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Abstract

Recently we considered N = 2 Super Yang-Mills with a mass breaking term and showed
the existence of BPS Zk-string solutions for arbitrary simple gauge groups which are spon-
taneously broken to non-Abelian residual gauge groups. We also calculated their string
tensions exactly. In doing so, we have considered in particular the hypermultiplet in the
representation of a diquark condensate. In the present work we shall analyze some of the
different phases of the theory and find that the magnetic fluxes of the monopoles and Zk-
strings of the theory are proportional to one another, allowing for monopole confinement in
one of the phase transitions of the theory. Then we will calculate the threshold length for
a string to break in a new pair of monopole-antimonopole. We will further show that some
of the resulting confining theories can obtained by adding a deformation term to N = 2 or
N = 4 superconformal theories and, as such, may satisfy a gauge/string correspondence.
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1 Introduction

It is long believed that the quark confinement would be dual to a non-Abelian generalization
of Meissner effect, as proposed by ’t Hooft and Mandelstam many years ago[1]. Following their
ideas an important progress has been made by Seiberg and Witten [2] which starting from an
N = 2 SU(2) supersymmetric theory obtained an effective U(1) N = 2 super QED with an
N = 2 mass breaking term. In this theory, the U(1) is broken to a discrete group and as
it happens the theory develops string solutions and electric charge confinement occurs. After
that, many interesting works appeared [3] analyzing various aspects of different N = 2 theories
with a mass breaking term and (solitonic) string solutions. However, since the dynamics of a
non-Abelian theory is hard to control, in these theories the gauge group are usually completely
broken to its discrete center by Higgs mechanism. Therefore they do not possess SU(3)×U(1)em
as subgroup of the unbroken gauge group and the monopoles belong to U(1) singlets and not to
representations of non-Abelian groups.

In order to avoid these problems, recently we considered [4] (for a review see [5]) N = 2
super Yang-Mills with a breaking mass term, with arbitrary simple gauge group and non-Abelian
unbroken gauge symmetry. One of the spontaneous symmetry breaking is produced by a complex
scalar φ that could be for example in the symmetric part of the tensor product of k fundamental
representations. In particular if k = 2, this scalar is in the representation of a diquark condensate
and therefore it can be thought as being itself the diquark condensate or the monopole condensate
in the dual theory, like in the Abelian-Higgs theory. When this scalar acquires an expectation
value it gives rise to the monopole confinement and to the quark mass, when k = 2. We have
showed the existence of BPS Zk-string solutions for these theories and calculated exactly their
string tensions. In the present work, we analyze many properties of these theories. In section 2
we show that by varying continuously a mass parameter m we can pass from an unbroken phase
to a phase with free monopoles and then to a phase with Zk-strings and confined monopoles. In
section 3 we analyze the monopoles in the free-monopole phase. These monopole solutions are
expected to fill irreducible representations of the dual unbroken gauge group[6]. In this phase we
recover N = 2 supersymmetry and we show that some of these theories are conformal invariant
in this phase. In section 4 we analyze the magnetic fluxes of the BPS strings which appear in
the superconducting phase. We show that the fluxes of the magnetic monopoles and strings
are proportional to one another and therefore the monopoles can get confined. Wealso obtain
the threshold length of a string to break in a new pair of monopole-antimonopole. The general
topological aspects for monopole confinement during a phase transition have been given in [7]
(see also [8]). Our aim here is to analyze the monopole confinement in our specific theory. From
the values of the magnetic fluxes we calculate the threshold length for a string to break in a new
pair of monopole-antimonopole. We also show that some of the confining theories, are obtained
by adding deformations terms to superconformal theories. We conclude with a summary of the
results.
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2 Phases of the theory

As is quite well known, in the broken phase of the Abelian-Higgs theory in 3+1 dimensions,
there exist string solutions with string tension satisfying the inequality

T ≥ qφ
2
a2|Φst| , (1)

where a is a breaking parameter in the potential, Φst is the string’s magnetic flux which satisfies
the quantization condition

Φst =
2πn
qφ
, n ∈ Z (2)

and qφ is the electric charge of the scalar field. Considering that φ† is a condensate of electrons,
then1 qφ = 2e. Following t’ Hooft and Mandelstam’s [1] idea, if one considers a (Dirac) monopole-
antimonopole system in the Abelian-Higgs theory, the magnetic lines can not spread over space
but must rather form a string which gives rise to a confining potential between the monopoles.
This idea only makes sense since the (Dirac) monopole magnetic flux is Φmon = g = 2π/e, which
is consistent with the string’s magnetic flux quantization condition, allowing one to attach to
the monopole two strings with n = 1.

