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SUMMARY :

A pseudoclassical mechanics of particle with any spin is constructed in
terms of anticommuting Grassmann variables, in addition to space time variables,
in the form of pseudovectors and pseudoscalars. A linear transformation (super-
syﬁmetry) group is defined over them and Lagrangian is required to be invariant
under it. The singular Lagrangian thus obtained is handléd by Dirac's method
to construct Hamiltonian dynamics. On its quantization we ebtaln Bargmann and

‘Wigner formulation for particle with spin. We find, however, that the general
supersymmetry is required to be replaced by a lower 'supergauge' symmetry in
order to eliminate the redundant variables and some of the Dirac brackets of

anticommuting variables must correspond to commutators on quantization.

*) Postal address: C.B.P.F., Av. Venceslau Braz, 71, Rio de Janeiro, R.J., Brasi’



I ~ INTRODUCTION,SUPERSYMMETRY :

In recent years the use of anticommuting c-numbers has drawn

1)

became more

2)

renewed interest. The formalism of Grassmann algebra

exciting with the possibility of formulating supersyimetry between

3)

bosons and fermions over superspace™ . The applications to Hamilton's

dynamics of the electron were considered recentlyA)’J)’6)’7)

8)7)

using Dirac's

formulation of quantizing constrained systems and supersymmetry as a
guiding principle. The pseudomechanics~classical mechanics of systems
described by usual c-number variables and by Grassmann variables and

possibility of its quantization was developed systematically by Casalbuoni

5),9),10)

in a series of papers We extend in this paper the above

considerations to a relativistic particle with arbitrary spin by using

8)

Jamiltonian dynamics for systems with constraints adapted to

11)

Dirac's
pseudomechenics. The formulation of Bargmann and Wigner is obtained

on self consistent quantization of pseudomechanics. It may be worth
remarking that some of the Dirac brackets of anticommuting variables are
required to go over to commutators instead of anticomnmtators on quantization.
Moreover, to realize the program of obtaining the dynamics purely in terms of
the variables XM , PU and spin variables (with no corresponding canonical

momenta) the general supersymmetry invariance must be replaced by the

requirement of a more restricted supersymmetry invariance.



To formulate the pseudomechanics of a particle of spin s we

introduce, following the discussion in refs. (6) and (7), 2s sets of real

. . . a a a
anticcemmating variaebles ( Eu , &) a=1,..., 28 where Eu are
5
. ; a . .
p seudo-vectors and & are pseudoscalars. They commute with the spacetime
5 i _
3, 12 .
* ) we define

variables Xu . @uided by earlier success of similar nature

a linear supersymmetry group over the space of these variables by

. A a
Ve g - 1B a1 a2
xu ku me u g5 me Eu 85 bu !
g‘={_—;a+ea,
H H H
- a a l
gs = gs toe (1)

where summation over repested indices is understcod and the €'s are real

1y

. a _a . .
while B%, ¥y°, b are real commuting constants. This

anticomnuting
U

group will be taken as the initial guideline for comstructing a Lagrangian

dynamics for the particle. These transformations leave the differential

forms dga s dga and
S 5
. & , a a "
0 =d (x + 1Y a ,a i (B =-v7) a ~a
U ( u me | gu gs )+ mc gu dss (2)
invariant. Anticipating our interest in the quantized theory we may

: - 1 . . A Y N
introduce the corresponding generating operators Ga, Gd , P by
- H 5



G;zx-i[ea. Ga+€?_‘ Ga+b.§,x] (3)

. . a a . .
where the anticommuting parameters EU’ £ will be assumed to anticommute
5

- -~

) a a .
with the generators Cp » G_ and to commute with, say, the generators
N 1]
Py corresponding to the commuting variables b, From Jacobi's identity
we way determive
T ~a ~b N
G G = 0
L woov . guv ab *?
r -t 7
~a |
| G© , G _J = £ 8 b *
Lg 5 5 + av
R N a a -
r & b B -y
(t s G hd (S'b P 3
L u 5 |4 ome a H
G P = 0, (4)
s
Ko
_ ™ ~a =a
where k, £ are arbitrary constants and G stands for GU or G .
' 5

The a2lgebra of operators is a graded Lie algebra.

A realization of this algebra may be obtained over the phese
space corresponding to a classical Lagrapgian, which is invariant or quasi-
invariant with respect to the supersymmetry transformations of Egqs. (1),

through Poisson brackets, since in a quantized theory these go over to

commutators or anticommutators of operators.



