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ABSTRACT

A technique of regarding the line elemement of space-time appropriate to each field vari-
able as an operator acting on this variable allows a simple derivation of the free field
relativistic wave equations, the geometrical nature of which is the line element. An illus-
trative example is the derivation of Einstein’s linear equation for weak gravitational fields

and the exact equation in the absence of matter.
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A tribute to Paulo Leal Ferreira on the occasion of

his 70th birthday

Dear Paulo: You may remember that back in 1946, recently appointed to the chair of
Theoretical Physics at the Faculdade Nacional de Filosofia in Rio, I met you and wanted
to have you at my side to help me in research work and in the task of educating young
physicists. But the administration of the University in Rio at that time did not favour
the development of research in physics and there was no full time. I had to fight against
this situation and had the occasion of meeting your belovedfather, Engineer J.H. Leal
Ferreira, who was also against the lack of creativity in our university administrations and
was gathering elements to create a Theoretical Physics Institute. At that time, I was in
touch with Cesar Lattes, then in Bristol, to convince him to join me at the University in
Rio and help change the situation there.

Finally, in 1949, we created the Centro Brasileiro de Pesquisas Fisicas, and your fa-
ther got enough help to create the Instituto de Fisica Tedrica in Sao Paulo. You had
the visit and the help of young and famous German and Japonese Physicists like Rein-
hard Oehme, Von Weiszocher and M. Taketani, we had young and famous physicists like
Richard Feynman, Daniel Amati, Alberto Sirlin and many others.

From those difficult but glovious times emerged a climate of research in physics in
Brazil which is promosing to give good results for the country and for science.

I join my colleagues to congratulate you - and your brother Jorge, who left us so
prematurely - on the brilliant work you accomplished during all these years, and wish you

many years ahead of a productive and happy life.

1 Introduction

Sometime ago I tried to characterize Dirac’s equation as a spinor geodesic in space-

time. The idea was to postulate a variational principle of the form:

5/Ade=o (1)

where
> = 7@d$a¢(x)7 (2)
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Y (x) is a Dirac spinor and the form
Vadz® (3)
is the well-known matrix which linearizes the line element:
ds® = ny,dzdz” (4)

where 7, is the flat space-time metric and

1

5 1%a 8} = s (5)

The idea is not correct since equation (1) leads to the condition

9o (vp¥) — O5(Varh) =0

which led me to write 7,1 as the gradient of ¥, namely:

h
’70477Z) = 4Zm—aa¢ (6)
oC

from which one obtains Dirac’s equation:
ihy* Dat) — moct) = 0 (7)

The condition (6) is, however, too restrictive and is not valid and therefore the deduc-

tion of equation (7) is not correct.

2 Spin 1/2 Field Geometrical Equation

The idea of the geometric nature of the relativistic wave equations, however, pursued
me and led me to a few pedagogical, trivial, remarks about these equations.

First of all the linearisation of the line-element (4) by means of the matrix (3), having
(5) in mind, is valid only as a condition on a spinor 1, as an equation which defines the

spinor as a solution of the equation:

Yozt = dsIy (8)

where [ is the unit matrix and ds is a number.
We shall develop the idea that the line element - linear or quadratic - is to be regarded

as an operator acting on the field representative.
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What follows is then trivial, since the momentum of a classical particle is

dx,,
pa = mocg (9)

Therefore we deduce from equation (8)
(Yo" = moc)tp = 0
and thus the quantum - mechanical equation (7)
(thy*0y — moc)yp = 0.

which is Dirac’s equation.

In a similar way it follows from equations (4) the relationship
P,P* = (mgc)? (10)
and hence the Klein-Gordon equation for all function f(z) representative of the Poincaré

{m+ <%>2}f(x) =0 (11)

Besides the consideration of the line-element ds® or the matrix (3), we must take into

group:

account the spin s of the field, the number of independent components of which is 2s+ 1,

for s integer and 2(2s + 1) for s half-integer, and for massive particles.