Let us now generalize these ideas to a non-Abelian theory. For simplicity let us consider
a gauge group G which is simple, connected and simply-connected, and adopt the same con-
ventions as in [4]. Following our previous work, we shall consider a Yang-Mills theory with a
complex scalar S in the adjoint representation and another complex scalar φ. We consider a
scalar in the adjoint representation because in a spontaneous symmetry breaking it produces
a exact symmetry group with a U(1) factor, which allows the existence of monopole solutions.
Additionally, another motivation for having a scalar in the adjoint representation is because
with it, we can form an N = 2 vector supermultiplet and, like in the Abelian-Higgs theory, the
BPS string solutions appear naturally in a theory with N = 2 supersymmetry and a N = 2
mass breaking term. Moreover, in a theory with the field content of N = 2, the monopole
spin is consistent with the quark-monopole duality[10] which is another important ingredient
in ’t Hooft and Mandelstam’s ideas. A necessary condition for the existence of a string is to
have a non-trivial first homotopy group. One way to produce a spontaneous symmetry breaking
satisfying this condition is to introduce a complex scalar φ in a representation which contains
the weight state |kλφ〉 [9], where k is an integer greater or equal to two, and λφ a fundamental
weight. We can have at least three possibilities: one is to consider φ in the representation with
kλφ as highest weight, which we shall denote Rkλφ

. We can also consider φ to be in the direct
product of k fundamental representations with fundamental weight λφ, which we shall denote
R⊗

kλφ
. Finally a third possibility would be to consider φ in the symmetric part of R⊗

kλφ
, called

R
sym
kλφ

, which always contains Rkλφ
. This last possibility has an extra physical motivation that

if k = 2, it corresponds to the representation of a condensate of two fermions (quarks) in the
fundamental representation with fundamental weight λφ, and we can interpret φ as being this
diquark condensate. In this case, when φ takes a non-trivial expectation value, it also gives rise
to a mass term for these quarks. In order to have N = 2 supersymmetry we should need another
complex scalar to be in the same hypermultiplet as φ. For simplicity’s sake, however, we shall
ignore it setting it to zero.

1Considering that h̄ = 1 = c
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In our work [4], we considered the potential

V =
1
2

(
Y 2

a + F
†F
)
≥ 0 (3)

where

Y ≡ YaTa =
e

2

{(
φ†Taφ

)
Ta +

[
S†, S

]
−m

(
S + S†

2

)}
, (4)

F ≡ e

(
S† − µ

e

)
φ , (5)

Ta being orthogonal Lie algebra generators which satisfy

Tr (TaTb) = xφψ
2δab (6)

where xφ is the Dynkin index of φ’s representation and ψ2 is the length square of the highest root
which we shall take to be 2. That potential is the bosonic part of N = 2 super Yang-Mills with
one flavor (with one of the aforementioned scalars of the hypermultiplet put equal to zero). The
parameter µ gives a bare mass to φ and m gives a bare mass to S which softly breaks N = 2
SUSY. The parameter m may also be responsible for spontaneous gauge symmetry breaking
and, as in the Abelian-Higgs case, we can consider it as a function of temperature, m = m(T ).

The vacua are solutions to the conditions

Y = 0 = F . (7)

In order to the topological string solutions to exist, we look for vacuum solutions of the form

φvac = a|kλφ > , (8)

Svac = bλφ ·H , (9)

where a and b are complex constants, k is a integer greater or equal to two and λφ is an
arbitrary fundamental weight. If a 	= 0, this configuration breaks G→ Gφ in such a way that[9]
Π1(G/Gφ) = Zk, which is a necessary condition for the existence of Zk−strings. Let us consider
that µ > 0. Following [4], from the vacuum conditions (7) one can conclude that

|a|2 =
mb

k
,(

kbλ2
φ − µ

e

)
a = 0 .