II ~ Pseudoclassical Lagrangian:

The points on the trajectory of the particle will be labelled
by a monotonic parameter T which does not change under Poincare or
supersymmetry transformations,  We require that the Lagrangian be 'even' and
hemogeneous of first degree in the derivates with respect te T and be

<

quasi~invarient undor supereymmetry tvansformations.  The most general form

R

e
- _ s @azxa _ . a U - ome S x o+ v )2 5
L i &1 3 Qq i gi v ( U 1 ) (5)

o . .. . a _a
where the dot denocotes diffeventiation with respect to T, dls az are

paramcters and

. .8 . a
_ iR a :a iy ra  .a
Vo o= R .
H e Eu c5 * me gu g5 ¢ (%)

. d a a ,.a a _a .U
8L = — ; '
I (o e 55 voo e £, (7

S = Ldrt (8)

o

invariant. The action is aleo invariant under the reparametrization -t' = T'(T)
where T' is a monotonic function. The infinitesimal generator of the

(canonical) - supersymmetry and Poincare transformationslB) is



F=-6x P+ a+6e2n®-1i(o®e?E® +a2c?¢M
EU 555 (1555 2u€a)
= p P 4+ g2 gl pe? e ¢ Ly VH
H'Ga s G5 3 UUV M (9)
H M a . . a
where P, '“'a and 'lfs are the canonical momenta conjugate to XU ’ Eu
a
and 55 respectively, Wu\) are infinitesimal parameters of Lorentz
t ransformations and MU\) corresponding generators, GE1 ’ Ga are
5
supersymmetry generators., Then
a a i'ya a
G = - (1% + - .
5 ( 5 te Es mc P8
2= - (1 +i o® ga+—i—-@fpga) (10)
u u 2 M me ucs T
For the variation of any dynamical variable A under supersymmetry
transformations we have OA = - {F, A} where { } indicates Poissen
14
brackets 4) . By using the non-vanishing standard brackets
{x P} = -
TR v 2
: a b _ :_
{ "T‘u &y b o= Bl Sap
{n2, gb } o= - § (11) .

5 5 ab ?



we find

{Gj,c§}= —Ziocl(a) J

(er, = —aia® 6,8,

(e, - - L@ - e e,

{e,r } =0, (12)

vhich is a realization through Poisson brackets of the graded Lie algebra

of Egs.(4).

The Lagrangian above is singular and we will employ Dirac's

8)

method to obtain the Hamiltonian dynamics. It is convenient first to
s implify the Lagrangian by performing a cononical coordinate transformation

suggested by Eq. (2):

H

. a
X = + ﬂ-- a a
x]J XLI nc E],l & [

Fa _  ,a
gu = gu 3
g2 = g2 | (13)



\ . 1323
which is generated by

- — = a = a —a
= -% P + L T 14)
) x, Eu a Es ) (
It follows that
P = P
W w’
a
—a 1Y a
T o= T
U 11+chIJ€s’
o om oo Y, (15)
5 5 me
— - i ,,a __ay a ,a
Under supersymetry X *“é‘xﬁ - —EZ<B -y )gu gs and we may redefine 55
so that (Ba - ya) = -1., We will drop the bar henceforth and work with

the Lagrangian

N e

/- . —
_._: aa:a SRS . _ i a za \2
L 1o €5 ES ga me 1/ ( %, £ ES )< (16)

mc U

. a .a
b 0‘2 EU

while the supersymmetry transformation becomes

v i a a
XU XU * me H g5 ’
1
a

e:{j = g+ e, >
a' .a a

o= - + R
E Gt & (17)



The canonical momenta are found to be

ga . 8L _ ; (&) .a
= - o E 3
H SY 2 (8
aga
a _ 9L - (a) a2 _ i a ,
'n‘s °a' L OLl 55 me Po g . (18)
35,’5

Here we enclose one of the repeated indices by parentheses to indicate that

i a a
LA 7 = - ¥ 1 s
it is not summed and \U e Eu Es . Lagrange's equatlons are
P = 0
u ’
(a) g2 _ 1 sa
20 EU T me PU s’s >
(a) g2 _ 1 sa (19)
2 0'1 55 — P. E; N .
For non-vanishing éa and éa we require that
5
p (@) a w‘PZ -
4 ul a2 P ) (20)



the last equality following from Egs. (18). In what follows we will assune

a? =qa® = 1/2. From Eqs. (18) we obtain the following primary constraints
2

XS EREE AR —%~ gi = 0 ,
a - .a _ i a i a -~ g
Xg = T 2 Es P B 6 ’
x = P2 - p2c? T 0, 21

where I is to remind us that, when calculating a Poisson bracket, these

equalities must be made use of only at the end of the calculation.

