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ABSTRACT

The choice of a convenient self-dual cell within a
real space renormalization group framework enables a satisfac
tory treatment of the anisotropic square lattice g-state Potts
ferromagnet criticality. The exact critical frontier and dimen
sionality crossover exponent ¢ as well as the expected univer-
sality behaviour (renormalization flow sense) are recovered for
any linear scaling factor b and all values of gq(g £ 4).The b =2
and b = 3 approximate correlation length critical exponent v is
calculated for all values of g and compared with den Nijs con-
jecture. The same calculation is performed, for all values of
b, for the exponent wv(d=1l) associated to the one-dimensional
limit and the exact result v(d=1l) = 1 is recovered in the

limit b » o,



I -~ INTRODUCTION

During recent years a considerable amount of effort
has been dedicated to the construction of real space renorma-
lization group (RG) frameworks suitable for the treatment of
several models like the site and bond percolation, Ising and
g-state Potts ones. A particular case which has frequently
been focused is the anisotropic square lattice g-state Potts

ferromagnet whose hamiltonian is given by

M =_qz J.. & (Oi'_’lr 2! ooy qv‘l) (l)

where Jij =J, 2 0 (Jij = Jy > 0) if sites i and j are "hori-
zontal" ("vertical") first neighbours (ag a matter of fact,
the present paper remains practically unchanged in the case
where one or both coupling constants are negative). Any satis
factory RG proposal for this problem should recover the fol-
lowing facts:

(i) The transition is continuous (first order) if 0 <gzx 4
(g > 4) according to Baxter 1973, Straley and Fisher 1973
and Kim and Joseph 1975.

(ii) All properties of the system are invariant through X <y
permutation.

(iii) The anisotropic square lattice is self-dual, therefore

the dual transformation (Kim and Joseph l975; Burkhardt and



Southern 1978, and Baxter et al 1978)

_Vx _Yy
kBT 1 - e kBT (2)
e i qJ

1 + (g-1) e KT

interchanges its para - and ferromagnetic phases, and conse-

quently the critical frontier is given by

1 - ¢t
D Y (3)

where we have introduced convenient variables (hereafter re-

ferred to as transmissivities; see Tsallis 1981, and Tsallis

and Levy 1981, and references therein), through

gz i=¢ (r = x,y) (4)

(iv) The system is universal, i.é. its critical behaviour for fixed g is

one and the same for all non vanishing values of JX and J
Yy

(in particular, the correlation length critical exponent v is

the same along the critical frontier excepted both one-dimen-

sional limits J_ = 0 or J__ = 0).
X Y



(v) The crossover exponent ¢ associated to the one-dimensional
limits equals one; this fact means that if we consider, for in
stance, the limit Jy/JX + 0, the critical frontier satisfies
ty = 1-t. It is clear that this wek restriction is satisfied by
Eg. (3) which implies ty ~ (l—g()/q.

(vi) The correlation length critical exponent v(d=1l) associ-

ated to the one-dimensional limits equals one.

(vii) The g-dependance of the critical exponent Vv ﬁbr.%d QJQO)

has not yet: beenrigorously established, however den Nijs 1979 con

jecture, namely

2
v o= - — (5)
3[2 + w/(arcos Yq/2 - m)]

for g ~ 0 , (5")

¢

is possibly exact.

A RG treatment of the present problem consists in
the construction of a two-dimensional recursive relation (gene
rated by the renormalization of an appropriate cell into a

smaller one) which we shall note

tl - X
< = Rb(tx, ty)

(6)
té - Rg(tx, t )



where b > 1 is the linear scaling factor. This recursive rela

tion is expected to provide fixed points (%:, t;) which satisfy

* x, * t*
tX = Rb(tX' Y)
(7)
* * *
- nY
ty = Rb(tx, ty)
as well as a Jacobian matrix
] 1
th th
atx ot
(8)
ot ot
4 _Y
atx Bty

whose eigenvalues and eigenvectors at each one of those fixed
points are associated to relevant critical quantities. Let us
note that it is by no means necessary (or even eventually con
venient) to perform the renormalization in a two - dimensional
space (tX - ty space in our case) and wider spaces can be used.
Let us now translate the restrictions (i) - (vii) in
to RG language:
(i') An anomaly must appear, at g = 4, in the topology of the
flow diagram while g varies; by anomaly we refer for instance
to a bifurcation, or terminal; or turning point in the path of

the relevant fixed points. However it is not obvious that such



anomaly can be observed without an enlargement of the renor-
malization space (see for example Nienhuis et al 1979 and Riedel

1981).
(ii') It must be

R{ (v, %) = Ry(x, ¥) = Ry(x, y) (9)

This restriction leads to the invariance of the flow diagram
through tX < ty permutation, i.e. there is a mirror symmetry
with respect to the isotropic tX = ty axis. The most satisfa-
tory way for obtaining relation (9) is to use cells which them
selves preserve the equivalence between the "horizontal" and

"vertical" directions.

