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ABSTRACT

Properties of the general relativistic kink solution.
of a nonlinear scalar field recently obtained (Phys.Rev. D15 ,
1978) are discussed. It has been shown that the kink solution is
stable against radial perturbations. Possible applicaticns to
hadron physics from the geometrodynamic point of view are

suggested.
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1 - INTRODUCTION

In last few years, considerable interest in searching
classical solutions of nonlinear field equations has been found
in order to construct a pure field theoretical model of elementa

(1-3) | such attempts are of course mnot new at

ry particles
a11(4“8), but recent developments of nonlinear field theories
brought soﬁe interesting aspeéts of these models. One of the most
prominent features of modern theories is to introduce a topologi
cal concept to distihguish a particle from the vacuum. Another
oné is the concept of degenerate vacuum.

A kink is an example of model based on the idea of
degenerate vacuum which garantees its stability. The simplest
form of kink solutions is found in the so-called A®4 theory.

For two dimensional space-time case the model is analytically

soluble(g’lo).

However, it is'proved(7’11’12) to be impossible
to construct a kink solution for the realistic four dimensional
space-time. Although there exist several attempts to construct

. . . (
solitary waves, like 1nstantons‘13) (14,15)

or monopoles , they
are still far from giving a definite model of elementary parti-
cles. It is thus worthwhile to investigate further possibilities
to construct classical solutions of nonlinear field models.

Very recently one of the authors(16) (T.K.) has shown

that, even for the scalar A®4

model, there exists a static sin-
gularity free, finite energy solution if cne extends the concept
of spacetime to that of the general theory of relativity. This
general relativistic kink (GRK) is a topological soliton and is

a natural gencralization of the usual onc-dimensional kink so-

lution.



The spacetime geometry implied there resembles that

of the Rosen-Einstein bridge(4’17)

of the Schwarzschild geometry,
i.e. two asymptotically flat spaces connected by a bridge of
radius L However there is an essential difference. The surface
T =T, is a true boundary of the universe in our case so that
the geometry naturally excludes the r = 0 singularity. On the
other hand, in the Schwarzéchild case, ¥ = T is a null surface
so that the surface is an event horizon but not a real boundary.
In this aspect, our bridge is a kind of wormhole, as called by
Wheeler(lg), of the spacetime.

.In this paper, we discuss further éome properties of
GRK. We first show that there exists a moré convenient system

of coordinates to describe cur model. This coordinate system

enables us to study radial perturbations on GRK.

2 - GRK

In the previous paper(lﬁ) (refered to as I hereafter),
we adopted the Schwarzschild coordinate system to describe the

geometry. In this coordinate system the line element is given by

2 )2 2a 2 2

ds® = ™ (ax®? - &% ar? - 1% an? ()

where x° = ct, and n and o are functions of x° and r.

In this form, the GRK exhibits a singularity in eza
at r = o However the geometry itself is nonsingular everywhere
so that there exists a more convenient coordinateAsystem to

describe the geomectry. After a suitable coordinate transformation,



we can rewrite the line element as

2 2 -2 2

2 - e?h (4x%? - ar? - 1% an (2)

ds” =

where now h = h(xo,R) and v = r(xo,R). For a static metric the

new radial coordinate R is related to r by

(dr/dR) % = ¢~ 2¢ (3)

The Lagrangean density is the same as in I:
« %9 = (-g)1/? {%R - l:s SY - V(Sz):] } (4)

where k is the Einstein constant (= 8nG/c4),5a the scalar curva-
ture, g the determinant of the metric tensor, S a scalar field,

and V the potential describing the self interaction of the scalar

field. We take V(Sz) = % (%)zi.(l-fzsz)z, where p and f are

(16)

constant
As in I, we introduce dimensionless quantities and

variables as .

u=R | (5)
X = ur (6)
y = £8 | (7)
T = upct (8)
v (#/mP V=3 ayh? (9)

In these variables, Einstein's equations are written as

4% (1 - x'? 4+ x% g™%h
X

) - % x" = —fuz(ize—Zh + y'z + V) (10)



L(x' - xn) = £ 8 gy | (11)
- ’ . . - - ° - 2
_}%{e Zh (5& - Xh) - th} + _:_12 (1_X'2+x2e Zh) "—‘f ZO,Ze 2h+y| "'V)

X (12)
- ** ‘] R " - . -
1 {e M -xh) - xnp - et ?) - e il Myt oy
(13)

where the dot and prime signify the derivative with respect to
T and u, respectively.

The Bianchi identity is written as

Ly ey ZE-h) ey o B -y ;—y"z (14)

Of course Eq. (14) is not independent from Eqs.(10) — (13).