3 Spin 1 Field Geometric Equation

Massive spin s = 1 particles are described by a four-vector ¢,, of which only three
components are independent.

We therefore write for the geometric equation for ¢,:
Napdr®dr’ o' = ds " (12)

and the condition:
dz,,¢" = 0 (13)

The equation (13) means that there is no scalar field built from ¢, in the neigh-

bourhood of every point z of the manifold where ¢* is defined:

dr,¢"(x) = 0.
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From equations (12) and (13) one obtains trivially:

dz® dx®
. B A 14
Nag— == = ¢ (14)
and o
€T
0 15
dS ¢H ( )

whence, in view of (9) and its transcription in quantum mechanics:

{m + (%)2} & () =0, (16)

Ot () =0 (17)

4 Proca’s Equation

Proca’s equation incorporates equations (16) and (17) for massive spin 1 fields. It has

the form:
o (TN
0,G +<h>¢ 0 (18)
where
G = 0,0, — 0,0,. (19)

It is this equation which allows, as is well known, the construction of a lagrangean for
spin 1 fields.

We take advantage of the fact that besides the line element (12) there exists a possible
term constructed with the field, bilinear in dz* and which may enter ds?¢*. It is dx, ¢”dz*.
So we postulate:

ds* ¢t = dr*ng, (dz” ¢" — dxt¢”) (20)

Equation (20) is the geometrical transcription of equations (18) and (19) in view of
equation (9) and the replacement of P, by the differential operator ihd,,.

Contraction of equation (20) with dz,, gives:
dr, " =0 if ds*#0

So equation (20) is equivalent to equations (14) and (15).

In general we write ds?¢* as a linear combination of the two possible terms

ds* ¢t = dx®na, (a dz” ¢ + b dat¢”)
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and require the vanishing of dz,¢":
ds® dr,¢" = dz,dz*(a + b)dr,¢” =0

whence a = —b =1 if ds* # 0, dz,¢" = 0.

5 Photons

For photons it is well known that classically the line element vanishes:
ds* =0 (21)
We postulate a four-vector field A* for which:
Napdr®dz’ A* = 0
and that there exists no scalar photon in the neighbourhard of any point x:
dr, A% =0

These are the geometrical transcriptions of the dynamical equations (by means of a

parameter in the place of s):
OA" =0, 0,A" =0
Equations (20) and (21) lead to the equation
0, F" =0, Fr = 9" AF — ' AY

but here the gauge 9,A* = 0 has to be postulated.

6 Spin 3/2 Fields

Spin 3/2 fields are described by a spinor-vector ¥ (z), where u = 0, 1,2, 3 is the vector
index and a = 1,2, 3,4, the spinor index. We postulate the equation (8) applied to 1*:

Yodx®Yr = dsIy*
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Y* has 16 components, 8 of which describe spin 3/2 particles and two sets of four
other components each are spinors which describe two types of spin 1/2-particles. The

latter are obtained from ¢* in the following way:

Xa = (W),
Go = du, P

They must vanish, which leaves eight independent components to describe a spin 3/2
field only. The geometrical equations are thus (since we do not want any spin % field in

any neighbourhood of every point):

(Va)abdxawg = dS(Sabw(l;

(Yu)asty =0 (22)
dz, )8 =0

which correspond to the Rarita-Schwinger type of equations

(ih2 0, — moc dap) Yy = 0

(V)ab ¥y =0 (23)
auqu)g =0

In the same way that for spin 1 fields we took into account the existence of a line ele-
ment bilinear in the coordinate differentials constructed with the vector field and different
from the usual n,gdr*dz’¢", we may appeal to new terms in dr and the gamma matrices

and the vector-spinor, to add to
Yadz " Py

namely: Y*dz",, v"dzt), and y*(yadx® 4+ ds)v"1,. We therefore postulate the following

equation:

{(Va)ab dz® — ds Sap) My — (V) abdTy — (V) abd,+
+(V)ael(Va)cadx™ + ds Seal (V) an} 1y = 0 (24)

and this geometrical equation will lead to the following one:

(thy*0n — moC)Ny — Phy,0, — ih,,0, +
Vulihy* 0o + mocly, }Y" =0 (25)

where we have omitted the spinor indices.
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Equation (24) is equivalent to the equations

(Yadz® — ds)aptly = 0,
(”Yu)abwg =0,
dz, b = 0,

For this, we differentiate equations (25) with respect to z# and multiply by +* on the
left, respectively.