(iii') It must be
v .. D D
1 - Ri(y , x7)
RE(x, y) = (R (7, x9)1P= 2 - (0)
L+ (g-LR(y", x7)
Where upperscript D denotes transformation (3) (see

also Tsallis 1981, and Tsallis and Levy 1981). The most sa-
tisfactory way for obtaining relation (10) is to use self-dual
cells (a cell is said to be self-dual if it can be superim-
posed to itself in such a way that each one of its bonds is
cut by one and only one bond of the original cell). The ex-
act critical frontier (Eg. (3)) must be recovered as a flow
line which runs between the one-dimensional limit points.

(iv') A semi-stable fixed point rmust exist on the critical
line in between the two one-dimensional limits, i.e. the eigen

value, (of the Jacobian matrix (8)), noted XZ’ associated to



the eigenvector tangential to the critical line must be less
than one (the other eigenvalue, noted Xl, clearly must be bigger
than one).

(v') At both one-dimensional limits, unstable fixed points must e
xist, and the associated Jacobian matrix must be proportional to
unity (KX = Xy = A), at least in the limit b » « -

(vi') The eigenvalue A must be proportional to b in the limit b »

(we recall that v(d=1) = 1lim 2D By,
b+~ n A

(vii') The eigenvalue A, must be such that v = lim in ;’ agrees with
b—)OO n 1

the possibly exact result (Eg. (5)).

Let us now place in the preceding context the recent RG
literature on the subject. To the best of our knowledge, the uni-
que RG treatment of the anisotropic g-state Potts model which is a
vailable is that performed by Kadanoff 1976. Within this approach
only restrictions (ii') and (iii') are satisfied. In what concerns
the isotropic model (tX = ty), only restrictions (i'), (iii') and
(vii') are to be considered. Nienhuis et al 1979 qualitatively (but
not quantitatively) satisfy these three restrictions. Bl8te et al
1981 do not satisfy (i') nor calculate the critical point (restric
tion (iii')), but obtain, for g < 4, a quite precise numerical ap-
proximation for v (restriction (vii')). Tsallis and Levy 1981 do
not satisfy (i'), but obtain the exact critical point (tc= 1/(1+/),
and acceptable numerical approximations for v (g < 4).

In what concerns the anisotropic system, some effort
has been dedicated to the bond percolation problem (which co-
rresponds to the particular case q + 1, according to Kasteleyn
and Fortuin 1969). In this case, restriction (i') is out of

consideration. In what concerns restrictions (ii') - (vii'),



TIkeda 1979 satisfies none of them, and Chaves et al 1979 and
de Magalhaes et al 1981 only satisfy (ii') and (iii'), and obtain
acceptable numerical approximations for v (restriction (vii')).
Nakanishi et al 1981 only satisfy (ii'), (iv'),v') and (vi'); it
must however be pointed out that they satisfy restriction (ii')
through an ad hoc procedure and not by considering a single cell
whose "horizontal" and "vertical" spannings determine the cor
responding recursive relations (Eg. (6)). Oliveira 1982 uses
a suitable family of cells (Riera et al 1980, de Magalhées et
al 1981, Curado et al 1981,0liveira 1981 ; see Fig. 1) and simultaneously
satisfies restrictions (ii') to (vi'); the exact critical fron
tier tX + ty = 1 is obtained because, besides the fact that
restrictions (ii') and (iii') are satisfied; each cell of this
family reduces to & single linear chain. in the one-dimensional
limits (this important property is not satisfied by the cells
used by Chaves et al 1979 and de Magalhaes et al 1981; at the
terminals of these cells different linear chains are being
mixed) .

In the present paper we follow along the lines of
Qliveira 1982 and, by formulating the problem in terms of the
already mentioned transmissivities, extend the RG treatment to
the Potts model. By doing so, we satisfy restrictions (ii') to
(vi') for all g and obtain a qualitatively acceptable g-depen-

dence of v (restriction (vii')); we fail however in what con-

cerns restriction (i').



