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INTRODUCTION.

Recentlyl)phage transitions of the isotropic non-degenerate Hubbard
Hemiltonian have been studied within the renormalization group forma-
lism using the &= 4--d expansion to first order in &¢. The purpose of
these papers was to consider the effects of the spin-charge coupling
on the critical nronerties of the electron gas. In the usual non-desc-—
neraste Hubbard model the charce field camnot become soft when the
intra-atomic electron-electron interaction is positive, The cuestion
which arises is to know what happens to a second order masnetic transi-

tion when the ordexr varsmeter is coupled to this non-soft degrec of

. 1) . N
Tfreedon. Onec of the concluszions of Daners 7. 1ls that sypin-chaorge coup-
liwg wmey inhibit a first order transition, : .

The effects of simnle constraing imnoscd on the charge field was con-
sidercd as well as the voseibility of T her renorsalization of the
critical exponents.

The present paner deels with the "exlended™ Hubbard mcdel, an
extension of the convenitional Hubbard model which consistc in taking

ount both of the intra-stomic Coulomb repulsion and of the Coulomb
intecraction between electrons at different sites. This model was core
siderced among others by Ropke et al.d using Tunctionel integral me-
thods., It is muchricher than the original one. Instead of one inter-
action paraneter, one can consider three energy parameters. In mole-
cular field approximations a varicty of solutions parpmawneﬁic, snin
ferromognetic and antiferromagnetic, chargse-—ordered stotes (see also

Ref.3) are obisined devending on the value and sisn of thooe paramce -

ters, liorcover the extended Hubbard model was used by Barﬂé) in the
atomic limit to investigate the influence of electron-phonon interac—
tion on the metal-insulator transiticon. This model was also conside-
red by Ihle and Lorenz5) to discuss the phase diagram of theordered

charge trensition which can be first or second order depending on the

- . - \( 3 v
value of inter-and intra-ztomic electron, —electron intersction.



In the present work, we derive the free-energy functional of the
extended Hubbard Hamiltonian using the Hubbard-Stratonovieh transfor-
mationG)and taking account of the vector nature of the spin—field,lf
one congiders that all neighbours are eguivalent the number of fields
is four two vectaorial spin fields and two scalar charge fields. Two
are soft (one svin and one charge field) and the two others are non-
soft, One has to solve the problem of four counled fields.

We show that as far as the ferrvomagnetic transition is concerned
universality holds and that introducing a short-range interaction bet-
ween neigbours yields the same functional as for the simple Hubbard mc-
del considered in 1.

However here we shall mainly focus on the charge-ordered transition.

'he enin-charge coupling is irrelevont (see section 3) in the renorme-
lization groupn theory sense and we ‘investigate the influence of the
coupling of the two charge fields on the transition, by considering
the relevance of the various coupling terms in the free energy func-—
tional expressions. For the threc dimension model one of the counling

3

is merginel and requires e seperate analysis. We show however that the
effect of the interaction bebtween the two charge fields can result in

a shift of the guadratic and quartic cournling paremcters in the Landau-
Ginsbhburg-Wilson functional, r and v, and consequently as in ithe Terro-
magnetic transition of the simple Hubberd model, one hazg the possibili-
ty of a tricritical point, first and cecond order ilranzition depen-
ding on the details of the rmctallic band structure and the valuce of 1h€

interaction energy paramcters.
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2, THE FREE ENERGY TFUNCTIONAL FOR THE EXTENDED HUBBARD IIODEL.

Wle start with the Hamiltonian
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is the hovping integral between i end jJ,

i 2., and
a .are the creation and destruction operators for electrons on gite i
and with spine, \iii’j‘ represents the Coulomb and cxchange
tions betwecn elect%ons on sites i,i ,

interac-
j end 3. .
We shall consider only one site (1) and two sites terms (if] > and
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te the rotational invariant extended Hubhard
Hemiltonian we consider in this paper in the form
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with j-: .ti + % 51‘ (3)

and Xl'a. = -i(- U 5‘4 + (—; k“,} - i I‘J ) (,l ..'Scah ) ) (‘DJ
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In that way we have taken into account the"vector" nature of the spin.

In Ref,2, the spin flivn terms are neglected and

Now we use the Hubbhard. Stretonovich identity for a preduct of two

operators in ite vector form for the last term of (8)
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and its scalar version for the second term of (8).