For the constraints to be constants of motion we demand that

*a *a

( X, < 0, X, ~0)
ea _ i *3
°q 1 ea _ i 23 (22)
‘{35 B T gs me P. E ? -

o}
)
[
Yy
a)

is a constant of motion. We will return to it later.

We may calculate formally the Hamiltonian



10.

]
JYYe

,x“ T A | (24)

where we used Eqs. (18). To construct non-trivial Hamiltonian we use Dirac's

procedure.

I11 -~ HAMILTONIAN DYNAMICS:

8)

Following Dirac we calculate now Poisson brackets among our

p rimary constraints:

—_ a —_ a E
{X,X}—‘{X’Xs} {X’XU} o,

: a _b .
{XS’XS} - l(sab’

1

a b —
{ Xs"XU b= mc Ru Sab s
a .
0 SO =i E Sap (25)



11.

Thus X is first class. By forming linear combinations of the set X, =
( xa s X; ) we look for any other first class constraints. For more
5
~ first class constraints to exist
23 2
: . _ (a) a _ P
[t | = Pl - 2
a=1 :
must vanish. This is already true in virtue of Eq. (20) . Define
a) _a
x> = u( ) Xs . V(a) (r. ¥) . an
We require that { Xg . Xg Y} o, {x , Xb }Zo and { x; X? } o
5 s i
. . - a u?
which gives v = - . Thus
me
a . a ~
Xp £ Xt PeX F 0 (28)

are first class.

. a .
We will thus take yx , X; and Xﬂ as a more convenlent
set of primary constraints and define the total Hamiltonian ( Ho = 0)

- a _a u a
HT uy + uD KD + ua X

.

. a u
where u 1is even and Ups uy

f unction.

{a, n, 1}

e
i

ul/

are odd to make H

(29)

T an even Grassmann

The evolution of any dynamical variable is given by

(30)



12,

and consistency conditions are obtained by requiring that X ~ O,viD ~ 0 and
iﬁ 0. We find

&~ v ‘L a b . oA~

Xh ~ u | Xy s Xy b=~ i w, ~ 0. ; (31)

No secondary constraints arise and the total Hamiltonian is first class of

the form
H, = P2,
T Pox P X (32)
The constraints XS < 0 are second class. They can be
turned into strong relations xi = 0 , thus removing ;ﬁi , 1f we use

. 8 . ' . . .
Dirac brackets ) with respect to these constraints in place of Poisson

brackets. Dirac's brackets are given by

. * .
= ; _ u .ab v
{4, B} fa, 81— (a4 ! €y (X »B 1} (33)
.ab . . . -V
vhere ( Cuv ) is the lnvg?se of the matrix l' { Xg, Xb } f‘ s
- L ab _ . :
that is; Cuv = -1 éab gUV . Hence

{ A, B‘}* = {aA, B} + i {a4, Xi }{ Xs, B} . (34)



13,

The equations of motion are obtained from
L] *
= - 5
A =14, Hy} { A, 0} (35)
and

78 = i gﬁ . ' (36)

£,0% -2p P - — 0 gi,

Bz,

E % oo,

s - = i

13“ T 0. .(37)

We observe that they contain Eq. (19). The f* evolution mixes
coordinate and spin degrees of freedom; the phase space of particle with spin
is a 'super-space'. The second term in equation for iu represents the classical
analogue of 'zitterbewegung'. Considering spinless particle and a definite

T- gauge, say, proper—time or laboratory time gauge, we may fix pl.



14,

We proposed to built a pseudodynamics involving no ﬂﬁ and

a . . a
il . Supersymnetry invariance led us to remove ‘Wu but not T
We thus look for some cther constraints which are of second class while

. .. . a .
leaving the surviving constraints ¥ , XD first class. We may then

. . .. . 15
go over to new Dirac brackets using their iterative property ). A

1

candidate is the constant of motion Xj E'n? + —%~ Ej and we may impose
the constraints
a' . a i a -~
= + ~ .
X, L 7 & 0 (38)
From
| b' _
{XS v XS}— —Gab ]
a bI 1 bl
Uxp > X }={y,x}~{x5,x3}—0,
: b a'
{x, x 3} =0, (39)
5 5
we see that they have the desired properties., Defining
. KN . * . LI ' *
{A, B} -—-{A,B}—i{A,x?}{x‘:,B} (40)

a .
we can use Xs = 0 as strong relations if we use these new Dirac brackets.



15.

