i Vi (©) 6tUh,k(0{}dt - § KF lr_v“(O)-atu“(O)—1 ,
where
N-1 : -
f (x,t) = nzl o (x) ek(?) 5
-] ]
HOREE SO

and, as k>0 -,

£, > £ strongly in L%(0,T;L%(0))

(4.8)
F, > F strongly in L?(0,T;R)
Hence inequality (4.7) can be .written as
T o T
2 )
J(atuh’k,vh’k 5y Up )t + f a(Uy 3V, o8, Uy ) dt
0 ) 0 -
T T
. f b8y Uy iV y T 84Uy )dt + f (U, 3V ()t
0 o
T
_ f Iy (38,0, )dt + & (k) > (4.9)
0

1
| oV 8,0, dt
0 .

T -

o A P T R3] I
0

¥ v e L20.TH ()
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We have now that

T T,
2 22y

H (ByUn oV )dt > | (=

0 0o 3¢

by (4.4)(ii) and (4.6);

T T

’

0

by (4.5)(1) m:a.ﬁp.mvw

T T
{ . i Lo .
@,Cjux,&ﬁc:,wvad M J(U;
0 0
by (4.5);
T T
N (FieVy - 8.0 )dt -~
0

“ I(U, 3V Ddt > | 3(Usv)at

(4.10)

(4.11)

(4.12)

(4.13)

(4.14)

(4.15)

o
o

——
>
pa—
(@)}

~—
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by (4.4)(ii), (4.6), (4.8) and the trace theorem in H' (g).

On the other hand,

! $
2, .
J(at hokeSeln i) dt | ally e Uy ) dt s
0 0
T NV a2 n-12]
+ f b(8 U 384Uy ()dt =5 nz] L_Iatu lg = 13,V ‘QJ
0 : - :
B A NS I T b(s. U 38.U L )dt
7 (v ) S8 Un ki8¢l i e
n=] 0
1 N-1,2 1 N_,N 1 N N
T
+ [ b8, Uy (36,U, (Jdt
0
so that if we pass to.the limit k > 0, we get
. T T
. 2
]Lm+18f { g (atUh’k,étUh,k)dt + f a(Uh,k,étUh Jdt
0
T ’ .
13U 2 v
+ J b8 Uy 38Uy dtl > 5 [SE(T) g + (4.17)
0
T
| X au . au
+ 5 a(U(T);U(T)) + } b(5g 5 5p)dt

where we used the weak lower semi-continuity property of the

norm in a Banach space and the fact that a(UN;atUN) s bounded

independently of u" or k
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»

Hence, wWriting (4.9) in the form

T

_ 2, .

j (3 t h k’ )dt + I a(Uh,k’Vh,k)dt +
0 0

T T
E [ B8y v, 090 [ 9ty i ¥ni9E
| |

T
- g J(Uh’k;étUh,k)dt + o (k) >

fk{}h,k(o) - stUh,k(Oz}dt

T ' T
2 .
+ L(atuh,k’atuh,k)dt + i a(Uh,k,Gt h, k)dt

.
.[}(fk,vh,k—GtUh,k)dt +
5

oO———

.
f
S |
vy e L2(0,TsH (2)

passing to the limit k ~ 0 and considering the results (4.10)-

-(4.17), we get

T 2 T }
37U . ’ oy .
['(3;? , v)ydt + J a(Usv)dt + é b(ﬁf ; v) dt
0 O . T
T T
( U
+ § J(Wsv)dt - g J(VUs 5% )y dt >
0
T i
I
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T

+‘% 125 (T) g + T a(u(T)su(my) + | b(8: 5 53) dt

b

ou
3

o CZ

¥ v e L2(0,TiH (Q))

that is
T2
5 3U 3U 5U 3
J {(—~%, V- ET) + a(Usv - §€) + b(5¥ 5V - 51)
o ot |
£ 3(Usv) - 3(Us S9)) dt > (4.18)
T ,
53U N Y

Jetav - 3« ooy [wone) - Boany]rer
0

¥ v e L30,TsHT(2))

In the proof of theorem 1.1 in [4] , it is shown that
inequality -(4.18) is equivalent to (1.5), and so the conclusion
is U = u, by the uniqueness property of the problem.

To coficlude, a final remark: (4.4)(i) and (ii) give us

also information on the convergence of the computed strains and

stresses of the physical problem.



~32-

REFERENCES"

(1]

Arﬂ

“

(4]

Glowinski, R., Lions,. J.L., and Trémolieres, R., Analyse

numérique des inéquations variationelles, Dunod, Paris ,

1976.

Lions, J.L., Equations differentielles opérationelles et

problémes aux limites, Springer-Verlag, Berlin-Heidelberg

- New York, 196%t.

Lions, J.L., Cours d'analyse numerique, Hermann, Paris ,

1974,

N

Raupp, M.A., Feijoo, R.A., and Moura, C.A. de, A non~linear

problem in dynamic visco-elasticity with friction, Tec.

. published in Bol. Soc. Bras. Mat.).

Report A0023/77, Lab. Calc. CBPF, Rio de Janeiro (to .be

¢

o

1%