In (13) TO is the time-ordering operator nceded to preserve the non-
commutetivity of the overators, which are now (imaginary) time depen-

dent. In that way we obtain
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The partition function

(1)

O“Z ~ { i C,r,no - vamm %
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can be written making use of (14) and (16)
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™Mo and &, are the vartition function and the Green's function res-—
pectively for the non interacting system when the potential V hes
matrix clements given by
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If one assumes that all neighbours are eguivalent and using the symn-
metry relations (19) and similar relations for'afand ﬁ), one can redu-
ce the number of auxilliary fields by the following unitary trans-

formations
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Xoand Y, are the diagonal and ¥ and V¥, the first neighbour off-dia-
gonal interactions of Hamiltonian (8).0ne can see using the symmetry
T)I‘Ope:r'tloC‘ of m,x, & and ¢’ fields that the fictitious fields X1 1 Xp

| @ Yy correspond 10 e ToLloving resl [1elds, chenical poten-

ered electrical field, uniform and staggerecd magnetic field$

tial, stagg
50 that the potential (20) can be written :
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The corresvnondence with the notetions of Ref.2 being Aes b, Bees 4y,

C e f’fa end De-s .

e develop Mr Log (L - VG°) up to fourth order in V (second order

in the interacction erergies) (¢, Rtef.
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the non-enhanced susceptibility and
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the other couvling constants are given later in apopropriate units.

In the limit U., U2-e>O, one recoverg the results of Ref 1 i.e,
two field ,PFrom (24), one can see that two fields one charge (XZ)
and one snin (yl) can become soft,

3. CHARGE ORDERED STATE TRANSITION.

Now we are interested in s;udyiﬁg'the system close to a charge ing-
tebility eventually at low temperaturce but not very close to ¥:= O, This
means that it is enough to consider the dependence of constants and
fields 2t W= 0 with resnect to small fluctuetions of & around the
wave-vector E; corregponding to the maximum value of i%fﬁ. Here we
shall consider the case when the charge-wave density corresponds to an
antilerromagnetic solution. One should have fo,: 3%: E(n,o,o) the
half latlice wave-vector. We therefore expand the svsceptibility around

its maximun
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IT we put ﬁ- = Q and if we consider the expansion near Qwo , we
must consider the fluctuations near Qv«o for all fields., We get
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Wle have already neglected the Q7 - dependence of the Gauvssian tera of
the non-soft field which will turn out to be 1rrelevant,

All third order termp will hove the form
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a2ll third ordcr terms vanish.

Ve now consider the fourth orael terms end investigate the relevon-
¢e of the various counling tGTHFF Ve firet integrate out 211 the veri-
ables x.(q), ¥ (q) n(ahﬂwfq) with momenta greater than 1/b where b 1
17-’*2)41;:)~
The choice of the Ci is made such

we then rescale the momenta variables by b and the fields x

by Cl,C2,C3 and C4 TCuﬂOCuiVC;J.
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thet the cocefficient of the g“=term of the soft mode ¥, in the trans—
formed Hamiltonian equals to unity and that the quadratic coupling
constents of the non-goft fields are left unchanged thercfore
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and are for that reason irrelevant after many interations.The sanme
argunent . applies to the Q2-term in the non-soft field as stated

before,



We have considered the charge ordered transition. If we use the
same discussion for the ferromagnetic transition the free-energy

functional has the struscture
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With appropriate coupling constants and integrations. If one introduces
—_—

the non-soft field X = x, + %o and if one neglects ' which is not

1 —
coupled to any other field the functional for the soft field yz redu-
ces to the one obtained in Ref. ) and this is consistant with the uni-
versality principle.

For the charge c¢rdered transition if the dimensionolity d =3 (¢:1)

.
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we keep only the terms xg ana xg.xl which transform like D and b
respectively. So putting Q = g , the Lgndau-Ginsburg-iilson free cnergy

functional reads
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In contrast to what heppens for the magnetic transition in the
simple Hubbard model, spin and charge fields are not coupled; =2l1l
the coupling terms are now irrelevent and the terms containing spin
fields can be dropped out from % if we consider only the charge
instability.



Therefore one is left with the free energy functional
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where W= u -/2}, .
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which is a simple Wilson type functional with coupling constants

u' and r' modified by the two charge fields couplings,: With (36)

one obtaing the usual Ising and Gaussien fixed points. The coupling
between the two charge Tields can affcect the nature of the transition
since u' can become ncgetive indvceing e first order transition. The
quantities v,k , ¥, % depend on the bhand structure of the metallic
band and in émrticular on the shane of the Ferni surface nesting.

For instance using the results of the present paper one finds o cone

diticn for a first order transition
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denending on the sign of %,
Therefore one can conclude that en investigation of the condition
for the occurence of a first or second order transition using the
functional (36) requires a detziled anslysis of the susceptibility

function and of the fourth-order bare Termion loop in the neighbour-

-2

hood of the wave-vector ko corresnonding to the charge density {trarsi-

tion,
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