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GRAVITATIONAL PECULIARITIES OF A SCALAR FIELD

ABSTRACT

The zero~-adjoint of a time-static Ricci-flat solution
to Eiﬁstein's field equations is investigated. It represents a
spacetime curved solely by a massless scalar field. The cylindri
cal symmetfy is assumed, to permit both planar and non-planar
geodetic motions. Unusual, velocity-dependent gravitational

features are encountered from these geodesics.,
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1. INTRODUCTION

The study of exact solutions of gravity coupled to
other fields is important to clearly understaﬁd the physical
and mathematical structuré of spacetime (Duncan 1977). For many
reasons, the coupling of scalar fields to gravitation has been
object of special attention in recent years. (Bronnikov 1978,
Kodama et al. 1978, Buchdahl 1978, Chung et al. 1977, Bekenstein
1974, 1975). In most cases, systems have been studied in which
the scalar field coexists with other constituents, such as
diffused matter or eleétromagnetic fields (Banerjee and Dutta
Choudhury 1977, Teixeira et al. 1974, 1975, 1976). In such
complex systems, however, the nonlinearity of the field equations
generally makes it difficult to see the gravitational peculiari-

ties of each constituent, separately.

In this paper, we sfudy the gravitation associated to
a massless, real scalar field, in the absence of any material
source or other field. Differently from the electromagnetic
fields, the scalar field under static condition can be described
in terms of cosmic time. We consider a system withlcylindrical
symmetry, to permit both planar and nonplanar geodesics. From
the investigation of these geodesics, an interesting, velocity
dependent acceleration field is found, acting differently upon

each component of the velocity vector.

2. GRAVITATIONAL AND SCALAR POTENTIALS

We concern with the line element -



ds2 = dt2 - [}drz + dzz)er + ;2d¢2:1 . b = const > 0 . (D

It satisfies the Einstein-scalar field equations

R = -23.83.S , S==+/bnr , (2)
uv uoov

where the dimensionless constant * Vb represents the strenght of
the long range, attractive scalar field S. The important feature

of (1) is that it represents the gravitation from the pure scalar

field, as is explaihed in some detail at the end of Section 4.

The line element (1) can be obtained, without solving
‘the field equations, in a variety of ways starting-from the

static, Ricci~flat solution with cylindriéal symmetry (Weyl 1917)

| 2
ds'v%eyl = (r/a)“dt2 - (r/a)_4x[gdr2 + dzz)(r/a)SK + r2d¢%] . (3)

We are using ¢ = G = 1; the constant a has dimension of length
and is set equal to one, for simplicity. Following Buchdahl
(1978), we should simply write the zero-adjoint of (3) and set

AZ = b/4 to obtain (1). Alternatively, we can‘uSe the prescrip-

tions of Teixeira et al. (1976) and set the constant cz =1 in
their attractive.scalar field. Also, we could follow the method

of Janis et al. (1969) and set their constant A2 + o,

3. GEODESICS

To investigate the gravitational features of (1), we

consider the gecodetic differential equations

t=0 ., z=-2it/r , §=-20%/r , NG
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- .
- rr = =-br

where a dot means d/ds. With the restriction guviuiv = 1, valid

'for timelike geodesics, we find the first integrals

1/2

s' = (1L -v) , (6)

z' = Vh/r2b ' , o' = V,Q./r2 , (7)
| L 1172 -

£t o= % yrP [1 - hir7® g2 2} , _ (8)

where a prime means d/dt, and where the three parameters

0 <v <1, hand-2 are constants of integration.

A trivial solution of (6) to (8) is obtained when v = 0,
and .corresponds to a particle at rest in the presence of the ani-
sotropic fields. This interesting result is discuss;a in Sec. 4.
Otﬂer trivial solutions are obtained when b = b, and correspond

to the rectilinear, uniform motions in the flat spacetime.

The nontrivial solutions of (6) to (8) correspond to

three types of motion:

3.1 Motion on Planes Normal to the z-Axis

Setting h = 0 in (7) and (8) we obtain

1/2
dr/dg = [(r/z)z - 1] 170, (9)

|2] is then the minimal radial location of the particle in its
motion. Table 1 presents exact solutions of (9), obtained for
some values of the parameter b. InvFigure.l are drawn some

solutions corresponding to % = 1.5; as in all cases where 2% > 1,



these solutions represent spiral motions around the z-axis. In
the cases where 22 < 1, however, a different behavior of the
test particle is found near the z-axis; in Fig. 2, corresponding
to motions with & = 0.5, we remark that all trajectories bend

outwards for small values of r.

It can be shown that the shape of orbits given by (9)
can also be obtained from a non-relativistic, static, cylindically

symmetric potential

o =

V(r) = - v {El - r_ij(!L/r)2 + r’zé] . (10)

However, the relativistic velocity of motion in the orbit differs

from its non-relativistic analogue.

3.2 Motion on Planes Containing the z-Axis

Setting 2 = 0 in (7) and (8) we obtain

1/2 | :
dr/dz = + [}r/m)Zb - {] . (11)

where m, given by mP = lh|, is the minimal value bf the radial
coordinate along the motion. Table 2 presents solutidns of (11)
for several valﬁeé of b,.while Figure 3 shows the corresponding
orbits. We find that the trajectory of the particle always bends

outwards, what indicates repulsion from the axis of symmetry.

