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Abstract

A technique of regarding the line elemement of space-time appropriate to each field vari-

able as an operator acting on this variable allows a simple derivation of the free field

relativistic wave equations, the geometrical nature of which is the line element. An illus-

trative example is the derivation of Einstein’s linear equation for weak gravitational fields

and the exact equation in the absence of matter.

Key-words: Fields; Wave equations; Line element geometrization of physics; Dirac’s

equation; Einstein’s equations.

1Dedicated to Paulo Leal Ferreira, in the occasion of his 70th birthday.
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A tribute to Paulo Leal Ferreira on the occasion of

his 70th birthday

Dear Paulo: You may remember that back in 1946, recently appointed to the chair of

Theoretical Physics at the Faculdade Nacional de Filosofia in Rio, I met you and wanted

to have you at my side to help me in research work and in the task of educating young

physicists. But the administration of the University in Rio at that time did not favour

the development of research in physics and there was no full time. I had to fight against

this situation and had the occasion of meeting your belovedfather, Engineer J.H. Leal

Ferreira, who was also against the lack of creativity in our university administrations and

was gathering elements to create a Theoretical Physics Institute. At that time, I was in

touch with Cesar Lattes, then in Bristol, to convince him to join me at the University in

Rio and help change the situation there.

Finally, in 1949, we created the Centro Brasileiro de Pesquisas F́ısicas, and your fa-

ther got enough help to create the Instituto de F́ısica Teórica in São Paulo. You had

the visit and the help of young and famous German and Japonese Physicists like Rein-

hard Oehme, Von Weiszöcher and M. Taketani, we had young and famous physicists like

Richard Feynman, Daniel Amati, Alberto Sirlin and many others.

From those difficult but glovious times emerged a climate of research in physics in

Brazil which is promosing to give good results for the country and for science.

I join my colleagues to congratulate you - and your brother Jorge, who left us so

prematurely - on the brilliant work you accomplished during all these years, and wish you

many years ahead of a productive and happy life.

1 Introduction

Sometime ago I tried to characterize Dirac’s equation as a spinor geodesic in space-

time. The idea was to postulate a variational principle of the form:

δ

∫ B

A

dΣ = 0 (1)

where

dΣ = γαdx
αψ(x), (2)
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ψ(x) is a Dirac spinor and the form

γαdx
α (3)

is the well-known matrix which linearizes the line element:

ds2 = ηµνdx
µdxν (4)

where ηµν is the flat space-time metric and

1

2
{γα, γβ} = ηαβ (5)

The idea is not correct since equation (1) leads to the condition

∂α(γβψ)− ∂β(γαψ) = 0

which led me to write γαψ as the gradient of ψ, namely:

γαψ = 4i
h̄

m0c
∂αψ (6)

from which one obtains Dirac’s equation:

ih̄γα∂αψ −m0cψ = 0 (7)

The condition (6) is, however, too restrictive and is not valid and therefore the deduc-

tion of equation (7) is not correct.

2 Spin 1/2 Field Geometrical Equation

The idea of the geometric nature of the relativistic wave equations, however, pursued

me and led me to a few pedagogical, trivial, remarks about these equations.

First of all the linearisation of the line-element (4) by means of the matrix (3), having

(5) in mind, is valid only as a condition on a spinor ψ, as an equation which defines the

spinor as a solution of the equation:

γαdx
αψ = dsIψ (8)

where I is the unit matrix and ds is a number.

We shall develop the idea that the line element - linear or quadratic - is to be regarded

as an operator acting on the field representative.
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What follows is then trivial, since the momentum of a classical particle is

Pα = m0c
dxα

ds
(9)

Therefore we deduce from equation (8)

(γαP
α −m0c)ψ = 0

and thus the quantum - mechanical equation (7)

(ih̄γα∂α −m0c)ψ = 0.

which is Dirac’s equation.

In a similar way it follows from equations (4) the relationship

PαP
α = (m0c)

2 (10)

and hence the Klein-Gordon equation for all function f(x) representative of the Poincaré

group: {
✷ +

(m0c

h̄

)2
}
f(x) = 0 (11)

Besides the consideration of the line-element ds2 or the matrix (3), we must take into

account the spin s of the field, the number of independent components of which is 2s+1,

for s integer and 2(2s+ 1) for s half-integer, and for massive particles.

3 Spin 1 Field Geometric Equation

Massive spin s = 1 particles are described by a four-vector φµ, of which only three

components are independent.