The static GRK then satisfies the following equations:

La-xh -2 G2 D (15)
X X '

-tz La-h -2t - (16)

X X

s+ @ md s X o2 G2, (17)
X : X

yn + ");t (h' + 2-‘) = ‘y i-\-f_._z (18)

X dy

where we attached bars to the static quantities, to distinguish
them from time-dependent quantities.
In this form, the advantage of the new coordinate system .

becomes evident. All the quantities X,y and h are analytic



functions of u and contain no singular behaviour. This fact
enables us to solve numerically the equations with high

accuracy.
The result of I shows that x = x(u) is a positive de-
finite function which has the asymptotic behaviour,

xX(u) » |u] for lu|] » =

and has a minimum at u = 0, x(0) = x

.
Thus we get at u = 0
v o) = (2£2 + xHY2x ' (19)
x"(0) = £2(2£% + x2)/2x, o

where .we used the fact that y(0) = 0 and h'(0) = 0. Again we
see that the new coordinate system simplifies the initial condi
tions ta solve Eqgqs. (15) — (18). |
The static soluticn with these initial conditions has

a definite parity with respect to the transformation u »> -u.
Functions X(u) and h(u) are even functions and y(u) is an odd
function of u. (See Fig. 1). |

" It should be noted that, in the construction of the
static solution, there remains a degree of ffeedom to fix the
origin of u coordinate. Eqs. (15) — (18) are invariant under the
transformation u -~ u' = u + const. Under this transformation the
static solutions are displaced in u-coordinate but remain inva-
riant in r-coordinate. Such a transformation is a kind of gauge

transformation of metric tensor, and will be discussed later.
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3 - RADIAL STABILITY

The main purpose of this paper is to study the stabi-
lity of the GRK. Here we discuss only the stability of the GRK

againét radial perturbations. First we put

x(u) + 8x(1,u) (21)

x(t,u) =
y(t,u)-= y(u) + 8y(t,u) (22)
h(t,u) = h(u) + &h(t,u) (23)

where X, ¥ and h are static solutions obtained before, and §x,
8§y and 6h are infinitesimal perturbétiohs. Substituting these
expressions into Eqs. (10) — (14) and neglecting higher order

terms in &, we get

x' ' 1 ' 2 x" 1 " =2 =, 1 v
= §x' + —= (1-x )éx - %7 ox + =8&" = £ "(y'Sy' + y é%j y)
X X X X dy
(24)
1 Tt ce -2 = = e
8x' - h'éx = £ “ X y'&y (25)
Sh' + 2h'6h' + 1% §x" - Z%: §x = 2f-2(2§'6y' +y —5 Oy ) (26)
X X y
%{e-ZhGX - B'éx' - z'shv} ¢ L xhex - L a3 Hex -
= - =3
X X
§' v._ 2 ] ' 5 d
- I = £5(y ey -y S5 6y) (27)
X dy
- 21 Y x' - X'
léy - {6y” + (h' 4 z§~)6y'+y'(6h'— f§7 §x' + z—éx‘)} =
g X X
- - dv
= - — (y —“7) Sy (28)

dy dy



Again Eq. (28) is the consequence of the Bianchi identity and not
independent of Egs. (24j —-(27). Furthermore, it can be verified '
that Eqs. (24) and (25) are not independent provided X, y and
h satisfy Eqs. (15) — (19). Thus oniy 3 equations are independent
among Eqs. (24) — (28).

Now to invéstigate the stability of these radial per-

turbations, we look for a normal -mode solution of the type

§x(t,u) = e 9Tx(u) (29)
sy (t,u) = e ®Ty(u) | (30)
shit,u) = e ¥TH(u) - | (31)

Then we get the following equations:

X' - RB'X=£23xyy | (32)
H' + 2BH + 2 x0 - 2 x = g¢? {zy'y' sy &y } (33)
X X dy
v e By ey fir - By 2y}
X . X X
R {wz e”?h .4 5 %)}Y =0 (34)
dy dy

These equations can be resolved numerically from u = 0 to @ when
initial conditions at u = 0 are given.

The boundary condition is .that X, Y and H are finite
everywhere including u » «. Under this boundary condition, Eqs;
(32) - (34) form an eigenvaluc problem for wz. If all the eigen

2 e .
value of w” are positive, then the system is stable against radial
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T Y(0) =1
Y'(0) =0
case (b)i HY (0) (36)
= q
X(0) = 0

where we have used the fact that the equations are linear so that
we may fix the scale factor, and o is a constant which should be
determined from the asymptotic values of X, Y and H' in acoordan
ce with the boundary conditions.