As before, a non-relativistic potential can be obtained,

producing the same orbits as (11):

vir) = - 1 Pkt o, | | (12)

"y



However, the relativistic and non-relativistic velocity of motion

again differ.

3.3 Non-planar Motions

When h and & are non-zero,’we obtain the following

exact solution of (6) to (8), for b = 1:

z = sinB cosh™IR , R = r/m , | - (13)
¢ = cosB cosh™ IR ° | (14)
vt = % m? [%(RZ - 1)1/2 + lCosh_lR[] , . | (15)
shta-vhl2o | | (16)

’where m = (h2v+ 22)1/2

is the minimal disténce from the axis of
symmetry, and B - tanhlh/z is the angle of incidence on the
plane z = 0. For t < 0 the particle is approaching the z-axis in
‘a helical motion, and reaches the minimal'radial distance r = n
when t = 0. For t > 0 a helical motion is found with increasing

radius. —

The solutions belonging. to other values of b present.
similar basic features, but the corresponding mathematical
expressions are rather involved. It can be shown that the non-

~~-planar orbits do not defive from any nonfrelativistic potential

which is static and cylindrically symmetric.
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4, DISCUSSIONS

The source of gravitation of the system is concentrated
around the axis of symmeffy, as is seen from the scalar curvature,
the square of the Ricci tensor, and the Kretschmann scalar:

2(b+1)

_ nv - nl ©. L,HVPO - 2
R = 2b/r . R Ruv R , R Ruvpo 3R™ . a7n

Since b > 0, all these quantities tend to zero at radial infinity.
The same happens to the energy momentum tensor, which is diagonal

with components

= T, = R/(167) > 0 . (18)

We found, in Sec. 3, that a particle once at rest re-
mains at rest. This is a consequence of the staticity of the
metric with €00 = 1. Such type of metric seems not possible when

electromagnetic fields are present.

The anisotropic state of stresses (18) is résponsible
for the peculiar, velocity-dependent gravitation originating from
the scalar field. A radial acceleration field is found from (5),
acting attractively upon the radial component of velocity of test
particles, and repulsively upon the longitudinal comﬁonent. We
next compare the radial écceleration associated to the azimuthal

1-2b éz, with its analogue in the case of

velocity, ;l = r(r/a)
rectilinear motion, ;2 = r(r/a) &2: Since ;2 2z ;1 implies respec
tively r ¢ a, we find that the azimuthal component of the velocity
is acted upon attractively when r > a, and repulsively when

r < a. This explains the shapes of orbits in Fig. 2, drawn for

a =1,
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One finds, from (6), that v represents the modulus of
velocity of the test particle. All the results obtained for time-
like geodesics are then also valid for lightlike geodesics, pro-

vided one sets v = 1.

A final comment concerns the physical interpretation
of the metric (1). This metric is now explicitly obtained follo-
wing the prescriptions given in‘Teixeira et al. (1976). We start
from the line element (3), where A is linear density of matter

in weak field approximation, and get the intermediate solution

+

. 2
ds? = i dt2 I [Edrz + dzz) 32 r? d¢2i}' - (19)

R A1 - cAHY2Z 0 (o)

oB

-23. S 88 . S =2Alnr ,

where c = const. For weak fields, this intermediate solution correé
ponds to a linear density of matter u , togethér with a linear
soﬁrce of scalar field cA. The original vacuum solution (3) corres
ponds to the special value ¢ = 0, when the soﬁrce of scalar field
vanishes and ¢y = A . If we now start from the vacuum solution,

fix A and let CZ increase, then the source of scalar field |cX]
gradually increases, while the matter parameter p gradually de-
creases. We intefprete this process as gradual substitution of

the original matter by attractive scalar source. The substitution
is completed when c2 = 1, in which case p = 0 and the line ele-

2 ‘Pa. Ot

ment becomes (1), with b = 4X“, ThisV¥strongly suggests to inter-

prete (1) as the gravitation from the scalar field alone, at least

in the weak field approximation.

-5
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TABLE 1
b el e
o sec” IR @ = r/|2,‘|)
1/2 /2 F (sec™t ;/R“ K 1//2 ) [EG(r):]
1 cosh™ IR
372 | 2-R°HY 2% 4 gy - 2/ E(sec™t /R, 1/ YD)
E ®? - 1)1‘/2
5/2 %_ {2 E(Rz ; '1)-_]1/2 '+ G(R)},
3 . E(Rz- 1)1»/2 ' cosh‘lR]
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TABLE 2
b ’m—lz(r)
172 | 2@ - 1)/2 (R = r/m)
1 cosh‘;R
3/2 3—1/4 F(c:os_1 {i *+1-R , sinm/12)
Y3 -1 + R
2 272 psec R, 17 V)

- &
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Figure 1

.Figure 2
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CAPTIONS FOR THE TABLES AND FIGURES

Orbits ¢(r) in planes z = const, for several values
of b. The functions E and F are elliptic integrals

(Dwight 1961).

Orbits z(r) in planes containing the z-axis, for
several values of b. The functions F(¢,k) are ellip

tic integrals (Dwight 1961).

Orbits in planes z = const, for & = 1.5 and several
valués of b. Particles are attracted to the axis of
symmetry, nevertheless these always escape to the

radial infinity.

Orbits in planes z = const, for % = 0.5 and several

values of b. Particles are repelled from the z-axis

for short radial distances, and attracted for

larger values of r.

Orbits in planes containing the z-axis for several
values of b and for arbitrary m. Particles are

repelled from the z-axis.
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