Clearly

{4, B }** = {A, B} + 1i{a, X: }{ Xz , B} - i{-A, X?t}_{xj',g} (41)
and

[ E x .
A—{A,HT} ~{A,HT}~{A,HT}. (42)

We remark, however, that up to the level of Egs. (34) we did
maintain supersymmetry invariance but the imposition of Eqs. (38) may have

destroyed it. We discuss the covariance of the theory below.

. . . a .,a
The new Dirac brackets of the surviving variables XU’ PU’ gu, 55

can now be calculated. The non-vanishing ones are

{x , P} ={xu,Pv}=—gW,
Led, 21 =1 0e®,1%) (n JEY=-ig,
te L, e - o,
- =ig, 8, (43)

In addition we have



16.

{x,xg} <o . (44)

IV - SELF-CONSISTENT QUANTIZATION:

This system may now be quantized by the correspondence

it {A,B} ¢—> [X 8] or [A,3] (45)

-t -+

and the requirement that the leftover first class constraints become now

8)

conditions on the states (c = 1):
X ¢ = (P2P-m®)y = 0 , (46)
Xp ¥ = (P2 - mE)u=o0 . (47)

We will choose in Eq. (45) the commutator or anticommutator by requiring that
Egs. (45) - (47) be self-consistent instead of the prescription given in
reference 9. (In any case, after quantization the graded Lie algebraic structure

is not carried over for corresponding operators,)



iy

[ 22

i

We write

14+

1+

, €2

1+

and for obvious reasons

The  gign

requirements.

-~ .Aa \I)
EX b4 XD ]+

.

= ( s

We must require also

17,

48)

(49)

in the first three cases will be determined by self-consistency



18.

- - -~ ~c -~ -~ ~b otc U
(%5, %] w=t[8 8] M -nlf, 8] P -
. + )

_m[gg, £27 M+ n? [E°, 21 1y =0 . (50)

From Eq. (47) we derive

sU b za sa b - ~b =a pH BV ;
mBT (e ECr BB Y L&, ,avjf ¥
S, b za sa sb - ; sa . (51)
M B e 2 ) w2, 8]

Consider the case a =b. From (48) it follows that we must require (dropping

the superscripts):

™
il
-
YY)
3
!
s&-
.

(52)

From (51) we obtain

zr'“e:“f,s v = ~fhim y,



19.

2" EE v = fmy , (53)
5 U :

‘ -

leading to
T,z =0 . ‘ (54)
e, 8,1

Therefore Ei ’ E: generate a Clifford algebra C5 . We

obtain the usual Dirac~Pauli algebra for the Y’ s on writing

a _ bl (a) _a .a = £ _a (55)

&) /———~2 Y, Y, ,‘is /2 Y, .
and deduce Y, = i y(a) ya v v? . Egs. (47) give

0 1 2 '3

(y*. P-m)¥ =0 , a=1, ..., 2s. (56)
For these equations to be satisfied simultaneously we require for a # b
that

a b ) .
[vi» wl =o (57)

[v3 .*] = o (58)



20.

a . . .
even though the Es are anticommutlng numbers. The consistency

requirements [ X ig ]+ Y =0 and [ ig s Xg ]+ =0 do not lead

to any new conditions and are satisfied identically. Thus we obtain the

9)

formulation of Bargmenn and Wigner for a particle with spin s.

V ~ POINCARE AND SUPERSYMMETRY INVARIANCE:

From Eq. (9 ) we identify

(59)

Hv B Luv * SUV
where
w T e TR R (60)
and
S = 83 _ g2 .a '
™ m, Eu u £y (61)
which goes to
g = -1 a,a _ ,a,a
W= T (e g ) (62)

on using the constraints. By making use of Eq. (43 ) we obtain the following ~

non—-vanishing brackets:



pA

{ spk

{M
Y

{M
IV

{M

iy

{M
I5\Y,

L X%
[T ‘oX

::g L -—
Ay Tpv gpu va *

*%

s 1} =
v { Spk i Suv

uv ? oY

RTINS

P, } =
N { th > By }
P
u Bua v Bux
a**
g = in,, g
iy A
a k% *
6, 1" = {m c2-
w2 A

AU T pv gpu Skv *

8.\ Ly ~
ov D T 8w Bon

3= {
pr , suv } =

g . Sy
ov S T B Spp

= { Muv s xx} =
* oy
Muv s Py } =

21.
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{6,y - —i(g - Ay ) 6
s - B 3
P v uv m2c2 ab
LN .
{G’G\)} —"1guv68b,
: a b.*% _ 1 ®
{ Gu > G o= — 1>u Sp
a b * _ _
{ GS ’ G5 } - 1 Gab ]
a ‘ b :-k* a b3
= = . 6
{Gu’XD} {GU’X} 0 (63)
At the level of { }** the generators Gi = 0 in virtue of the
)
constraints Xa =0 , showing that X? = 0 breaks the general
5

(canonical) supersymmetry invariance, Eqs. (17), we started with. The
a

. . . . a G .P
surviving supersymmetry 1nva‘r1ar}ce is that generated by F =n (1) e
P
where we put SS = n? (1) E}é—— . The corresponding transformations
are given by
! P a a
x = x +i-—" n(Tt) Es s



23.