II- REAL SPACE RENORMALIZATION GROUP TREATMENT

We shall use the family of self-dual cells indicated
in Fig. 1. By using the Break-Collapse Method (BCM; Tsallis and
Levy 1981) we calculate the recursive relation (Eg. (6)) which
renormalizes the b = 2 cell (Fig. l.c) into the b =1 cell
(Fig. l.a) (remark that a single pair of cells provides both
tX - and ty— recurrences: it is enough to appropriately choose
the input and output points, as illustrated, for b =1, in Figs.

l.a and 1l.b) and obtain

(11)

with

= 3 2 ' 2 - 3
t ) = [tX + 4txty + 3tXty + 2 (g 2)tXty

s A (er—OYF2+ 2 CoOVELE o (o2 g _ 3
+ 4(q 2_)tXty + 2(q 2)txty + (g* + 2g S)txt§

. —EV+243 2 _ ' b4y 2
+ (4qg 6)tXty + (4qg 13g + lO)tXty

+ .

2 ' 343 - 244
(6g 18g + lZ)tXty + (g 2)txtyv

+ .

2 _ ' 5 ' 3 _ 2 b o3
(g 5q + 6)tX ;; + (29 692 + lO)tXty
' 2 _ ' 3l 3 _ 2 _ 54.3
+ (3q 13g + l4)txty + (2q7 12g? + 269 20)tXty

+ (3q® - 18g? + 38q - 28)trty + (@ - 7q® + 21q? - 30q + l7)t"’xt;]/



— ' Ty +3 ' 2_7y4242 2_gaed)E3 62+ (202 =39+l

1+ 2(g 1)txty + 2(g l)txty + (g 1)txty + (27 -6g+d) £ v * (29°-3g+1)

42 A (T ) E3E3 4 (aol)E2 4 4 2 _ ' 542

. tgty + 2a(g l)txty + (g l)tXty + (g 3q + 2)txty
: , g3 2 _ , 3y 3_ 2 .

+ 29° - 49 - 29 + 4)tXty + (3gq 9q + 6)txty + (29 qu‘+16q-8)t;t;

+ (3g® - 159% + 24q - 12)tty + (g4 - 79 + 182 - 20g + 8)t5e: ] (12)

This recursive relation (which, for g = 1, recovers
that of Oliveira 1982 presents two trivial stable fixed points
(namely (t;, t;) = (0,0) and (t;, t§) = (1,1)), two one-dimen
sional unstable fixed points (namely (1,0) and (0,1) and one
isotropic semi-stable fixed point {(namely (tc, tcf with tc =
1/ (Vg+1) which is the exact value): see Fig. 2. As a matter
of fact the same set of fixed points will be obtained for all
values of b.

Let us first analize the isotropic fixed point . The
Jacobian matrix (8) associated to Egs. (11l) and (12) presents
an eigenvalue (bigger than unity for any finite q)

Ay (b =2) = (2025+11160/F + 26580q + 35792q3/ 24+ 29852q2 + 15816g°7 2

7/2 3/2

+ 5207q° + 9769 + 80g%) /(2025 + 8820/g + 16804g + 182909

+ 12444q2 + 5424g°72% & 1481q° + 2329772 + 169%) (13)

associated to the eigenvector (1,1)//2 (which in fact will be
the same for all values of b), and an eigenvalue (less than unity

for any finite qg)

X2 (b=2) = (10125 + 88650/ + 342860q + 781853q°/2 + 11780082 + 1240724q> 2

+ 930667q° + 516906q'/% 4+ 205408q" + 57611q°/% + 108445 + 1232 1/2

+ 649°) /(91125 + 595350/ + 1782540q + 3234167q°/% + 39606007

+ 34493882 + 2191343¢% + 1023534q7/2 + 349008q" + 8477342

+ 13932g5 + 1392972 4 64g°) (14)
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associated to the eigenvector 1, l)//i (the same for all values
of b). The fact that A, < 1 enables the satisfaction of restric
tion (iv'). The g-dependence of the approximate critical exponent
vib = 2) = &n2/%nX;(b = 2) 1is presented in Fig. 3 and Table 1.