There are three possibilities:

(i) If m < 0 ⇒ a = 0 = b and the gauge group G remains unbroken.

(ii) If m = 0 ⇒ a = 0 and b can be any constant. When m = 0, N = 2 supersymmetry is
restored. In this case, Svacbreaks[9]

G→ GS ≡ (K × U(1)) /Zl , (10)

where K is the subgroup of G associated to the algebra whose Dynkin diagram is given
by removing the dot corresponding to λφ from that of G. The U(1) factor is generated by
λφ ·H and Zl is a discrete subgroup of U(1) and K.
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(iii) If m > 0 ⇒

|a|2 =
mµ

k2eλ2
φ

, (11)

b =
µ

keλ2
φ

, (12)

and G is further broken to[9]

G→ Gφ ≡ (K × Zkl) /Zl ⊃ GS . (13)

In particular, for k = 2, we have for example,

Spin(10) → (SU(5)× Z10) /Z5 ,

SU(3) → (SU(2)× Z4) /Z2 .

Therefore by continuously changing the value of the parameter m we can produce a symmetry
breaking pattern G → GS → Gφ. It is interesting to note that, unlike the Abelian-Higgs
theory, in our theory the bare mass µ of φ is not required to satisfy µ2 < 0 in order to have
spontaneous symmetry breaking. Therefore in the dual formulation, where one could interpret φ
as the monopole condensate, we don’t need to have a monopole mass satisfying the problematic
condition M2

mon < 0 mentioned by ’t Hooft[11].
Let us analyze in more detail the last two phases.

3 The m = 0 or free-monopole phase

In this phase a = 0 and b is an arbitrary non-vanishing constant, which we shall consider it
to be given by (12), in order to have the same value as the case when m < 0. The non-
vanishing expectation value of Svac defines the U(1) direction in GS , (10), and one can define
the corresponding U(1) charge as [12]

Q ≡ e S
vac

|Svac| = e
λφ ·H
|λφ| . (14)

Since in this phase Π2(G/GS) = Z, it can exist Z-magnetic monopoles. These solutions can be
written in the following form[13]: for each root α, such that 2αv · λφ 	= 0 (where αv ≡ α/α2),
we can define the generators

Tα
1 =

Eα + E−α

2
, Tα

2 =
Eα − E−α

2i
, Tα

3 =
α ·H
α2

(15)

which satisfy the SU(2) algebra [
Tα

i , T
α
j

]
= iεijkTα

k .

Using spherical coordinates we define the group elements

gαp (θ, φ) ≡ exp (ipϕTα
3 ) exp (iθT

α
2 ) exp (−ipϕTα

3 ) , p ∈ Z . (16)
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Let S = M + iN , where M and N are real scalar fields. The asymptotic form for the scalars
of the Z−monopole are obtained by performing a gauge transformation on the vacuum solution
(8), (9) by the above group elements. This results, at r → ∞

M(θ, φ) = gαp v ·H
(
gαp

)−1
, (17)

N(θ, φ) = 0 , φ(θ, φ) = 0 . (18)

where v ≡ bλφ. The U(1) magnetic charge of these monopoles are [13]

g ≡ 1
|v|
∫
dSiM

aBa
i =

4π
e

pv · αv
|v| (19)

where Ba
i ≡ −εijkGa

jk/2 are the non-Abelian magnetic fields. These monopoles fill supermulti-
plets of N = 2 supersymmetry [14] and satisfy the mass formula

mmon = |v||g| . (20)

Not all of these monopoles are stable. The stable or fundamental BPS monopoles are those
which p = 1 and 2αv · λφ = ±1[15]. From now on we shall only consider these fundamental
monopoles, which are believed to fill representations of the gauge subgroup K[6].