The geometrical equation which defines a free spin 3/2 field is therefore :
io™Pdsis = {”yudx“naﬂ — 7da? — AP da + ’ya’yudx“’yﬁ}wg (26)
where

0% = 211" =47

This equation may be written in compact form:
5 1
P Py o (da,, — §7ud3)¢v =0 (27.a)
which corresponds to the equation:

5aﬁw757ﬁ(au + _—'VM)QW =0,

5

Y €abcd’7a7bﬁ)/c’7d' (27b)

_Z
T4l

In general there is a family of equations of the form:
{(yuda" = ds)nap — Ayadig — Brgda + Ya[Cyuda” + Ddslys} g = 0

The requirement that the equation be spinor-gauge-invariant!, namely under the trans-

formation: (¢ is an arbitrary spinor):
Y — Up + Opo
in the limiting case ds = 0 (vanishing mass), gives:
A=B=C=D=1

This requirement uniquely defines the form of the equation (27a) and (27b) for spin

3/2 free particles. It is the equation which describes the massless gravitino in supergravity.

1]. Leite Lopes, D. Spehler and N. Fleury, Lettere al Nuovo Cimento 35, N.2, 60 (1982).
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7 Spin Two Fields and Einstein’s Equation for the Gravitational Field

We follow our technique: consider the gravitational i.e. the Riemann space line-

element:
ds® = g, (v)dz"dz”
and apply it to Einstein’s field which is the metric tensor g itself. But besides the obvious

term
ds?g™’ = Gudxtdx” g’

we must take into account other possible terms as we did for spin 1 and for spin 3/2
fields. Namely, we have the following terms to consider (the non-linearity of the equation
is assured by the fact that there occur products like g, gP:

Gudxtdx” go‘ﬁ ;

Gudat(dz®g”? + da’ g™);

G d®da’ g, ;

g*Pdatda g,

9*Pdarda n,, g™

dx“gwdx”ga’g

dat gy, (dx®g"? 4 dz’ g°");

dx® g, dx" g”ﬁ ;

dz”? G dzt g"*;

dx® glwdxﬁ gt

dxugo‘ﬁdx,,g“”;

da*g*Pdx AN g™

We must have in mind that % being proportional classically to the momentum P*,
%gwj(x) is not the same quantum mechanically as guy(x)%. That is why the terms
above are not identical to some terms previously written. And this is consistent with
our idea of taking our line-element as an operator defined on the field variable. We are
thinking on the fact that if coordinates commmute: [z% z#] = 0 the same cannot be said

of the commutator between a position coordinate and a displacement dx*:

[z%, d2z"] = x%dz" — (dzt)x® = ﬂf—jc(xaP“ — Prz®) £ 0.
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In this sense we are distinguishing for instance g, dz*dz*g"? from (da*g,,).(dz*g"?).

If we take this for granted I will have the following equation:

We write:

ds?g™’ = Agu,,dx“dx”gaﬁ +

+ By, dat(dz®g”” + dz’ g™ +

—I—C'gwdxadx’gg”” + Dgaﬁdxkdxknwg‘”’ +

+Eg*dz,dv,g" + A'dx*g,,dz” g™ +

B'dx"g,, (dz*g"® + dz’ g™ +

+C'[dz? gy, (dat g*® + da’g") + da’ g, (dat g"™ + dxg"™)] +

+D'dx* g™ d\n,, 9" (28)