It is clear that A, (b = 2) could have been obtained directly

m

from the isotropic case (tX = t t) whose recursive relation

y
is given by

t' = R, (t, t) = [8t® + 6(g-2)t" + (q* + 8q - 15)t5 + (10g°~30g—20)t®

+ (2 - 2% - 18q + 30)t7 + (5¢° - 30q* + 64q — 48)t% + (q* - 7q® + 21g?
- 30q + 17)t°1 /
[1 + 2(g-1)t2 + (@ + 2q - 3)t* + (2 — 6q + 4)t° + 4q(g-1)t°

+ 2F - 14q + 12)t7 + (58 - 25¢% + 40q - 20)t° + (g* - 7g* + 18q® -

20q + 8)t°] (15)

hence v(b = 2) = &n2/4n(dR, (t, t)/dt)t - 1/ (/qs) = 2n 2/8nX,(b=2)

For b = 3 we have calculated (by using the BCM) the

isotropic case and have obtained

25 -
2 ( n(i)qn_J )ti
v _ 1=5 §=0 7 .
t' = R, (£, t) = L— . (16)
1+4 (q—l)tz +z ( z dj(l)qIZ“j)tl
i=4 Jj=0

=

2

It o~
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where the integer coefficients {ngi)} and {déi)} are presented

in Table 2. From this expression we straightforwardly obtain

2y .
aR. (E.8) .anqu/Z
M(b = 3) = —3 "r-’ =
v ) at t=1/(/Gs1) 2+ . (17
Vg j/2
L ksd
R
j=0

where the coefficients {aj} and {Bj} are presented in Table 3.
The associated critical exponent v(b = 3) = &n3/nX,;(b = 3) is

presented in Fig. 3 and Table 1.

Let us now turn our attention onto ‘the one-dimen-—
sional fixed points. The jacobian matrix (8) associated to Egs.
(11) and (12) is degenerate (i.e. proportional to the unity
matrix) therefore the dimensionality crossover exponent ¢ eqals
one, which is the exact result. The degenerate eigenvalue is
AMb = 2) = 3 (bigger than unity as expected). As a matter of
fact, for any value of b, the recursive relation in the vicin-
ity of a one-dimensional fixed point (let us say (t;, t;) =(1,0)
leads to an eigenvalue A(b) which is that of a 1linear chain

(along the x-direction in our case). The recurrence is given by

2b-1

ty = Ry(t,, 0) =t (18)
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hence
dr, (t_, 0)
Ab) = —2 %7 7| = 2b - 1
at_ L 1
=
and finally
v(d = 1) = lim 2b _ g4y _fabl 7y (19)
bowo  &0A (D) e AN (2b-1) .

which is the exact result.

IIT- THE 8-VARIABLE

In order to make a remark let us introduce a new var

iable (Tsallis 1981 and Tsallis and de Magalhaes 1981) namely

_ nll + (g=1)ty]
- ng

s = s(tr)

. (r = x, y) (20)

It is straightforward, through use of

D _ l—tr
r 1+ (q—l)tr

(r = X, _Y) (21)

to verify that

sD(tr) = s(t)) =1 - s(t)) (r = x, y) (22)

and that the critical frontier (3) can be rewritten in an uni-

versal form (the same for all values of g) namely

s +s_ =1 (23)
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which is precisely that of bond percolation (g - 1). Conse-

quently we can define the RGin an alternative manner, namely

S s
X Y
Vo= o - a -1, g1
sy = s(t}) = s(Rb(tX, ty)) = s(Ry( = a1 ))
(24)
Sy SX
v o - q-‘-1 g®-1
SY = S(ty) = S(Rb(ty’ tX)) = S(Rb( q—l ’ q—l ))
The flow diagram presents, for all values of g, one
and the same set of fixed points (namely (s§, s§) = (0,0),

(1,1), (1,0), (0,1) and (1/2, 1/2)) and critical flow line
(namely that of Eg. (23)), i.e. it presents the RG topology
of the bond percolation problem. In what concerns the critical
exponents nothing is changed with respect to the RGiin the t-

variables as, for any fixed point, we have

1} 1] 1
asx Bs% ?tx atx
/ 9s 9s ot ot
X y X
os! ! at! at!
BS‘ aty ot
asx Bsy % y

IV- CONCLUSION

The use of appropriate cells (which are self-dual
and in the one-dimensional limits reduce to single chains) ena
bles to reproduce, within a simple real space renormalization
group, a considerable quantity of exact results (points (ii)