It is interesting to note that for the particular case where the gauge group is G = SU(2)
and φ is in the symmetric part of the tensor product of two fundamental representations, which
correspond to the adjoint representation, the supersymmetry of the theory is enhanced to N = 4,
and the theory has vanishing β function. There are other examples of vanishing β functions
when m = 0. The β function of N = 2 super Yang-Mills with a hypermultiplet is given by

β(e) =
−e3
(4π)2

[
hv − xφ

]

where hv is the dual Coxeter number of G and xφ is the Dynkin index of φ’s representation(6).
If φ belongs to Rsym2λφ

,

xφ = xλφ

(
dλφ

+ 2
)
.

where xλφ
and dλφ

are, respectively, the Dynkin index and the dimension of the representation
associated to the fundamental weight λφ. On the other hand if φ belongs to the direct product
of k fundamental representations, R⊗

kλφ
,

xφ = kdλφ
xλφ
,

For SU(n) (which has hv = n), if φ is in the tensor product of the fundamental representation
of dimension dλn−1 = n with itself (which has Dynkin index xλn−1 = 1/2), xφ = n and the β
function vanishes. Therefore the theory is superconformal (if we take µ = 0). Therefore, for
these theories, when m = 0, they are SU(n − 1) ⊗ U(1) ∼ U(n − 1) N = 2 superconformal
theories.
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4 The m > 0 or superconducting phase

In the “m > 0” phase, the U(1) factor is broken and the corresponding force lines cannot spread
over space. Since G is broken in such a way that Π1(G/Gφ) = Zk, these force lines may form
topological Zk−strings. We indeed showed in [4] the existence of BPS Zk-strings in the limit
m→ 0+ and µ→ ∞, with mµ = const. We shall show now that, as in the Abelian Higgs theory,
the U(1) magnetic flux Φmon of the above monopoles is proportional to the Zk-string magnetic
flux Φst, and therefore these U(1) flux lines coming out of the monopole can be squeezed into
Zk-strings, which can give rise to a confining potential.

4.1 Zk-string magnetic flux

Since
Qφvac = ek|λφ|φvac ,

the electric charge of φvac is
qφ = ek|λφ| . (21)

On the other hand, the string tension satisfies the bound [4]

T ≥ me

2

∣∣∣∣
∫
d2xMaBa

3

∣∣∣∣
=

qφ
2
|a|2|Φst| (22)

where
Φst ≡

1
|v|
∫
d2xMaBa

3 (23)

is the U(1) string magnetic flux and the integral is taken over the plane perpendicular to the
string. This flux definition is gauge invariant and consistent with the flux definition for the
monopole (19). One notes that (22) is very similar to the Abelian result (1). Let us use BPS
string ansatz in [4]:

φ(ϕ, ρ) = f(ρ)eiϕMna|kλφ > ,

mS(ϕ, ρ) = h(ρ)ka2eiϕMnλφ ·He−iϕMn , (24)

Wi(ϕ, ρ) = g(ρ)Mn
εijx

j

eρ2
→ B3(ϕ, ρ) =

Mn

eρ
g′(ρ) ,

W0(ϕ, ρ) = W3(ϕ, ρ) = 0 ,

with the boundary conditions

f(∞) = g(∞) = h(∞) = 1 ,

f(0) = g(0) = 0 ,

and considering

Mn =
n

k

λφ ·H
λφ

.
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Then, from the BPS condition D±S = 0 together with the boundary conditions results that
h(ρ) = 1.Therefore we obtain that for the BPS strings

Φst =
∮
dlIAI =

2πn
qφ

, n ∈ Zk , (25)

where AI ≡ W a
IM

a/|v| , I = 1, 2. This flux quantization condition is also very similar to
the Abelian result (2) and generalizes, for example, the string magnetic flux for SU(2)[16] and
for SO(10)[17]. In [18], it is also calculated fluxes for the SU(n) theory, but with the gauge
group completely broken to its center and a different definition of string flux which is not gauge
invariant. We can rewrite the above result as

Φstqφ = 2πn , n ∈ Zk .

Let us now check that Φst is consistent with the U(1) magnetic flux Φmon of the monopoles.
From (19), using (21) and the fact that

αv =
r∑

i=1

miα
v
i , αvi =

αi

α2
i

, mi ∈ Z,

it follows that
Φmon = g =

2πkmφp

qφ
.

Therefore, for the fundamental (anti)monopoles, which have p = 1 and mφ = ±1, Φst is consis-
tent with Φmon if n = k. This can be interpreted that for one fundamental monopole we can
attach k Zk-strings with n = 1. That result is consistent with the fact that k Zk−strings with
n = 1 have trivial first homotopy, as do the monopoles.