On the other hand, since y -+ 1, y' > 0, X ~ u,
-2h

X' » (l-const/u), e -+ (1-const/u), the asymptotic properties

i
of X, Y and H are as follows:

*const.u . 2
Y > e

for w"” < 2 .
) (37)
sin(const.u + §) for w > 2
X » const. e+h (38)
H'» const.e 2R (39)

where only the leading terms are maintained.

4 - EIGENVALUES

With the aid of Eq. (35) or (36) we may solve (numeri
cally) Eqs. (32) — (34) fromu = 0 to = . First we analyse the
case (a). In this case wz is the only parameter to determine the
asyﬁptotic behaviour of X, Y and H. It is seen from Eq. (38)

that the boundary condition for X is always satisfied. It is found
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that the boundary condition for Y is satisfied for only one par
ticular value of w? which lies between 0 and 2, or for any value
of wz > 2. However, any finite value of wz gives always a posi-
tive asymptotic value of H'. This means the perturbed metric
element e2H increaseg exponentially in u so that there is no
finite value of w? for which all the boundary conditions are
satisfied. Thus we conclude that the type (a) solution is for-
bidden.

A different situation is found in the case (b). In
this case there are two variables mz and o to determine the
asymptotic behaviour of X, Y and H. Again the boundary condition
for X is always satisfied. The function Y satisfies the boundary
condition for 6ne and only one value of a, say al(mz),- if

wz < 2. For wz

> 2, Y is oscillatory in u, satisfying the boun-
dary condition independent of a. On the other hand the asymptotic
value of H'(u) should be zero, and this happens for a unique value

2

of a, say az(wz). The eigenvalue w is then obtained from

the following condition:

al(wz) = az(wz) (40)

In fig. 2 we illustrated al(wz) and az(wz) for £ = 1.25. Thus
eigenvalues are obtained to be 0 and any w? > 2(continuum}

The null eigenvalue is the consequence of translational
invariance of the static solution mentioned in §2. In fact
for wz = 0, functions X, Y and H satisfy the same equations and
bouhdary conditions for X', ¥' and h', respectively. We con-

clude that
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X = egx'
Y = ey’ (41)
H = ¢h'

where € is an infinitesimal constant. The perturbed solutions are

x(t,u) = X(u) + ex'(u) = x(u+e)
y(t,u) = y(u) + €y'(u) = y(u+e) (42)
h(t,u) = H(uj + eH'(u) = K(u+s)i

2

showing that the null eigenvalue of w™ corresponds to the trans-

lations of static solutions in u.

5 - DISCUSSION

As shown in thé previous section, there is no negative
eigenvalue of wz. The GRK is stéble at least against radial per-
turbations. The null eigenvalue is related to the translation in
u. The corresponding state is physically not observable.

The geometrical structure of GRK is essentially viewed
as a bridge which connects two sheets of asymptotically flat
- spaces. In asymptotic regions of one of these sheets, the GRK
behaves as a concentration of mass. Since geodesic lines connect
-analytically the two sheets of space a light signal can pass
through the bridge. In general, any kind of field flux can pass
through the bridge from one sheet of the universe to the other.
Thus even if the field current is defined to be locally conser-
ved, the existence of such a bridge, to an observer in one of the

two sheets, appears as a source or sink of field flux. Further-
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more, the field current defined on the one sheet of universe
should have an opposite direction in the other sheet. In this
aspect, a bridge with a field current passing through it is
viewed in one of the two sheets as a particle with the charge
corresponding to the current and wifh the mass of the GRK,
whereas it is viewed as its antiparticle in the other sheet.
‘The above scheme is first suggested by Wheeler in his

(18). The existence

geometrical interpretation of electric charge
of a stable GRK suggests us an interesting possibility of gene-
ralization of Wheeler's idea. Suppose that our universe is com-
posed of two sheets of space connected by mahy bridges. These
bridges are characterized as particular pafticles or antiparé‘
ticles depending on the field current and its diréctibn passing
through them. The field currents might be that of electromagnetic ‘
fields or gluons, or even strings. They circulate from one

bridge to the other satisfying the local conservation of currents,
thus the Lagrangian contains no source terms for these fields.
Such an approach, at least at the classical level, would provide

a pure field-theoretical, singularity free model of elementary
particles including the concept of antiparticles. A further study

in this direction is now in progress.
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FIGURE . CAPTIONS

Fig. 1 - Static solution of GRK. a) Radial coordinate X as a
function of u. b) Scalar field y as a function of
u. From this figure the kink property of the solution

is evident. c) Metric exponent h as a function of u.

The value of f is taken as 1.25.

Fig. 2 - Plot of functions wl(a) and wz(d) in a-w piane
for £ = 1.25. The discrete eigenvalue is obtained
from the intersection of two curves, i.e. w = 0.

For w > 2, eigenvalues are continuum.
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