to (vi) of Section I) concerning the criticality of the aniso
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tropic square lattice g-state Potts model. In what concerns the g-
dependance of the correlation length critical exponent v (point (vii)
of Section I) we obtain results which are compatible with den Nijs
1979 conjecture and which improve with increasing cell size as long
as g is not too close to 4; on the whole they are quite similar to
those obtained by Tsallis and Levy 1981 and reinforce den Nijs 1979
conjecture in the limit g > 0 (tree-like percolation) as they all
provide v « 1//q. In what concerns point (i) of Section I we have
failed, i.e. nothing special occurs at g = 4 (nor at any other fi-
nite value of gq); the fact that we have not enlarged the parameter
space (our renormalization is restricted to the (tX, ty) - space)
is; according to the ideas contained in Nienhuis et al 1979 work,
quite probably at the origin of this failure.

It is interesting to compare the present results with those
of Kadanoff 1976 for the same system. Kadanoff discusses the "trou
bles with the approximation" he introduces, namely: 1) the d=2to
d = 1 crossover is completely missed; 2) a considerable innacuracy
in the determination of the value for v is found; 3) the procedure
leads to B/v = 0. None of these difficulties appeared in the pre-
sent work.

Incidentally we present (in Section III) a renormaliza-
tion group (constructed in the (Sx’ sy) - space instead of the
(tx, ty) one) which has interesting universal properties: the set
of fixed points and critical flow line (critical frontier) indepen
ds from g and is that of bond percolation.

We acknowledge with pleasure computational assistance from

G. Schwachheim and E.M.F. Curado.
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CAPTION FOR FIGURES AND TABLES

Fig.

Fig.

Fig.

1 - Self-dual cells and their two-rooted graph representation;

2

3

all the entrances and all the exits of the cell, indicated
by arrows, are to be respectively collapsed in order to ge
nerate the two roots or terminal sites (0) of the associa
ted graph (see also Oliveira et al 1980); the internal si-
tes of the cell become, without any modification, the in-
ternal sites (e) of the graph. These graphs pmxddelg&tx,gy
=t (@), Rty = £ (b), Ry (t,t) () and R, (t,,t,) (d) (we

recall that the summation is carried out only over the in

ternal sites of the graph).

Flow diagram associated to Eq. (l11). The dots (heavy line),

¥,

represent (s) fixed points (the critical flow line; it coin
cides with the exact result t_ = tg (Eq. (3))). (P) ((F))
denotes the paramagnetic (ferromagnetic) phase.

(a) complete b = 2 flow diagram for g = 2; (b) critical
flow lines associated to various values of g and any value
of b (the limit g = 0 corresponds to tree-like percolation;

the g - and q—l- frontiers are, for all values of g, sym-

metric with respect to the straight line tX + ty = 1)

g-dependence of the correlation length critical exponentv;
the full (dashed) lines correspond to the present RG re-

sults (to den Nijs 1979 conjecture).

By b = 3/2 we mean the value obtained by renormalizing the
b = 3 cell into the b = 2 one, hence v(b=3/2) = (&n 3/2)/

Anf(Ay(b=3))/ (2 (b=2))].
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TABLE 1 - RG and conjectural values of the critical exponent v.
(a) see caption of Fig. 3; (b) these values coincide

with those appearing in Oliveira 1982.

TABLE 2 - Coefficients of the numerator ({ngl)}; top wvalue) and
denominator ({dél)}: bottom value) of Rj(t,t) (Eq.(16));

all missing coefficients vanish.
TABLE 3 ~ Coefficients of the numerator ({aj}) and denominator

({Bj}) of A;(b = 3) (Eg. (17))



fed
N . 7
N TN e A
) hody o )
1 P 5
b=1 (a) b= (b)
(c)

(d)










q - 0 q = 1 q = 2 q = 3 q = 4
454n 2 1 n- 2 4n 2 an:2 n 2
52 /g on 249 on 22 ., 82917+47872/3 o 2193
b g 27 13 34286+19795/3 857
= 0.600/vq ~ 1.042 =~ 0.864 0.785 0.738
36254n 3 1 2n 3 in 3 in 3 _ &n 3 X
b = 3 5996 v/q on 5700575 2n 3.3921 &n 3.8777 in 4.2643
221
2 0.664//9 = 1.099 = 0.899 ~ 0.811 > 0.758
(a) 32625 4n(3/2) 2n{3/2) an(3/2) 2n(3/2) 2n(3/2)
16264 n 5700575 2n 1.5206 ¢n 1.6034 2n 1.6664
249x21"
b = 3/2
= 0.813/vq = 1,212 = 0.967 =~ 0.859 = 0.794
Conjecture i 1 4 5 2
37 Vg 3 1 6 3
(den Nijs 1979
J ) =~ 1.047/V9 = 1.333 0.833 0.667