2 = g2+ n® (1) . (64)

That it is possible to allow the pseudoscalar parameters na to be T -
dependent may be seen from Eqs. ( 19) . Quasi-invariance of the Lagrangian
may also be verified. At the level of brackets { }* the theory is
covariant with respect to general supersymmetry as well as under the

t ransformations just discussed. In fact the constraints ¥ , X; s Xz

are invariant under general supersymmetry. However,

a' _ a'y _ _ . a _ e .P
$ X, {r, X } i( €, — ) (65)
a a T
vanishes only if eu = g mE . Thus the corresponding generator
. 5
a .
¢? = G: + i;-c—?— (66)

leaves invariant all the constraints and equations of motion.

VI - GAUGE CONSTRAINT T = X' :

We mentioned in Sec. II that our action is invariant under

reparametrization of the invariant parameter T . We may study another gauge



24,

by imposing the constraint

XOEXO(T>"T:O- (67)

; . . . . . . . 0
In this gauge the Hamiltonian generates evolution in time coordinate x .

The other remaining constraints are ' X, x; . Wg have for the non-
vanishing brackets

{x, X, }** 2 Po s

g x, ¥ T e,

U, e ¥ = ixs, To (68)
that is, X, Xo s xg are all second class. Let us try to build

p X + M, X, + uéa? Xg out of them. We require that

i

a first class xg

2 U Po + péa) g? - 0,

- - a . a «~ a ~ )
u0£o+1qu ~ W & < 0 (69)
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implying My = v . A solution is ¥ = 0, U; = C? s the corregponding
first class constraints are E( a) D In fact
(2) = 8 42
r o(a) a (D) b o E (a) .2 ~
AN b S R0 o,

We define then new Dirac brackets relative to the second class constraints ¥

and Xo s Viz,

Kkk T x
{A,BY " ={A,B} +2,f;
0

[{A,Pz}** e B3 <A, x ) (22, B) ](71)

and we may set inside them

Xo = T s
P2 = m? c? . (72)

Also , for any dynamical varigble A, it is clear

Kkk RRE
{A,x } = 0

“{'a, P?}
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aM iS

We verify that the Poincare algebra of P N

u

preserved as well as that of supersvmmetry, Eq. (64),. Total Hemiltonian

now 1is

a ,.a _a
AT ER S (73)

[
ae]
+

H

where we must add P so that when all the constraints are satisfied the

o
17}
Hamiltonian reduces to the operator for evolution in X . The
pquations of motion are given by
. / % ek
Ao=9A J2A L wm VY (74)
o o} T
dx 0%
We find
. Kk
© = 1+ {x°,H = 1,
T
Puéo,
. -; -6
;{-)___g’___}\agaga ,
P 0
0
g2 o1 (P22 4 necd) i 2@ p g2,
Za (a) 3 .a
E = -1 A '? Eo ’
Ea = ~-ime X(a) Ea ,
5 0
v o= 1@ - a a ~
Moo= A% [Pk mcEJEi o ,
M., = 0O . (75)
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The fourth and fifth equations in Eq. (75) may be integrated to

obtain ( x° = t )
2y = £ (e i W oo, (76)
0 0
. 4 ’ . a
TP + T Erto@Ei Pty 77)

0

where E: 0 , E?a(o) are the values of the corresponding variables at t = 0.

It follows then

. = . 28
¥ = - 22 rroedt bt (78)
(o}
and its solution is given by
. - . . a
W =T + - 2 @FTT@ TN F oD 09
0 0

The particle thus moves with the classical velocity 59/ Po but superimposed

on to it is a pseudoclassical analogous, with real exponentials, of the quantum

mechanical 'zitterbewegung' 16). On quantization for H, to be hermitian, we
? - -~
must redefine A? s to be real. In addition we must ensure that HT = P0
. ¢ s . - )
when all the constraints are satisfied. We find HT = 7%~'-§ (P.—zxa + mc Ba).
,)S
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