G = N + huy

h,. is the effective gravitational potential; and consider the transition d;;_: to ——P" to

mocC

——ihd" to get the equation:
0C

where

B 0" (9°h + 0°h) + Dy 0 (0° B 4+ O7h)] +

+C(0°0°h + Dy, 070 h) +

+D(n*’Oh + h*70h) + E(*70,0,h*" + h*?0,0,h") +

+A' OB, hP 4

+ B0 Ry, (0°h° + 8°hov) +

O [0 My 7 - Oy (01 + 0° )] +

+D'(DhP)(Orh) =0 (29

h = nuyhl“/

For a weak gravitational field we pose my = 0 (or ds = 0) and retain only terms linear

in h. I have:

AOL® + B(0,0°h"" 4 0,0°h™) +
Co“0°h + Dn*POh +
En®?9,0,h" =0 (30)
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Take the derivative with respect to x®:
(A + B)DO,h*® + (B + F)0°9,0,h" + (C + D)0d’h = 0 (31)

from which we deduce:
A=-B,B=—-FE.C=-D

Thus if we take a scale with % = 1 we shall have
1 1
O(h? — 5naﬁh) + (079" — §naﬂm)h +10°%0,0," — 0,(0°h? 4+ °h) = 0

This is the Einstein equation in its linearized form for a weak gravitational field.
Much more complex is the expression, in terms of the field ¢®?, of the exact Einstein’s
equation:

1
Rag - §gagR = —kTw,.

We know that:

1 v 1 v
Rap = _éaﬂ(gpwaagu ) — Eak [g)\ 9 + 95Gva — afgaﬁ)] +
1
+Zg)\u(aagw7 + angau - augan)gny(aﬁgu)\ + a)xguﬁ - aug)\ﬁ) +
1 v
+Zg>\ (aagu,@ + aﬁgua - ayga,@)gCnaAggn

and the scalar curvature is then R = g"' R,

Thus the geometric form of Einstein’s equation in the absence of matter would be:
ds?g™’ = i[dxa(gw,dxﬁg’“’) + d:l:ﬂ(gu,,dxo‘g“")] +
Lt g ldrg + dag™ — drg™))
—iguy{(dxo‘g”’\) + dat g™ — dx”ga’\}g,\n{dxﬁg”“ + dat g™ — dx" P}
_igx\u{dxag”ﬁ +dz’g"* — da¥ g} (g da g un) (32)

if we associated the coordinate differential to the derivative. But this correlation through
the momentum is questionable and so we should consider only the case of the weak

gravitational field.
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8 Proof of the rule that establishes that spin 1/2
fermions with negative energy propagate backward
in time

This rule gave rise to the Feynman-Wheeler interpretation of anti-particles, as is well-

known.

Dirac’s equation, we know
(1v*h0,, — moc)Y(x) =0 (33)
leads to homogeneous algebraic equations of the form:

Uy — cpsuz = 0
us + cpsug =0 (34)
Uy — cpguy = 0

Ul + Cp3Ug = 0

]
iy
~.
=
N
S— S— S— SN—

when one puts:

and uses the representation of Dirac matrices:

() e(hn)

The condition for the existence of solutions of equations (33) is that the determinant of

S

QL
4

their coefficients vanish which gives.

((0%)? = () — (mec®)?)* =0

and so the roots:
P ==+ i+ miA)V?=+E (37)

are double.There are thus two solutions with positive energy and two other solutions with
negative energy. The Feynmann-Wheeler interpretation, namely negative energy electrons

travel backward in time, follows immediately from the geometrical equation

Yadz®(x) = dsip(x) . (38)
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If one chooses the representation (33) for the gammas, the equation (8) will give the

homogeneous equations similar to equations (33):

The determinant of the coefficients of these equations must vanish which gives:
((dz®)? — ds* — (d7)?)* = 0

and so the roots
1/2

dz’ =+ (ds* + (dT)?)

are double. The time intervals are either positive or negative. It is natural to associate

positive energy solutions to time intervals which are always positive. Then the negative

energy solutions will have negative time intervals — they represent negative energy fermions

running always backward in time (the usual interpretation was elaborated by analogy with

the classical equation of motion of the electron).