We therefore write for the geometric equation for φµ:

ηαβdx
αdxβφµ = ds2φµ (12)

and the condition:

dxµηµνφ
ν = 0 (13)

The equation (13) means that there is no scalar field built from φµ in the neigh-

bourhood of every point x of the manifold where φµ is defined:

dxµφ
µ(x) = 0.
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From equations (12) and (13) one obtains trivially:

ηαβ
dxα

ds

dxβ

ds
φµ = φµ (14)

and
dxµ

ds
φµ = 0 (15)

whence, in view of (9) and its transcription in quantum mechanics:{
✷ +

(m0c

h̄

)2
}
φµ(x) = 0, (16)

∂µφ
µ(x) = 0 (17)

4 Proca’s Equation

Proca’s equation incorporates equations (16) and (17) for massive spin 1 fields. It has

the form:

∂νG
µν +

(m0c

h̄

)2

φµ = 0 (18)

where

Gµν = ∂νφµ − ∂µφν . (19)

It is this equation which allows, as is well known, the construction of a lagrangean for

spin 1 fields.

We take advantage of the fact that besides the line element (12) there exists a possible

term constructed with the field, bilinear in dxµ and which may enter ds2φµ. It is dxνφ
νdxµ.

So we postulate:

ds2φµ = dxαηαν(dx
νφµ − dxµφν) (20)

Equation (20) is the geometrical transcription of equations (18) and (19) in view of

equation (9) and the replacement of Pµ by the differential operator ih̄∂µ.

Contraction of equation (20) with dxµ gives:

dxµφ
µ = 0 if ds2 �= 0

So equation (20) is equivalent to equations (14) and (15).

In general we write ds2φµ as a linear combination of the two possible terms

ds2φµ = dxαηαν(a dx
νφµ + b dxµφν)
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and require the vanishing of dxµφ
µ:

ds2 dxµφ
µ = dxαdx

α(a+ b)dxνφ
ν = 0

whence a = −b = 1 if ds2 �= 0, dxµφ
µ = 0.

5 Photons

For photons it is well known that classically the line element vanishes:

ds2 = 0 (21)

We postulate a four-vector field Aα for which:

ηαβdx
αdxβAµ = 0

and that there exists no scalar photon in the neighbourhard of any point x:

dxαA
α = 0

These are the geometrical transcriptions of the dynamical equations (by means of a

parameter in the place of s):

✷Aµ = 0, ∂µA
µ = 0

Equations (20) and (21) lead to the equation

∂νF
µν = 0, F µν = ∂νAµ − ∂µAν

but here the gauge ∂µA
µ = 0 has to be postulated.

6 Spin 3/2 Fields

Spin 3/2 fields are described by a spinor-vector ψµ
a (x), where µ = 0, 1, 2, 3 is the vector

index and a = 1, 2, 3, 4, the spinor index. We postulate the equation (8) applied to ψµ
a :

γαdx
αψµ = dsIψµ
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ψµ
a has 16 components, 8 of which describe spin 3/2 particles and two sets of four

other components each are spinors which describe two types of spin 1/2-particles. The

latter are obtained from ψµ
a in the following way:

χa ≡ (γµψ
µ)a

φa ≡ dxµψ
µ
a

They must vanish, which leaves eight independent components to describe a spin 3/2

field only. The geometrical equations are thus (since we do not want any spin 1
2
field in

any neighbourhood of every point):

(γα)abdx
αψµ

b = dsδabψ
µ
b

(γµ)abψ
µ
b = 0 (22)

dxµψ
µ
a = 0

which correspond to the Rarita-Schwinger type of equations

(ih̄γµ
ab∂µ −m0c δab)ψ

α
b = 0

(γµ)ab ψ
µ
b = 0 (23)

∂µψ
µ
a = 0

In the same way that for spin 1 fields we took into account the existence of a line ele-

ment bilinear in the coordinate differentials constructed with the vector field and different

from the usual ηαβdx
αdxβφµ, we may appeal to new terms in dx and the gamma matrices

and the vector-spinor, to add to

γαdx
αηµνψν

namely: γµdxνψν , γ
νdxµψν and γµ(γαdx

α+ds)γνψν . We therefore postulate the following

equation:

{(γα)ab dx
α − ds δab)ηµν − (γµ)abdxν − (γν)abdxµ+

+(γµ)ac[(γα)cddx
α + ds δcd](γν)db}ψν

b = 0 (24)

and this geometrical equation will lead to the following one:

(ih̄γα∂α −m0c)ηµν − ih̄γµ∂ν − ih̄γν∂µ +

γµ[ih̄γ
α∂α +m0c]γν}ψν = 0 (25)

where we have omitted the spinor indices.
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Equation (24) is equivalent to the equations

(γαdx
α − ds)abψ

µ
b = 0,

(γν)abψ
ν
b = 0,

dxµψ
µ
a = 0.

For this, we differentiate equations (25) with respect to xµ and multiply by γµ on the

left, respectively.