4.2 Monopole confinement

In the m < 0 phase, one would expect [7] that the monopoles produced in the m = 0 phase
develop a flux line or string and get confined. We can see this more concretely in the following
way: as usual, in order to obtain the asymptotic scalar configuration of a (spherically sym-
metric) monopole, starting form the vacuum configuration (8), (9) one performs the spherically
symmetric gauge transformation (16) and obtains that at2 r → ∞,

S(θ, ϕ) = gαp bλφ ·H
(
gαp

)−1
(26)

φ(θ, ϕ) = gαp a|kλφ > (27)

However, φ(θ, ϕ) is singular. In order to see this let’s consider for simplicity p = 1, k = 2, and
α to be those positive roots such that 2λφ ·αv = 1 . In this case, the orthonormal weight states

|2λφ > , |2λφ − α > , |2λφ − 2α >
2Note that when we take m = 0 ⇒ a = 0 we recover the asymptotic scalar field configuration for the

Z-monopole in the “m=0 phase” (17), (18)
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form a spin 1 irrep of the su(2) algebra (15) and the orthonormal states

|± > ≡ 1
2

(
|2λφ > ±i

√
2|2λφ − α > −|2λφ − 2α >

)
, (28)

|0 > ≡ 1√
2
(|2λφ > +|2λφ − 2α >) , (29)

satisfy

Tα
2 |± > = ±|± > ,
Tα

2 |0 > = 0 .

We can then write
|2λφ >=

1
2

(
|+ > +|− > +

√
2|0 >

)
.

Then, (27) can be written as

φ(θ, ϕ) = a

{
cos2

θ

2
|2λφ > −

√
2
2
sin θe−iϕ|2λφ − α > +sin2 θ

2
e−2iϕ|2λφ − 2α > .

}

Therefore at θ = π,
φ(π, ϕ) = ae−2iϕ|2λφ − 2α >

which is singular. This generalizes Nambu’s result [19] for the SU(2) × U(1) case. In order to
cancel the singularity we should attach a string in the z < 0 axis with a zero in the core, as in
our string ansatz (24). One could construct an ansatz for φ(r, θ, φ) by multiplying the above
asymptotic configuration by a function F (r, θ) such that F (r, π) = 0.

The string tension for k strings with n = 1 must satisfy

T ≥ kπ|a|2 .

Then, the threshold length dth for a string to break producing a new monopole-antimonopole
pair, with masses (20), is derived form the relation

4π
e

k|a|2|λφ|
m

= Eth = Tdth ≥ kπ|a|2dth ,

which results in
dth ≤ 4|λφ|

me
.

The monopole-antimonopole pair tends to deconfine when m → 0+, as one would expect, when
T → 0 and dth → ∞.

It is expected that a confining theory obtained by a deformation of superconformal gauge
theory in 4 dimensions should satisfy a gauge/string correspondence [20], which would be a kind
of deformation of the CFT/AdS correspondence [21]. In the gauge/string correspondences it
is usually considered confining gauge theories with SU(N) broken to its center ZN . We have
seen that some of our confining theories are obtaining by adding a deformation to U(N − 1)
superconformal theories which breaks the gauge group further to SU(N − 1) ⊗ Z2 (up to a
global factor). It would be interesting to know if those theories also satisfy some gauge/string
correspondence.
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5 Summary and conclusions

In this work we have extended some of the ideas of ’t Hooft and Mandelstam of quark confinement
for non-Abelian theories. We have considered N = 2 super Yang-Mills with arbitrary simple
gauge group, with one flavor and with an N = 2 mass breaking term. We have shown that,
by continuously varying the mass breaking parameter m, we can pass from an unbroken phase
to a phase with free monopoles and then to a phase with Zk-strings. This last phase occurs
due to the fact that the scalar φ, which can be interpreted as a diquark condensate when
k = 2, acquires a non-vanishing expectation value. We showed that the magnetic fluxes of the
monopoles and of the strings are proportional to one another and therefore the monopoles can
undergo confinement. We showed that threshold length for a string to break in a new pair of
monopole-antimonopole is proportional tom−1. We also have shown that some of these confining
theories are obtained by deforming some N = 2 or N = 4 super conformal theories.
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