TABLE



| 9° | q° q° q’ q® q° q* g’ g’ q q°
4 0 0 0
t 6 4 10
L5 0 0 52
) 10 -30 20
] 0 0 16 —92
t 6 22 -29 1
L7 0 10 184 217
22 -35 -49 62
L8 0 0 228 ~480 18
5 46 -57 36 -30
e 0 70 319 -1102 893 |
20 118 -558 548 -128
L 0 6 515 -1064 -525 1090
2 121 -386 721 -469 11 |
o 0 183 723 —4258 4617 23
26 78 136 ~1297 963 94
» 0 24 944| -2276 —4238 14970 -10652
t 1 84 439 ~2342 3204 -1316 -70
. 1 322 1545| -13171 23993 97281 -5082
t 12 402 -879 -295 ~1548 6676 -4368
12 1684 —6948| 2235 43626| —64269 26378
£ i 107 698 -2763| -4616 24486 -27143 9231
s ) 565 691| -18558| 42975 8663| —118459 97735
t 8 495 2731 -12816| 30030 -9185( -31079 22274
6 85 1720 —8275| —24764| 226588| -562754| 620598| —-262820
t 95 1545 -8963 —2419| 94854| -221797| 206676| -69991
- 5 613 1317 47733 238848| -541629 602256 | -264552] —4770
t 5 661 -387 28119  134983| -260803 222492]  -55752{ —13080
N 96 2049 -23010 73686 29690 | -502699| 1333460 -1483919] 638470
t | 106| 1643] -17981 48660|  27403| 385954 790677| -692555| 228001
N 6 670|  —3482| -21155 253992 | 1059645 | 2425249 | —3247444| 2397699 —755935 |
t 6 646 -3136| -20232 216118| -803290| 1592252| -1785127| 1064401| —261638
T 100 822| —21875| 156168| -593712| 1369776|-1949916| 1606006 -616482 34252
t 100 808| -20885| 141030| -490388| 989517|-1153738 686392| =-113320{ -39516 |
” 6| 426] -6242 35850 | —100740 86250| 344761 |-1365061| 2258237 ~1923936| 691514
t 6| 426| -6162 34040 -85830 20262  431471[-1288621| 1769922| -1236910| 352396 |
o 68| —616 —292 31567 | —-223782 862034 —2145912| 3570355| —-3882278| 2513723 -738486
t 68| -616 -342 31949 | -221094 818160| ~1906617| 2890198 | -2773986| 1530688| —368408
’s 4] 56]-1798| 17902| —-102164| 387934| —1038883| 1997700[-2727555| 2528469 -1433673| 376314
t 4 56| -1798{ 17862| -100988| 375229| —966137| 1746876|-2184472| 1800428| -878332| 191272
ot 17| -340| 3204| -18802 76462 | —226564 299499 -819252| 978516| -808826| 415122| -99836
€ 17| =340 3204| -18748 75486 | ~218840 464259| -717462| 787596| -581732| 258640 -52080 .
w2 —21| 210|-1322 5841| -19107 47502 —90479| 131006| -140449 105595| ~49834 11121
21| 210}-1322 5825| -18873 45945 -84337| 115333| -114031 76962) -31652 5960

TABLE 2



J O Bﬁ 12137326398614887(8730873263387
0 26669765625 26609765625 13118238527887576(3830174165004
1 345165975000 301151587500 14| 7595924956680{1434397590136
2 2136160842300 1632004524900 15| 2689378468288 | 457379903606
3 8398260105840 5637003575850 16 805456074350 123565884406
4 23558927138490{13935002902530 17 202466608404 28065470706
5 50208537095364126244158374710 18 42226821982 5298478858
6 84507606761853|39134969393899 19 7186504632 817846452
7 [115275290061296|47406621773750 20 973987016 100745336
8 129749686604187|47487604806763 21 101289672 9544940
9 {122049367890464{39833254423768 22 7605120 654600
10 96809133215685[28227060346311 23 367800 29000
Tll 65144830142464|16998851657994 24 8625 625
. | | :

TABLE 3