The geometrical equation which defines a free spin 3/2 field is therefore :

iσαβdsψβ = {γµdx
µηαβ − γαdxβ − γβdxα + γαγµdx

µγβ}ψβ (26)

where

σαβ =
i

2
[γαγβ − γβγα]

This equation may be written in compact form:

εαβµνγ5γβ(dxµ − 1

2
γµds)ψν = 0 (27.a)

which corresponds to the equation:

εαβµνγ5γβ(∂µ +
i

2

m0c

h̄
γµ)ψν = 0,

γ5 =
i

4!
εabcdγ

aγbγcγd. (27.b)

In general there is a family of equations of the form:

{(γµdx
µ − ds)ηαβ − Aγadxβ − Bγβdxα + γα[Cγµdx

µ +Dds]γβ}ψβ = 0

The requirement that the equation be spinor-gauge-invariant1, namely under the trans-

formation: (φ is an arbitrary spinor):

ψβ → ψβ + ∂βφ

in the limiting case ds = 0 (vanishing mass), gives:

A = B = C = D = 1

This requirement uniquely defines the form of the equation (27a) and (27b) for spin

3/2 free particles. It is the equation which describes the massless gravitino in supergravity.

1J. Leite Lopes, D. Spehler and N. Fleury, Lettere al Nuovo Cimento 35, N.2, 60 (1982).
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7 Spin Two Fields and Einstein’s Equation for the Gravitational Field

We follow our technique: consider the gravitational i.e. the Riemann space line-

element:

ds2 = gµν(x)dx
µdxν

and apply it to Einstein’s field which is the metric tensor g itself. But besides the obvious

term

ds2gαβ = gµνdx
µdxνgαβ

we must take into account other possible terms as we did for spin 1 and for spin 3/2

fields. Namely, we have the following terms to consider (the non-linearity of the equation

is assured by the fact that there occur products like gµνg
αβ:

gµνdx
µdxνgαβ;

gµνdx
µ(dxαgνβ + dxβgαν);

gµνdx
αdxβgµν ;

gαβdxµdxνgµν ;

gαβdxλdx
ληµνg

µν ;

dxµgµνdx
νgαβ

dxµgµν(dx
αgνβ + dxβgαν);

dxαgµνdx
µgνβ;

dxβgµνdx
µgνα;

dxαgµνdx
βgµν ;

dxµg
αβdxνg

µν ;

dxλgαβdxληµνg
µν .

We must have in mind that dxµ

ds
being proportional classically to the momentum P µ,

dxµ

ds
gµν(x) is not the same quantum mechanically as gµν(x)

dxµ

ds
. That is why the terms

above are not identical to some terms previously written. And this is consistent with

our idea of taking our line-element as an operator defined on the field variable. We are

thinking on the fact that if coordinates commmute: [xα, xµ] = 0 the same cannot be said

of the commutator between a position coordinate and a displacement dxµ:

[xα, dxµ] = xαdxµ − (dxµ)xα =
ds

m0c
(xαP µ − P µxα) �= 0.
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In this sense we are distinguishing for instance gµνdx
µdxαgνβ from (dxµgµν).(dx

αgνβ).

If we take this for granted I will have the following equation:

ds2gαβ = Agµνdx
µdxνgαβ +

+Bgµνdx
µ(dxαgνβ + dxβgαν) +

+Cgµνdx
αdxβgµν +Dgαβdxλdx

ληµνg
µν +

+Egαβdxµdxνg
µν + A′dxµgµνdx

νgαβ +

B′dxµgµν(dx
αgνβ + dxβgαν) +

+C ′[dxαgµν(dx
µgνβ + dxβgµν) + dxβgµν(dx

µgνα + dxαgµν)] +

+D′dxλgαβdxληµνg
µν (28)

We write:

gµν = ηµν + hµν

hµν is the effective gravitational potential; and consider the transition dxµ

ds
to 1

m0c
P µ to

1
m0c
ih̄∂µ to get the equation:

(m0c

h̄

)2

hαβ + A(✷hαβ + hµν∂
µ∂νhαβ) +

+B[ηµν∂
µ(∂αhνβ + ∂βhαν) + hµν∂

µ(∂αhνβ + ∂βhαν)] +

+C(∂α∂βh+ hµν∂
α∂βhµν) +

+D(ηαβ✷h + hαβ✷h) + E(ηαβ∂µ∂νh
µν + hαβ∂µ∂νh

µν) +

+A′∂µhµν∂
νhαβ +

+B′∂µhµν(∂
αhνβ + ∂βhαν) +

+C ′[∂αhµν∂
µhνβ + ∂βhµν(∂

µhνα + ∂αhµν)] +

+D′(∂λhαβ)(∂λh) = 0 (29)

where

h = ηµνh
µν

For a weak gravitational field we pose m0 = 0 (or ds = 0) and retain only terms linear

in h. I have:

A✷hαβ +B(∂ν∂
αhνβ + ∂ν∂

βhαν) +

C∂α∂βh+Dηαβ✷h +

Eηαβ∂µ∂νh
µν = 0 (30)
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Take the derivative with respect to xα:

(A+B)✷∂αh
αβ + (B + E)∂β∂µ∂νh

µν + (C +D)✷∂βh = 0 (31)

from which we deduce:

A = −B,B = −E,C = −D
Thus if we take a scale with A

C
= 1 we shall have

✷(hαβ − 1

2
ηαβh) + (∂α∂β − 1

2
ηαβ✷)h + ηαβ∂µ∂νh

µν − ∂ν(∂
αhνβ + ∂βhαν) = 0

This is the Einstein equation in its linearized form for a weak gravitational field.

Much more complex is the expression, in terms of the field gαβ, of the exact Einstein’s

equation:

Rαβ − 1

2
gαβR = −kTµν .

We know that:

Rαβ = −1

2
∂β(gµν∂αg

µν)− 1

2
∂λ

[
gλνgνβ + ∂βgνα − ∂νgαβ)

]
+

+
1

4
gλµ(∂αgµη + ∂ηgαµ − ∂µgαη)g

ην(∂βgνλ + ∂λgνβ − ∂νgλβ) +

+
1

4
gλν(∂αgνβ + ∂βgνα − ∂νgαβ)gζη∂λg

ζη

and the scalar curvature is then R = gµνRµν .

Thus the geometric form of Einstein’s equation in the absence of matter would be:

ds2gαβ =
1

4
[dxα(gµνdx

βgµν) + dxβ(gµνdx
αgµν)] +

1

2
dxµ{gµν [dx

αgνβ + dxβgνα − dxνgαβ]}

−1

4
gµν{(dxαgνλ) + dxλgαν − dxνgαλ}gλη{dxβgηµ + dxµgηβ − dxηgµβ}

−1

4
gλν{dxαgνβ + dxβgνα − dxνgαβ}(gµηdx

λgµη) (32)

if we associated the coordinate differential to the derivative. But this correlation through

the momentum is questionable and so we should consider only the case of the weak

gravitational field.
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8 Proof of the rule that establishes that spin 1/2

fermions with negative energy propagate backward

in time

This rule gave rise to the Feynman-Wheeler interpretation of anti-particles, as is well-

known.

Dirac’s equation, we know

(iγµh̄∂µ −m0c)ψ(x) = 0 (33)

leads to homogeneous algebraic equations of the form:

(E −m0c
2)u1 − c(p1 − ip2)u4 − cp3u3 = 0

(E −m0c
2)u2 − c(p1 + ip2)u3 + cp3u4 = 0 (34)

(E +m0c
2)u3 − c(p1 − ip2)u2 − cp3u1 = 0

(E +m0c
2)u4 − c(p1 + ip2)u1 + cp3u2 = 0

when one puts:

ψ(x) = u(&p, E)e−
i
h̄
(Et−�p·�x) (35)

and uses the representation of Dirac matrices:

γ0 =

(
I 0

0 −I

)
, &γ =

(
0 &σ

−&σ v

)
(36)

The condition for the existence of solutions of equations (33) is that the determinant of

their coefficients vanish which gives.

(
(p0)2 − c2(&p)2 − (m0c

2)2
)2

= 0

and so the roots:

p0 = ± c(&p 2 +m2
0c

2)1/2 = ±E (37)

are double.There are thus two solutions with positive energy and two other solutions with

negative energy. The Feynmann-Wheeler interpretation, namely negative energy electrons

travel backward in time, follows immediately from the geometrical equation

γαdx
αψ(x) = dsψ(x) . (38)
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If one chooses the representation (33) for the gammas, the equation (8) will give the

homogeneous equations similar to equations (33):

(dx0 − ds)ψ1 − (dx1 − idx2)ψ4 − dx3ψ3 = 0

(dx0 − ds)ψ2 − (dx1 + idx2)ψ3 + dx
3ψ4 = 0

(dx0 + ds)ψ3 − (dx1 − idx2)ψ2 − dx3ψ1 = 0

(dx0 + ds)ψ4 − (dx1 + idx2)ψ1 + dx
3ψ2 = 0

The determinant of the coefficients of these equations must vanish which gives:

(
(dx0)2 − ds2 − (d&x)2

)2
= 0

and so the roots

dx0 = ± (ds2 + (d&x)2
)1/2

are double. The time intervals are either positive or negative. It is natural to associate

positive energy solutions to time intervals which are always positive. Then the negative

energy solutions will have negative time intervals – they represent negative energy fermions

running always backward in time (the usual interpretation was elaborated by analogy with

the classical equation of motion of the electron).


